Zeitschrift:	Vermessung, Photogrammetrie, Kulturtechnik : VPK = Mensuration, photogrammétrie, génie rural								
Herausgeber:	Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) = Société suisse des mensurations et améliorations foncières (SSMAF)								
Band:	86 (1988)								
Heft:	7: Prof. Rudolf Conzett in memoriam								
Artikel:	Einige Bemerkungen zur Fehlerellipse und zum Fehlerellipsoid								
Autor:	Linkwitz, K.								
DOI:	https://doi.org/10.5169/seals-233771								

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 01.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Einige Bemerkungen zur Fehlerellipse und zum Fehlerellipsoid

K. Linkwitz

Die Bestimmung von Kofaktoren für gedrehte Koordinatensysteme führt auf die Ermittlung der Extremwerte einer quadratischen Form mit quadratischen Nebenbedingungen. Das bei der Lösung auftretende lineare homogene Gleichungssystem hat die Form eines Eigenwertproblems, dessen Eigenwerte und Eigenvektoren die gesuchten Extremumeigenschaften haben. Nach einer Hauptachsentransformation in das System der Eigenvektoren lassen sich die Kofaktoren $Q_{t,t}$ bzw. $\sqrt{Q}_{t,t}$ für eine beliebige Richtung t als zu t affine Radiusvektoren in einem Fehlerellipsoid bzw. einer Fehlerellipse darstellen. Der jeweils gleiche Kofaktor $Q_{t,t}$ bzw. $\sqrt{Q}_{t,t}$ tritt zusätzlich als Radiusvektor in der zugehörigen Fusspunktfläche bzw.-kurve auf.

Fehlerellipsen/-ellipsoide gehören auch zu nicht überbestimmten geometrischen Konfigurationen.

Ausgehend von der vermittelnden Ausgleichung mit Bedingungsgleichungen – und ohne die Theorie elastischer Systeme heranziehen zu müssen (!) – wird dann gezeigt, dass den Punkten eines geodätischen Netzes «Verschiebungs- und Mitverschiebungsellipsen» zugeordnet sind, deren Halbachsen die Quadrate der Halbachsen der Fehlerellipsen sind und deren Orientierung mit der der Fehlerellipse identisch ist. Diese Ellipsen beschreiben einerseits reale Deformationen des Netzes bei realen, zusätzlichen Zwangsanschlüssen. Andererseits bilden sich in ihnen die Fehlereigenschaften des geodätischen Netzes als virtuelle Verschiebungen unter Einheitsbelastungen in einem elastomechanischen Analogen ab. Dies erlaubt eine anschauliche Beschreibung und Analyse der stochastischen Eigenschaften des Netzes durch zugehörige elastomechanische virtuelle Belastungsund Verschiebungszustände.

La détermination des cofacteurs pour des systèmes de coordonnées soumis à des rotations conduit au calcul des extrema d'une forme quadratique, avec conditions quadratiques complémentaires. Le système d'équations linéaires homogène correspondant à cette solution est un problème de valeurs-propres, dont les valeurs et vecteurs-propres ont les propriétés d'extrema souhaitées. Après une transformation d'axes principaux dans le système des vecteurs-propres, les cofacteurs $Q_{t,t}$, respectivement $\sqrt{Q}_{t,t}$ pour une direction quelconque t peuvent être interprétés comme les vecteurs radiaux affines de t dans l'ellipsoïde ou l'ellipse d'erreur. Dans chaque cas, le même cofacteur $Q_{t,t}$, respectivement $\sqrt{Q}_{t,t}$ est en outre le vecteur radial de la surface, respectivement de la courbe «pédale».

Les ellipses et ellipsoïdes d'erreur existent aussi dans le cas de configurations géométriquement non surdéterminées.

En partant de la méthode des observations médiates avec équations de conditions – et sans qu'il soit nécessaire de faire appel à la théorie des systèmes élastiques! – on montre qu'aux points d'un réseau géodésique sont associées des «ellipses de déplacement et de codéplacement», dont les demi-axes sont le carré de ceux des ellipses d'erreur, et dont les orientations sont identiques à celles-ci. Ces ellipses décrivent d'une part les déformations réelles du réseau lors de l'adjonction de contraintes supplémentaires réelles de raccordement; d'autre part, elles expriment en elles-mêmes le comportement du réseau géodésique face aux erreurs en tant que déplacements virtuels sous des charges unitaires dans un modèle élastomécanique analogue. Ce fait nous autorise à proposer une description très parlante et une analyse des propriétés stochastiques du réseau en nous appuyant sur des considérations de charges et de déplacements virtuels élastomécaniques. schaulicher Weise die Genauigkeit eines durch Messungen bestimmten Punktes dar. In klassischer Weise kann sie folgendermassen hergeleitet werden:

Die rechtwinkligen x,y-Koordinaten eines Punktes P seien durch eine Ausgleichung bestimmt worden. Aus der Ausgleichung seien auch die Kofaktoren Q_{xx}, Q_{yy} und Q_{xy} als die entsprechenden Elemente der Inversen des Normalgleichungssystems bekannt.

Gesucht seien die Kofaktoren Q_{tt} , Q_{uu} , Q_{tu} des gleichen Punktes in einem gegenüber dem x,y-System um ϕ gedrehten rechtwinkligen t,u-System, Fig. 1.

Abb. 1: Koordinatentransformation

Zur Lösung setzt man die Koordinatentransformation an

- $t = \cos \varphi + y \sin \varphi$
- $u = -x \sin \varphi + y \cos \varphi$

und erhält mit dem allgemeinen Fehlerfortpflanzungsgesetz sofort

Formel (1)

Die Formeln (1) sind bereits das Ergebnis unserer kleinen Aufgabe; für jeden vorgegebenen Winkel φ erlauben sie die Ermittlung der Kofaktoren Q_{tt} , Q_{uu} und Q_{tu} im gedrehten Koordinatensystem, oder, in etwas anderer Betrachtungsweise: mit (1) bestimmt man die Genauigkeit des Punktes P in der um φ gedrehten Richtung t und der um (φ + 100⁹) gedrehten Richtung u. Wir fragen nach Extremwerten von Q_{tt} und Q_{uu} . Diese finden wir leicht, indem wir die Funktionen Q_{tt} und Q_{uu} nach der unabhängigen Variablen φ ableiten und die Ableitung null setzen

Formel (2)

Professor R. Conzett hat sich immer wieder mit der Frage der Genauigkeit und Zuverlässigkeit geodätischer Netze beschäftigt und dabei auch nach neuen Wegen und Darstellungsarten zur Beschreibung dieser Netzeigenschaften gesucht. Der folgende Beitrag behandelt die klassischen Darstellungsmittel Fehlerellipse/ Fehlerellipsoid für Punktgenauigkeiten und zeigt sie in einem erweiterten Kontext.

Bekanntlich stellt die Fehlerellipse in an-

Der Vergleich von (2) mit (1) zeigt weiter, dass für $\phi \to \theta$ der gemischte Kofaktor Q_{tu} verschwindet.

Zur Bestimmung der Extremwerte Q_{tt max,} min setzt man (3) in (1) ein und erhält nach einigen (etwas mühsamen) Umformungen

 $\mathsf{Q}_{tt} \;=\; \cos_{\phi}^{2}\mathsf{Q}_{xx} + 2\,\mathsf{Q}_{xy}\sin\phi\cos\phi \,+\, \sin^{2}\!\phi\,\mathsf{Q}_{yy}$

- $\label{eq:Quu} \mathsf{Q}_{\mathsf{uu}} = \ \mathsf{sin}_\phi^2 \, \mathsf{Q}_{\mathsf{xx}} \ 2 \, \mathsf{Q}_{\mathsf{xy}} \, \mathsf{sin}\phi \, \mathsf{cos}\phi \ + \ \mathsf{cos}^2 \phi \, \mathsf{Q}_{\mathsf{yy}}$
- $\label{eq:Qtu} \textbf{Q}_{tu} \ = \ sin\phi \ cos\phi \ (\textbf{Q}_{yy} \textbf{Q}_{xx}) \ + \ \textbf{Q}_{xy} \ (cos_{\phi}^2 sin_{\phi}^2).$

 $\frac{dQ_{tt}}{d\phi} = -2 \sin\phi \cos\phi Q_{xx} + (\cos^2 \phi - \sin^2 \phi) 2 Q_{xy} + 2 \sin\phi \cos\phi Q_{yy} = 0 ,$

 $0 = -2 \sin \phi \cos \phi (Q_{xx} - Q_{yy}) + (\cos^2 \! \phi - \sin^2 \! \phi) 2 Q_{xy} \ ,$

mit der Lösung

 $\label{eq:max,min} tang \ 2\phi_{max,min} {=} \frac{2 \ Q_{xy}}{Q_{xx}{-} Q_{yy}} {:=} tang \ 2\theta \ .$

$$\begin{aligned} \mathsf{Q}_{tt} &= \frac{1}{2} \left(\mathsf{Q}_{xx} + \mathsf{Q}_{yy} \right) \pm \frac{1}{2} \sqrt{\left(\mathsf{Q}_{xx} - \mathsf{Q}_{yy} \right)^2 + 4\mathsf{Q}_{xy}^2} \\ &:= \mathsf{Q}_{\xi\xi}, \mathsf{Q}_{\eta\eta} \end{aligned}$$

Die Form der bisherigen Herleitung ist allerdings wenig geeignet, auf den dreidimensionalen Fall verallgemeinert zu werden. Während nämlich in der ebenen Koordinatentransformation ein unabhängiger Drehwinkel zur Festlegung der Transformation genügt, müssen zur dreidimensionalen Transformation zwischen zwei rechtwinkligen Koordinatensystemen drei unabhängige Grössen - die drei Euler'schen Winkel - vorgegeben werden. Die danach analog (1) zu bildende guadratische Form muss nach den drei unabhängigen Eulerschen Winkeln partiell abgeleitet werden. Durch Nullsetzen jeder dieser partiellen Ableitungsgleichungen erhält man drei Bestimmungsgleichungen für die drei Winkel. Nachrechnen zeigt, dass diese drei Gleichungen nichtlinear und unhandlich sind und nicht direkt gelöst werden können. Wir wählen deshalb einen anderen Weg,

der sich leicht verallgemeinern lässt. Dazu führen wir in der quadratischen Form (1) an Stelle der unabhängigen Variablen φ jetzt die zwei gegenseitig abhängigen Variablen sin φ , $\cos\varphi$ ein, welche durch die Nebenbedingung $\sin^2\varphi + \cos^2\varphi - 1 = 0$ miteinander verknüpft sind. Um den Übergang auf andere Variable ganz deutlich zu machen, führen wir für den Moment die Bezeichnungen ein

$$\sin\varphi$$
: = b, $\cos\varphi$: = a. (5)

Die quadratische Form (1), deren Extremwerte gesucht sind, hat dann die Darstellung

$$Q_{tt} = a^2 Q_{xx} + 2 ab Q_{xy} + b^2 Q_{yy}, \qquad (6)$$

Nebenbedingung $a^2 + b^2 - 1 = 0.$

Zur Bestimmung der Extremwerte müssen wir jetzt nach Lagrange verfahren und die mit dem Lagrange-Multiplikator λ erweiterte Funktion

$$F: = a^2 Q_{xx} + 2ab Q_{xy} + b^2 Q_{yy} - \lambda (a^2 + b^2 - 1)$$

partiell nach den Variablen a, b, λ differenzieren und die Ableitungen null setzen

$$\frac{\partial F}{\partial a} = 2a Q_{xx} + 2b Q_{xy} - 2a\lambda = 0$$

$$\frac{\partial F}{\partial b} = 2a Q_{xy} + 2b Q_{yy} - 2b\lambda = 0 \qquad (7)$$

$$\frac{\partial F}{\partial \lambda} = a^2 + b^2 - 1 \qquad = 0 .$$

Die ersten beiden Gleichungen sind das für die Unbekannten a und b homogene Gleichungssystem

$$\begin{aligned} (Q_{xx} - \lambda) &a + Q_{xy} b &= 0 \\ Q_{xy} &a + (Q_{yy} - \lambda) b &= 0 \end{aligned}$$

welches nur dann nichttriviale Lösungen für a und b hat, wenn die Koeffizientendeterminate verschwindet. Es muss also sein

$$\det \left| \begin{array}{c} Q_{xx} \ \cdot \ \lambda \quad Q_{xy} \\ Q_{xy} \quad Q_{yy} \ \cdot \ \lambda \end{array} \right| = 0 \quad ,$$

sodass man für den Lagrange-Multiplikator λ die quadratische Gleichung

 $(Q_{_{XX}}-\lambda)~(Q_{_{YY}}-\lambda)-Q_{_{Xy}}^2=0\,$ erhält. Sie hat die Lösung

$$\lambda_{1,2} = \frac{1}{2} \left(Q_{xx} + Q_{yy} \right) \pm \frac{1}{2} \sqrt{\left(Q_{xx} - Q_{yy} \right)^2 + 4Q_{xy}^2} \quad . \quad (*)$$

 $a = \frac{-Q_{xy}}{\sqrt{\overline{Q}_{xx}^{2} + Q_{xy}^{2}}} \qquad := \cos \theta$ $b = \frac{Q_{xx}}{\sqrt{\overline{Q}_{xx}^{2} + Q_{xy}^{2}}} \qquad := \sin \theta$ $b = \frac{\overline{Q}_{xx}}{\sqrt{\overline{Q}_{xx}^{2} + Q_{xy}^{2}}}$

Der Vergleich von (*) mit (4) zeigt, dass der

 Lagrange-Multiplikator selbst gerade gleich den gesuchten Extremwerten ist. Dies können wir auch direkt zeigen. Multiplizieren wir nämlich die beiden homogenen Gleichungen (7)

$$\begin{array}{c|c} a \ Q_{xx} + b \ Q_{xy} = a\lambda \\ (2) & a \ Q_{xy} + b \ Q_{yy} = b\lambda \\ \end{array} \begin{array}{c|c} \cdot a \\ \cdot b \end{array}$$

mit a und b und addieren sie, so erhalten wir gerade (6).

(3) Nachdem λ ermittelt ist, können auch die Unbekannten a und b bestimmt werden. Setzt man

$$\begin{array}{ll} (4) & \bar{Q}_{xx} := Q_{xx} - \lambda \\ & \bar{Q}_{yy} := Q_{yy} - \lambda \end{array}$$

so erhält man aus den homogenen Gleichungen die (normierte) Lösung

Formel (8)

und man überzeugt sich durch Nachrechnen – unter Verwendung der Additionstheoreme –, dass die Gleichungen (8) der Darstellung (3) äquivalent sind.

Unser Weg ab den Gleichungen (5) ff. zur Lösung der Extremwertaufgabe lässt sich jedoch auch als die Formulierung und Lösung eines Eigenwertproblems auffassen. Dazu schreiben wir ihn noch einmal mit Hilfe von Matrizen an:

Die Kofaktoren von P ordnen wir in der Kofaktorenmatrix

$$\mathbf{Q}_{\mathbf{x}\mathbf{x}} = \begin{pmatrix} \mathbf{Q}_{\mathbf{x}\mathbf{x}} & \mathbf{Q}_{\mathbf{x}\mathbf{y}} \\ \mathbf{Q}_{\mathbf{y}\mathbf{x}} & \mathbf{Q}_{\mathbf{y}\mathbf{y}} \end{pmatrix}$$

an, und die $\text{cos}\phi$ und $\text{sin}\phi$ fassen wir im Einheitsvektor

$$\mathbf{x} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

zusammen. Die quadratische Form (1) hat dann die Gestalt

$$\begin{split} & Q_{tt} = \bm{x}^{\mathsf{T}}\,\bm{Q}_{xx}\,\bm{x}\;; \eqno(1a) \\ & \text{sie soll mit der Nebenbedingung}\;(\bm{x}^{\mathsf{T}}\bm{x}\,-\,1 \end{split}$$

= 0) zum Extremum werden.

(8)

Dazu muss das erweiterte Gleichungssystem

$$\mathsf{F} = \mathbf{x}^{\mathsf{T}} \, \mathbf{Q}_{\mathbf{x}\mathbf{x}} \, \mathbf{x} - \lambda \left(\mathbf{x}^{\mathsf{T}} \mathbf{x} - 1 \right) \qquad \triangleq (6) \; \mathrm{ff}.$$

differenziert werden

$$\frac{dF}{d\mathbf{x}} = 2 \mathbf{Q}_{\mathbf{x}\mathbf{x}} \mathbf{x} - 2\lambda \mathbf{x} = 0$$
$$\frac{dF}{d\lambda} = (\mathbf{x}^{\mathsf{T}} \mathbf{x} - 1) = 0 \quad ,$$

bzw.

und wir erhalten die homogenen Gleichungen

$$\mathbf{Q}_{\mathbf{x}\mathbf{x}} \, \mathbf{x} = \lambda \, \mathbf{x}$$
$$(\mathbf{Q}_{\mathbf{x}\mathbf{x}} - \mathbf{E} \cdot \lambda) \, \mathbf{x} = 0$$
$$\mathbf{x}^{\mathsf{T}} \mathbf{x} = 1. \qquad \triangleq (7) \text{ ff.}$$

Aus der Form dieser Gleichungen lesen wir sofort ab

- 1. Die Lösung x ist Eigenvektor von Qxx, und da Qxx symmetrisch und positivdefinit ist, sind sämtliche Eigenwerte reell und positiv.
- 2. Der Lagrange-Multiplikator ist Eigenwert von Q_{xx}.

Für die Eigenvektoren **x** als Lösung nimmt nun wegen $\hat{\mathbf{x}}^{\mathsf{T}}\hat{\mathbf{x}} = 1$ die quadratische Form (1) gerade die Gestalt des Raleigh-Quotienten

$$r = \frac{\widehat{\mathbf{x}} \ \mathbf{Q}_{\mathbf{x}\mathbf{x}} \ \widehat{\mathbf{x}}}{\widehat{\mathbf{x}}^{\mathsf{T}} \widehat{\mathbf{x}}} = \lambda$$

an, welcher für die Eigenvektoren zum Extremwert und gleich dem Eigenwert selbst wird.

Die praktische Lösung des Eigenwertproblems folgt wieder dem oben angegebenen Weg. Aus der Forderung nach verschwindender Koeffizientendeterminate erhält man (*) und danach die Unbekannten entsprechend (8).

Damit die Lösung einfach geometrisch gedeutet werden kann, soll die Darstellung (1a) von $Q_{tt} = Q_{tt} (Q_{xx}, Q_{xy}, Q_{yy}, \phi)$ umgewandelt werden in eine Form

gleichbedeutend mit einer Transformation ins ζ,η-System.

Zwischen dem Richtungswinkel φ im x,y-System, dem Richtungswinkel ψ im ζ , η -System und dem Drehwinkel 0 zwischen den beiden Systemen bestehen die Beziehungen

$$\cos \phi = \cos (\theta + \psi) = \cos \theta \cos \psi - \sin \theta \sin \psi$$
$$\sin \phi = \sin (\theta + \psi) = \sin \theta \cos \psi + \cos \theta \sin \psi$$

Mit den Matrizen

S

$$\begin{aligned} \widehat{\mathbf{x}}_1 &= \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}; \quad \widehat{\mathbf{x}}_2 &= \begin{pmatrix} \cos (\theta + 100^g) \\ \sin (\theta + 100^g) \end{pmatrix} = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \\ \mathbf{t} &= \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix}, \quad \mathbf{x} &= \begin{pmatrix} \cos \varphi \\ \sin \phi \end{pmatrix} \end{aligned}$$

sowie der Modalmatrix, welche als Spalten die Eigenvektoren enthält

sin φ

$$\mathbf{X} = (\widehat{\mathbf{x}}_1, \widehat{\mathbf{x}}_2) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

können die Gleichungen (9) zusammengefasst werden zu

$$\mathbf{x} = \mathbf{X} \mathbf{t}, \text{ bzw. } \mathbf{x}^{\mathsf{T}} = \mathbf{t}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}}.$$
 = (9)

Einsetzen von (9) in die ursprüngliche Gleichung (1a)

$$\begin{split} \mathbf{Q}_{tt} &= \mathbf{t}^{\mathsf{T}} \, \mathbf{X}^{\mathsf{T}} \, \mathbf{Q}_{\mathbf{x}\mathbf{x}} \, \mathbf{X} \, \mathbf{t} \\ \text{führt, da} \\ \mathbf{X}^{\mathsf{T}} \, \mathbf{Q}_{\mathbf{x}\mathbf{x}} \, \mathbf{X} &= \text{diag.} \, (\lambda_{i}) : = \mathbf{K} \end{split}$$

gleichbedeutend ist mit einer orthogonalen Transformation auf die reelle Diagonalform der Eigenwerte, unmittelbar auf die Hauptachsendarstellung

$$\mathbf{Q}_{\mathrm{tt}} = \mathbf{t}^{\mathrm{T}} \mathbf{K} \mathbf{t} \text{ mit } \mathbf{K} = \begin{pmatrix} \lambda_{1} & \mathbf{0} \\ \mathbf{0} & \lambda_{2} \end{pmatrix} = \begin{pmatrix} \mathbf{Q}_{\xi\xi} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{\eta\eta} \end{pmatrix}$$

ausführlich

(9)

 $Q_{tt} = Q_{\xi\xi} \cos^2 \psi + Q_{\eta\eta} \sin^2 \psi ,$ (10) $\sqrt{Q_{tt}} = \sqrt{Q_{\xi\xi} \cos^2 \psi + Q_{\eta\eta} \sin^2 \psi}$

Die Gleichung (10) kann in zweifacher Weise geometrisch interpretiert werden, nämlich

 $-\sqrt{Q}_{\#}$ lässt sich als zur Richtung ψ affiner Radiusvektor mit dem Richtungswinkel y (!) aus einer Ellipse - «Fehlerellipse» - entnehmen, welche die grosse Halbachse a = \sqrt{Q}_{zz} und die kleine Halbachse b = $\sqrt{Q}_{\eta\eta}$ hat, und/oder

 \sqrt{Q}_{tt} ist Radiusvektor mit dem Richtungswinkel ψ in der zur Fehlerellipse gehörenden «Fusspunktkurve» mit den gleichen Halbachsen.

Abb. 3: Fehlerellipse

Vermessung, Photogrammetrie, Kulturtechnik, 7/88

 a) Beweis f
ür die «Behauptung Fehlerellipse», Abb. 3

Ausser den bereits oben eingeführten Vektoren/Matrizen t und K definieren wir noch den Radiusvektor y für einen Ellipsenpunkt P mit den Koordinaten ζη

$$\mathbf{y} := \begin{pmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \end{pmatrix}$$

Da K Diagonalmatrix ist, gilt

$$\mathbf{K}^{\frac{1}{2}} = \begin{pmatrix} \sqrt{\mathbf{Q}_{\xi\xi}} & \mathbf{0} \\ \mathbf{0} & \sqrt{\mathbf{Q}_{\eta\eta}} \end{pmatrix} \quad , \quad \mathbf{K}^{-1} = \begin{pmatrix} \frac{1}{\mathbf{Q}_{\xi\xi}} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\mathbf{Q}_{\eta\eta}} \end{pmatrix} \, .$$

Die Parameterdarstellung der Fehlerellipse mit den Halbachsen

$$\begin{split} a &= \sqrt{Q_{\xi\xi}} \ \text{ und } b = \sqrt{Q_{\eta\eta}} \text{ ist dann} \\ \xi &= \sqrt{Q_{\xi\xi}} \cos \psi \\ \eta &= \sqrt{Q_{\eta\eta}} \sin \psi \end{split}, \text{ in Matrizen } \textbf{y} = \textbf{K}^{\frac{1}{2}} \textbf{t} \quad, \end{split}$$

wobei **y** der zur Richtung t affine Radiusvektor mit dem Richtungswinkel γ ist. Aus (11) folgt sofort

 $\mathbf{y}^{\mathsf{T}}\mathbf{y} = \mathbf{t}^{\mathsf{T}}\mathbf{K} \mathbf{t} = (10) \mathbf{Q}_{\mathsf{H}},$

und die Länge des Radiusvektors ist

$$\sqrt{\mathbf{y}^{\mathsf{T}}\mathbf{y}} = \sqrt{\mathbf{t}^{\mathsf{T}}\mathbf{K}\mathbf{t}} = \sqrt{\mathsf{Q}_{\mathsf{tt}}};$$
 (10)

damit ist die Behauptung bewiesen.

Für den Richtungswinkel γ der zu ψ affinen Richtung folgt aus (11)

tang
$$\gamma = \frac{b}{a} \tan \psi = \frac{\sqrt{Q_{\eta\eta}}}{\sqrt{Q_{\xi\xi}}} \tan \psi$$
. (12)

b) Beweis f
ür die «Behauptung Fusspunktkurve», Abb. 4

Per definitionem ergibt sich jeder Punkt R der zur Ellipse gehörenden Fusspunktkurve als Schnitt des mit dem Winkel ψ variablen Richtungsstrahls t mit derjenigen Ellipsentangente, welche auf t senkrecht steht. Als Vorbereitung für den Beweis vergegenwärtigen wir uns:

- aus der Parameterdarstellung der Ellipse (11) erhalten wir ihre Mittelpunktgleichung nach Linksmultiplikation mit $\mathbf{K}^{-\frac{1}{2}}$

$$\begin{array}{c} \mathbf{K}^{-\frac{1}{2}} \mathbf{y} = \mathbf{t} \\ \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-\frac{1}{2}} = \mathbf{t}^{\mathsf{T}} \end{array} \right) \quad \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} = \mathbf{t}^{\mathsf{T}} \mathbf{t} = 1 \quad , \quad (13)$$

 f
ür den Normalenvektor n im Ellipsenpunkt P mit den Koordinaten y gilt

$$\mathbf{n} = \frac{\frac{1}{2} d (\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y})}{d \mathbf{y}} = \mathbf{K}^{-1} \mathbf{y} \quad .$$
(14)

Wir suchen nun diejenige Normale \mathbf{n}_{1} , in einem Ellipsenpunkt P_1 (\mathbf{y}_1), welche zur Richtung t \triangleq t parallel ist. Die Ellipsentangente in P_1 steht dann senrecht auf \mathbf{n}_1 und damit auch auf t $| | \mathbf{n}_1$. Somit ist der Schnittpunkt R dieser Tangente mit dem Richtungsstrahl t gerade ein Punkt der Fusspunktkurve mit den Halbachsen

$$a = \sqrt{Q_{\xi\xi}}$$
 und $b = \sqrt{Q_{\eta\eta}}$

Wegen (14) gilt für den gesuchten Normalenvektor \mathbf{n}_1

$$\mathbf{r} = \mathbf{K}^{\frac{1}{2}} \mathbf{t} \quad , \tag{11}$$

 $n_1 = K^{-1}y_1$

und da \mathbf{n}_1 parallel zum **Einheits**vektor t sein soll auch

$$t = c K^{-1} y_1$$
 bzw. $y_1^T = \frac{1}{c} t^T K$ und $y_1 = \frac{1}{c}$

mit einem noch unbekannten Faktor c. Nun muss \mathbf{y}_1 auch der

Ellipsengleichung (13) genügen

$$\mathbf{y}_{1}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}_{1} = 1 = 1_{(15)!} (\mathbf{t}^{\mathsf{T}} \mathbf{K} \mathbf{t}) \frac{1}{c^{2}}$$
,

sodass für c folgt

$$c = \sqrt{t^{\mathsf{T}} \mathbf{K} t} ,$$

und der gesuchte Vektor \mathbf{y}_1 ist nach (15)

$$\mathbf{y}_{1} = \frac{\mathbf{K} \mathbf{t}}{\sqrt{\mathbf{t}^{\mathsf{T}} \mathbf{K} \mathbf{t}}} \tag{16}$$

Skalarmultiplikation von (16) mit t^{T} ergibt aber gerade – da t Einheitsvektor ist – die Projektion OR von y_1 auf die Richtung t

$$\mathbf{t}^{\mathsf{T}}\mathbf{y}_{1} = \frac{\mathbf{t}^{\mathsf{T}}\mathbf{K}\mathbf{t}}{\sqrt{\mathbf{t}^{\mathsf{T}}\mathbf{K}\mathbf{t}}} = \sqrt{\mathbf{t}^{\mathsf{T}}\mathbf{K}\mathbf{t}} = \mathsf{OR} = \sqrt{\mathbf{Q}_{\mathsf{t}}} ,$$
(17)

d.h. der zu P1 gehörende Radiusvektor OR der Fusspunktkurve hat gerade, wie behauptet, die Länge $\sqrt{Q}_t!$

Der Radiusvektor **y**₁ hat eine weitere bemerkenswerte Eigenschaft:

$$\mathbf{y}_1 = \frac{1}{c} \mathbf{K} \mathbf{t} \tag{15}$$

Abb. 4: Fusspunktkurve

Nach (11) ist der zum Einheitsvektor t (Richtungsstrahl t) gehörende affine Ellipsenvektor $\mathbf{y} = \mathbf{K}^{1/2}\mathbf{t}$.

Wir bilden nun den zu y gehörenden Einheitsvektor y_e (mit

$$\mathbf{y}_{\mathbf{e}} = \frac{\mathbf{y}}{\sqrt{\mathbf{y}^{\mathsf{T}}\mathbf{y}}} = \frac{\mathbf{y}}{\sqrt{\mathbf{t}^{\mathsf{T}}\mathbf{K}\,\mathbf{t}}} = \frac{\mathbf{K}^{\frac{1}{2}}\mathbf{t}}{\sqrt{\mathbf{t}^{\mathsf{T}}\mathbf{K}\,\mathbf{t}}})$$

erneut nach (11) affin ab in einen Vektor u:

$$\mathbf{u} = \mathbf{K}^{\frac{1}{2}} \mathbf{y}_{e} = \frac{\mathbf{K}^{\frac{1}{2}} \mathbf{K}^{\frac{1}{2}} \mathbf{t}}{\sqrt{\mathbf{t}^{\mathsf{T}} \mathbf{K} \mathbf{t}}} = \frac{\mathbf{K} \mathbf{t}}{\sqrt{\mathbf{t}^{\mathsf{T}} \mathbf{K} \mathbf{t}}} \stackrel{=}{\underset{(16)}{=}} \mathbf{y}_{1} (!)$$

m.a.W.: y1 entsteht aus t durch zweimalige affine Abbildung von t.

Der Richtungswinkel ε1 ist dann (ausführliches Anschreiben von (16))

$$\begin{aligned} \xi_1 &= \frac{a^2 \cos \psi}{\sqrt{Q_{tt}}} = \frac{Q_{\xi\xi}}{\sqrt{Q_{tt}}} \cos \psi \\ \eta_1 &= \frac{b^2 \sin \psi}{\sqrt{Q_{tt}}} = \frac{Q_{\eta\eta}}{\sqrt{Q_{tt}}} \sin \psi \end{aligned} \right\} tang \epsilon_1 &= \frac{b^2}{a^2} tang \psi = \frac{Q_{\eta\eta}}{Q_{\xi\xi}} tang \psi . \end{aligned}$$

Wir werden weiter unten sehen, dass die Richtung ϵ eine zusätzliche interessante Deutung hat.

Fehlerellipsoid

Unsere Herleitung der Fehlerellipse als Extremwertaufgabe mit quadratischen Nebenbedingungen oder - äquivalent - als Anwendung der Eigenwerttheorie von Matrizen lässt sich ohne Schwierigkeiten zum Fehlerellipsoid für einen dreidimensional bestimmten Punkt erweitern.

Für die Koordinaten x,y,z eines Punktes P sei die Kofaktorenmatrix

$$\boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{X}} = \begin{pmatrix} \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{X}} & \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{y}} & \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{z}} \\ \boldsymbol{Q}_{\boldsymbol{y}\boldsymbol{X}} & \boldsymbol{Q}_{\boldsymbol{y}\boldsymbol{y}} & \boldsymbol{Q}_{\boldsymbol{y}\boldsymbol{z}} \\ \boldsymbol{Q}_{\boldsymbol{z}\boldsymbol{X}} & \boldsymbol{Q}_{\boldsymbol{z}\boldsymbol{y}} & \boldsymbol{Q}_{\boldsymbol{z}\boldsymbol{z}} \end{pmatrix}$$

gegeben, und die Richtung t, für welche Q, gesucht ist, sei durch ihre Richtungscosinus $\cos\alpha$, $\cos\beta$, $\cos\gamma$ beschrieben. Mit dem Vektor

$$\mathbf{x} = \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{pmatrix}$$

und der Nebenbedingung $\mathbf{x}^{\mathsf{T}}\mathbf{x} - 1 = 0$ erhalten wir für Q_# allgemein die quadratische Form

$$Q_{tt} = \mathbf{x}^{\mathsf{T}} \mathbf{Q}_{xx} \mathbf{x}$$

und für den Extremfall Q_# = Extremum das homogene Gleichungssystem

$$(\mathbf{Q}_{\mathbf{x}\mathbf{x}} - \lambda \mathbf{E}) \mathbf{x} = 0$$

$$\mathbf{x}^{\mathsf{T}} \mathbf{x} - 1 = 0 .$$
 $\stackrel{\wedge}{=} (7) \text{ff}$

Die Eigenwerte von Qxx bestimmt man aus der charakteristischen Gleichung

$$\det \left(\mathbf{Q}_{\mathbf{x}\mathbf{x}} - \lambda \mathbf{E} \right) = \mathbf{0},$$

welche jetzt dritten Grades ist, und erhält die drei positiven Extremwerte für Q_{tt}

Die mit diesen Eigenwerten ermittelten Eigenvektoren $\hat{\mathbf{x}}_1$, $\hat{\mathbf{x}}_2$, $\hat{\mathbf{x}}_3$ bilden eine neues, rechtwinkliges ξ , η , ς -System.

$$\frac{\partial^{2} \cos \psi}{\sqrt{Q_{tt}}} = \frac{Q_{\eta\eta}}{\sqrt{Q_{tt}}} \cos \psi$$

$$\tan g \varepsilon_{1} = \frac{b^{2}}{a^{2}} \tan g \psi = \frac{Q_{\eta\eta}}{Q_{\xi\xi}} \tan g \psi . \quad (18)$$

Sind nun die Richtungscosinus von t im neuen System

$$\mathbf{t} = \begin{pmatrix} - & - \\ \cos \alpha \\ - & - \\ \cos \beta \\ \cos \gamma \end{pmatrix}$$

so vermittelt die Modalmatrix

$$\mathbf{X} := (\widehat{\mathbf{x}}_1, \widehat{\mathbf{x}}_2, \widehat{\mathbf{x}}_3) = \begin{pmatrix} \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ \cos \beta_1 & \cos \beta_2 & \cos \beta_3 \\ \cos \gamma_1 & \cos \gamma_2 & \cos \gamma_3 \end{pmatrix}$$

$$Q_{tt} = Q_{\xi\xi} \cos^2 \alpha + Q_{\eta\eta} \cos^2 \beta + Q_{\zeta\zeta} \cos^2 \gamma$$

$$\sqrt{Q_{tt}} = \sqrt{Q_{\xi\xi} \cos^2 \alpha + Q_{\eta\eta} \cos^2 \beta + Q_{\zeta\zeta} \cos^2 \gamma} \qquad (10)$$

$$\xi = \sqrt{Q_{\xi\xi}} \cos \alpha , \eta = \sqrt{Q_{\eta\eta}} \cos \beta , \varsigma = \sqrt{Q_{\varsigma\varsigma}} \cos \gamma$$
 $\triangleq (11)$

so gilt

$$\frac{\xi^2}{Q_{\xi\xi}} + \frac{\eta^2}{Q_{\eta\eta}} + \frac{\zeta^2}{Q_{\zeta\zeta}} = \cos^2 \frac{\pi}{\alpha} + \cos^2 \frac{\pi}{\beta} + \cos^2 \frac{\pi}{\gamma} = 1 \qquad (13)$$

und weiter

$$\sqrt{\xi^2 + \eta^2 + \zeta^2} = \sqrt{Q_{\xi\xi} \cos^2 \alpha + Q_{\eta\eta} \cos^2 \beta + Q_{\zeta\zeta} \cos^2 \gamma} = \sqrt{Q_{tt}} ,$$

durch die Transformation

≙ (1a)

$$\mathbf{x} = \mathbf{X} \mathbf{t}$$
 bzw. $\mathbf{t} = \mathbf{X}^{\mathsf{T}} \mathbf{x}$ $\triangleq (9)$

die Beziehungen zwischen altem x,y,z-System und neuen ξ , η , ς -System. Die Gleichungen (9) führen aber durch Einsetzen in (1a) sofort auf die Hauptachsendarstellung

$$\begin{split} \mathbf{Q}_{tt} &= \mathbf{t}^\mathsf{T} \, \mathbf{X}^\mathsf{T} \mathbf{Q}_{\mathbf{x}\mathbf{x}} \, \mathbf{X} \, \mathbf{t} &= \mathbf{t}^\mathsf{T} \mathbf{K} \, \mathbf{t}, \qquad \triangleq (10) \end{split}$$
 welche wegen

$$\mathbf{K} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \mathbf{Q}_{\xi\xi} & 0 & 0 \\ 0 & \mathbf{Q}_{\eta\eta} & 0 \\ 0 & 0 & \mathbf{Q}_{\zeta\zeta} \end{pmatrix}$$

ausführlich angeschrieben werden kann zu

Formel \triangleq (10)

In (10) lässt sich \sqrt{Q}_{tt} als Radiusvektor in einem dreiachsigen Ellipsoid mit den Halbachsen $\sqrt{Q}_{\xi\xi}, \sqrt{Q}_{\eta\eta}, \sqrt{Q}_{\varsigma\varsigma}$ deuten:

Setzt man nämlich

Formel \triangleq (11) Formel \triangleq (13)

d.h. man erhält gerade die gesuchte Identität (10).

Auch die weiteren Überlegungen zur Fehlerellipse bezüglich ihrer Fusspunktkurve lassen sich sinngemäss auf das Fehlerellipsoid übertragen; man erhält dann die zugehörige Fusspunktfläche.

Zunächst erscheint der Hinweis gerechtfertigt, dass Fehlerellipsen und Fehlerellipsoide nicht auf die Genauigkeitsbeschreibung von Punkten beschränkt sind, die aus einer Ausgleichung hervorgehen. Einzige Voraussetzung ist, dass für den Punkt P die Kofaktorenmatrix

$$\mathbf{Q}_{\mathbf{x}\mathbf{x}} = \begin{pmatrix} \mathsf{Q}_{xx} & \mathsf{Q}_{xy} \\ \mathsf{Q}_{yx} & \mathsf{Q}_{yy} \end{pmatrix}$$

bekannt ist. Diese braucht natürlich nicht notwendigerweise aus einer Ausgleichung zu stammen. Damit können die Fehlerellipsen für alle bekannten einfachen Punktbestimmungsaufgaben – Vorwärts- und Rückwärtseinschnitt, Bogenschnitt, Polygonzug, usw. – angegeben werden. Dies sei an 2 Beispielen – Vorwärtseinschnitt und Polygonzug – exemplarisch gezeigt.

1) Vorwärtseinschnitt

Abb. 5

Es ist zweckmässig, beim Vorwärtseinschnitt (und auch beim Bogenschnitt) in ein figureneigenes h,q-Koordinatensystem überzugehen. Es hat seinen Ursprung in P_{η} , und die Achsen h und q sind parallel zur Höhe h_p und zur Grundseite P_1P_2 . Es gibt nun 2 Möglichkeiten, die Kofaktoren von P zu ermitteln:

- Bestimmung über einen Ausgleichungsansatz,
- direkte Bestimmung über die allgemeine Fehlerfortpflanzung.

Im ersten Fall müssten wir nach der Technik der vermittelnden Ausgleichung 2 linearisierte Fehlergleichungen des Typs

ansetzen und dann $(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1} = \mathbf{Q}_{xx}$ aus $(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})$ ermitteln. Dabei ist $(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})$ regulär; die Inverse kann immer gebildet werden. Allerdings ist die Inversenbestimmung umständlicher als die direkte Herleitung über das Fehlerfortpflanzungsgesetz.

Im zweiten Fall bilden wir direkt die totale Differentiale

$$d\mathbf{x} = \mathbf{a}^{\mathsf{T}} \Delta \mathbf{I} \qquad d\mathbf{h} = \mathbf{f}_{1}^{\mathsf{T}} \Delta \mathbf{I}$$
$$bzw.$$
$$d\mathbf{q} = \mathbf{b}^{\mathsf{T}} \Delta \mathbf{I} \qquad d\mathbf{q} = \mathbf{f}_{2}^{\mathsf{T}} \Delta \mathbf{I}$$

und finden die gesuchte Kofaktorenmatrix zu

$$\mathbf{Q}_{\mathbf{x}\mathbf{x}}^{\top} = \begin{pmatrix} \mathbf{f}_{1}^{\mathsf{T}}\mathbf{Q}_{\mathbf{H}}\mathbf{f}_{1} & \mathbf{f}_{1}^{\mathsf{T}}\mathbf{Q}_{\mathbf{H}}\mathbf{f}_{2} \\ \mathbf{f}_{1}^{\mathsf{T}}\mathbf{Q}_{\mathbf{H}}\mathbf{f}_{1} & \mathbf{f}_{1}^{\mathsf{T}}\mathbf{Q}_{\mathbf{H}}\mathbf{f}_{2} \end{pmatrix}$$

Für diesen zweiten Fall können wir die Differentialformeln ansetzen, siehe z.B. [8]

$$dh = \frac{1}{\sin \gamma} (b \sin \beta \, d\alpha + a \sin \alpha \, d\beta) \triangleq f_1^T \Delta I$$
$$dq = \frac{1}{\sin \gamma} (-b \cos \beta \, d\alpha + a \cos \alpha \, d\beta) \triangleq f_2^T \Delta I$$
(19)

und finden

$$\begin{aligned} Q_{hh} &= \frac{1}{\sin^2 \gamma} \left(b^2 \sin^2 \beta \, \frac{1}{p_{\alpha}} + a^2 \sin^2 \alpha \, \frac{1}{p_{\beta}} \right) \\ Q_{qq} &= \frac{1}{\sin^2 \gamma} \left(b^2 \cos^2 \beta \, \frac{1}{p_{\alpha}} + a^2 \cos^2 \alpha \, \frac{1}{p_{\beta}} \right) \\ Q_{qh} &= \frac{1}{\sin^2 \gamma} \left(-b^2 \sin \beta \cos \beta \, \frac{1}{p_{\alpha}} + a^2 \sin \alpha \cos \alpha \, \frac{1}{p_{\beta}} \right) \end{aligned}$$

$$Q_{X_{n}X_{n}} = \sum_{i=1}^{n-1} (y_{i} - y_{n})^{2} \frac{1}{p_{\beta_{i}}} + \sum_{i=1}^{n-1} \cos^{2} \phi_{i,i+1} \frac{1}{p_{s_{i}}}$$

$$Q_{y_n y_n} = \sum_{i=1}^{n-1} (x_i - x_n)^2 \frac{1}{p_{\beta_i}} + \sum_{i=1}^{n-1} \frac{1}{p_{s_i}} \sin^2 \varphi_{i,i+1}$$
(22)

$$Q_{X_{n}y_{n}} = \sum_{i=1}^{n-1} (y_{i} - y_{n}) (x_{i} - x_{n}) \frac{1}{p_{\beta_{i}}} + \sum_{i=1}^{n-1} \frac{1}{p_{s_{i}}} \cos \phi_{i,i+1} \sin \phi_{i,i+1}$$

 $\begin{array}{c} B_{1} \\ B_{2} \\ B_{1} \\ B_{2} \\ B_{1} \\ B_{2} \\ B_{1} \\ B_{1} \\ B_{2} \\ B_{1} \\$

Abb. 6

Eine nähere Untersuchung zeigt, dass Q_{hq} für $p_{\alpha} = p_{\beta}$, a = b verschwindet und für γ =

90° auch $Q_{hh} = Q_{qq}$ wird; diese weiterfüh-

rende Diskussion ist jedoch nicht Gegen-

2) Einseitig angeschlossener Polygonzug

Auch hier haben wir prinzipiell die beiden für den Vorwärtsschritt angedeuteten Möglichkeiten zur Bestimmung der Kofaktoren-

matrix. Allerdings müssten wir bei einem

Ausgleichungsansatz ein System für

(n-1) Winkel- und (n-1) Streckenbeob-

achtungen ansetzen und danach ein Sy-

stem (A^TPA) mit 2(n-1) Zeilen und Spal-

ten - welches zwar viel Nullelemente ent-

hält - invertieren. Der direkte Ansatz mit

den Differentialformeln nach z.B. [8] ergibt

 $dx_{n} = \sum_{i=1}^{n-1} (y_{i} - y_{n}) d\beta_{i} + \sum_{i=1}^{n-1} \cos \phi_{i,i+1} ds_{i} = f_{1}^{T} \Delta I$

 $dy_n = \sum_{i=1}^{n-1} (x_i - x_n) d\beta_i + \sum_{i=1}^{n-1} \sin \phi_{i,i+1} ds_i = f_2^T \Delta I$

und führt danach sofort auf das Ergebnis

stand der Untersuchung.

Fachteil

Auch hier sollen die Formeln nicht weiter diskutiert werden bis auf den Hinweis, dass offenbar die Fehlerellipse ganz erheblich durch die Gewichte $p_{\beta i}$ und $p_{s i}$ d.h. durch die Genauigkeit der Beobachtungen an den dafür wirkungsvollsten Stellen, beeinflusst werden kann.

«Verschiebungsellipsen» in geodätischen Netzen.

Die Fehlerellipse in geometrischen Konfigurationen kann auch in gänzlich anderer Weise, nämlich als «Verschiebungsellipse» gedeutet werden und dann als Hilfsmittel zur Beurteilung netzartiger Konfigurationen herangezogen werden. Diese Interpretation würde besonders dann deutlich werden, wenn man die Analogie zwischen der Ausgleichung und fehlertheoretischen Analyse von geodätischen Netzen und der elastomechanischen Analyse von Fachwerken und Netzen heranzöge: für jedes geodätisch-geometrische Netzgebilde gibt es ein elastomechanisches Analogon, in dem sich die Ausgleichung und Fehleranalyse des geodätischen Netzes als das Auffinden von Gleichgewichtsfiguren und Verschiebungszuständen darstellen.

Wir wollen jedoch hier diese Analogie nicht weiter heranziehen, um die Verschiebungsellipse herzuleiten. Vielmehr knüpfen wir an die bekannten Formeln der vermittelnden Ausgleichung mit Bedingungsgleichungen für die Unbekannten an. Diese sind in allen Standardlehrbüchern der Ausgleichungsrechnung enthalten (z.B. [1], [2], [3]):

Es seien die linearisierten Fehlergleichungen

$$I + v = Ax$$

und die zusätzlichen linearisierten Bedingungsgleichungen für die Unbekannten

$$\mathbf{B}^{\mathsf{T}}\mathbf{x} = \mathbf{u}.$$

Dann sind die Normalgleichungen zur Ermittlung von Unbekannten ${\bf x}$ und Korrelaten ${\bf k}$

$$\begin{pmatrix} \mathbf{A}^{\mathsf{T}}\mathbf{P} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathsf{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{k} \end{pmatrix} = \begin{pmatrix} \mathbf{A}^{\mathsf{T}}\mathbf{P} \mathbf{I} \\ \mathbf{u} \end{pmatrix} \ .$$

Die gleiche Aufgabe kann in Teilschritten gelöst werden. Im ersten Teilschritt bestimmt man (vorläufige) Unbekannte $\bar{\mathbf{x}}$ derart, dass die Bedingungsgleichungen ausser Betracht bleiben, d.h. man setzt

 $\mathbf{x} := \bar{\mathbf{x}} + \Delta \mathbf{x}$

(Bemerkung: Δx nicht im Sinne eines Differentials!)

mit der Definition

 $\bar{\mathbf{x}}$: = $(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{I}$.

Auch die Verbesserungen werden in die der beiden Teilschritte aufgeteilt

$$\mathbf{v} := \mathbf{\bar{v}} + \Delta \mathbf{v}$$

 $\mathbf{\bar{v}} := \mathbf{A}\mathbf{\bar{x}} - \mathbf{I}.$

Im zweiten Teilschritt werden zunächst Widersprüche für die Bedingungsgleichungen der Unbekannten ermittelt, und dann bestimmt man die zugehörigen Korrelaten aus den zu den Bedingungsgleichungen gehörenden Normalgleichungen:

$$\begin{split} \mathsf{B}^{\scriptscriptstyle\mathsf{T}}(\bar{\mathbf{x}}+\Delta \mathbf{x}) &= \mathbf{u} => \mathsf{B}^{\scriptscriptstyle\mathsf{T}} \Delta \mathbf{x} = (\mathbf{u} - \mathsf{B}^{\scriptscriptstyle\mathsf{T}} \bar{\mathbf{x}}) := \mathbf{w} \\ [\mathsf{B}^{\scriptscriptstyle\mathsf{T}}(\mathsf{A}^{\scriptscriptstyle\mathsf{T}}\mathsf{P}\mathsf{A})^{-1}\mathsf{B}] \, \mathbf{k} &= \mathbf{w} \end{split}$$

$$\mathbf{k} = [\mathbf{B}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1}\mathbf{B}]^{-1}\mathbf{w}.$$

Danach lassen sich die Zuschläge Δx zu den Unbekannten \bar{x} ermitteln

$$\Delta \mathbf{x} = (\mathbf{A}^{\mathsf{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{B} \mathbf{k}.$$

Die Verbesserungen des zweiten Teilschrittes sind

$$\Delta \mathbf{v} = \mathbf{A} \, \Delta \mathbf{x},\tag{28}$$

und für die Quadratsumme der Δv gilt:

$$\Delta \mathbf{v}^{\mathsf{T}} \mathbf{P} \Delta \mathbf{v} = \mathbf{k}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \Delta \mathbf{x} = \mathbf{k}^{\mathsf{T}} \mathbf{w}$$
(29)

Schliesslich findet man aus der Inversen $(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1}$ des ersten Teilschrittes auch die endgültige Inverse \mathbf{Q}_{xx} nach Hinzunahme der Bedingungen im zweiten Teilschritt zu

(26)

tungsnetz oder eine Kombination aus Strecken- und Richtungsbeobachtungen vorliegen. Als Voraussetzung genügt es völlig, dass kein Datumseffekt vorhanden ist und damit (A^TPA) und (A^TPA)⁻¹ regulär sind. Ein mögliches Netz – ohne Beschränkung der Allgemeinheit! – ist in Abb. 9 skizziert. Wir greifen einen beliebigen Punkt P_i des Netzes heraus und stellen an ihn die zusätzliche Bedingung, dass er einem Zwangsanschluss genüge: gegenüber den aus der ersten Teilausgleichung hervorgegangenen Koordinaten \bar{x}_i , \bar{y}_i soll P_i die Lage $x_i = \bar{x}_i + \Delta x_i$, $y_i = \bar{y}_i + \Delta y_i$ haben. Etwas anders ausgedrückt bedeutet

$$\mathbf{Q}_{\mathbf{x}\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1} - (\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1} \mathbf{B} [\mathbf{B}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1}\mathbf{B}]^{-1}\mathbf{B}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1}$$
(30)

(24)

(27)

Vermessung, Photogrammetrie, Kulturtechnik, 7/88

(23)

dies, die aus dem ersten Teilschritt ausgeglichene Lage von P_i (\bar{x}_i, \bar{y}_i) weise die Koordinatenwidersprüche w_{xi} und w_{yi} gegenüber dem Sollwert P_i auf.

Zur Lösung dieser Aufgabe führen wir den oben skizzierten zweiten Teilschritt der Ausgleichung durch. Dazu denken wir uns die Unbekannten in folgender Numerierung in der Ausgleichung angeordnet:

Die Neupunkte P_i seien von i = 1, ..., h durchnumeriert. Die Matrizen (**A**^T**PA**) und (**A**^T**PA**)⁻¹ haben dann, da jedem P_i ein x_i und y_i entspricht, 2 h Zeilen und Spalten; diese denken wir uns als Doppelzeilen und Doppelspalten derart angeordnet, dass in der i-ten Doppelzeile (Doppelspalte) zunächst die x_i und dann jeweils die y_i stehen.

Bei den zwei zusätzlichen Bedingungen hat B^T zwei Zeilen und 2 h Spalten \triangleq h Doppelspalten.

Die allgemeine Bedingungsgleichung

 $\mathbf{B}^{\mathsf{T}} \mathbf{\Delta} \mathbf{x} = \mathbf{w} \tag{25}$

geht dann über in die spezielle Bedingungsgleichung

 $\mathbf{B}_{i}^{\mathsf{T}} \Delta \mathbf{x}_{i} = \mathbf{w}_{i}, \tag{25i}$

ausführlich

Ebenso nehmen die allgemeinen «Normalgleichungen» für die Korrelaten

 $[\mathbf{B}^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{B}] \mathbf{k} = \mathbf{w}$ die spezielle Form an $[\mathbf{B}_{i}^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{B}_{i}] \mathbf{k}_{i} = \mathbf{w}_{i},$

ausführlich

so dass jetzt gilt

$$[\mathbf{B}_{i}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1}\mathbf{B}_{i}] = \mathbf{Q}_{i,i}$$

und damit (26) \triangleq (26i) die Darstellung hat

 $\mathbf{Q}_{i,i} \mathbf{k}_i = \mathbf{w}_i,$ ausführlich

$$\begin{pmatrix} \mathbf{Q}_{\mathbf{x}_{i} \mathbf{x}_{i}} \mathbf{Q}_{\mathbf{x}_{i} \mathbf{y}_{i}} \\ \mathbf{Q}_{\mathbf{y}_{i} \mathbf{x}_{i}} \mathbf{Q}_{\mathbf{y}_{i} \mathbf{y}_{i}} \end{pmatrix} \begin{pmatrix} \mathbf{k}_{\mathbf{x}_{i}} \\ \mathbf{k}_{\mathbf{y}_{i}} \end{pmatrix} = \begin{pmatrix} \mathbf{w}_{\mathbf{x}_{i}} \\ \mathbf{w}_{\mathbf{y}_{i}} \end{pmatrix}$$

Die Normalgleichungsmatrix $[\mathbf{B}_{i}^{T}(\mathbf{A}^{T}\mathbf{P}\mathbf{A})^{-1}$ **B**_i] für die Korrelaten **k**_i des vorgesehenen Zwangsanschlusses in P_i ist also gerade die in $(\mathbf{A}^{T}\mathbf{P}\mathbf{A})^{-1}$ enthaltene 2×2 – Untermatrix **Q**_{i,i} für den Punkt P_i.

Die Gleichung (32) erlaubt die Bestimmung von k_{xi} und k_{yi} für jedes beliebig vorgegebene Paar von Koordinatenanschlussbedingungen w_{xi} und w_{yi} in P_i ; dazu braucht man nur die zu (32) inverse Gleichung

$$\mathbf{k}_{i} = \mathbf{Q}_{i,i}^{-1} \mathbf{w}_{i}$$

(26)

(26i)

(31)

(32)

zu bilden.

Abb. 8

Durch den Zwangsanschluss in P_i bewegen sich alle Neupunkte P_v (v = 1, ..., h) um die Koordinatenänderungen Δx_v und Δy_v entsprechend Gleichung (27), welche jetzt die spezielle Form annimmt

$$\Delta \mathbf{x} = [(\mathbf{A}^{\mathsf{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{B}_{\mathsf{i}}] \mathbf{k}_{\mathsf{i}}.$$
 (27i)

mit dem Vektor der Koordinatenänderungen Δx :

 $[(\mathbf{A}^{T}\mathbf{P}\mathbf{A})^{-1}\mathbf{B}_{i}]$ ist gerade, wie Abb. 8 erkennen lässt, die i'te Doppelspalte von $(\mathbf{A}^{T}\mathbf{P}\mathbf{A})^{-1}$.

Wir erhalten also aus (27i) mit Abb. 8 die ausführlichen Darstellungen

v = 1, ..., h.

Für den Punkt P_i selbst bekommen wir, wie es gefordert war und daher sein muss

$$\Delta \mathbf{x}_{i} = \mathbf{Q}_{i,i} \mathbf{k}_{i} \\ \mathbf{k}_{i} = \mathbf{Q}_{i,i}^{-1} \mathbf{w}_{i} \right\} \Rightarrow \Delta \mathbf{x}_{i} = \mathbf{w}_{i} \quad , \qquad (34)$$

d.h. die Koordinatenänderungen in P_i sind gleich den vorgegebenen Widersprüchen.

Wir kehren noch einmal zurück zur Gleichung (32), die wir jetzt mit den \mathbf{w}_i auf der anderen Seite folgendermassen anschreiben

$$\begin{pmatrix} \mathbf{w}_{\mathbf{x}_{i}} \\ \mathbf{w}_{\mathbf{y}_{i}} \end{pmatrix} = \begin{pmatrix} \Delta \mathbf{x}_{i} \\ \Delta \mathbf{y}_{i} \end{pmatrix} = \begin{pmatrix} \mathbf{Q}_{\mathbf{x}_{i} \mathbf{x}_{i}} & \mathbf{Q}_{\mathbf{x}_{i} \mathbf{y}_{i}} \\ \mathbf{Q}_{\mathbf{y}_{i} \mathbf{x}_{i}} & \mathbf{Q}_{\mathbf{y}_{i} \mathbf{y}_{i}} \end{pmatrix} \begin{pmatrix} \mathbf{k}_{\mathbf{x}_{i}} \\ \mathbf{k}_{\mathbf{y}_{i}} \end{pmatrix}$$
(35)

Jetzt lesen wir diese Gleichung jedoch nicht in der vertrauten Weise «vorgegeben ein Gleichungssystem mit den rechten Seiten w_x, w_y, aus denen unbekannte Korrelaten k_{xi} und k_{yi} zu ermitteln sind», sondern als eine lineare Zuordnung zwischen Grössen k_{xi} und k_{yi} und durch sie bewirkten Koordinatenänderungen Δx_i und Δy_i im Punkt P_i: zu jedem vorgegebenen Wertepaar **k**_i gehört dann ein Wertepaar $\Delta x_i = (\Delta x_i, \Delta y_i)$.

Wir fragen nun nach «allen» zugehörigen Wertepaaren Δx_i , Δy_i , wenn k_{xi} , k_{yi} «alle möglichen» Wertepaare annimmt. Dazu fassen wir k_{xi} und k_{yi} nicht nur im Sinne der Matrizenrechnung sondern auch im geometrischen Sinne als Komponenten eines Vektors \mathbf{k}_i auf. Damit dieser Vektor alle möglichen Werte annehme, wird er normiert:

$$k_{x_i}^2 + k_{y_i}^2 = 1 \Leftrightarrow k_i^T k_i = 1$$

Durch die Normierung können wir die Komponenten k_{xi} und k_{yi} als $\cos\phi$ und $\sin\phi$ darstellen; sollen diese alle möglichen Werte annehmen, so können wir ${\bf k}_i$ als Radiusvektor im Einheitskreis auffassen, welcher alle Werte für $\sigma^g \leqslant \phi < 400^g$ durchläuft.

Zu jedem vorgegebenen ϕ gehört dann ein entsprechendes

$$\mathbf{k}_{i} = \begin{pmatrix} k_{x_{i}} \\ k_{y_{i}} \end{pmatrix} := \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$$

mit zugehörigen Δx_i , Δy_i .

Z.B. werden für $\phi = 0^{g} : \cos \phi = 1$ und $\sin \phi = 0$, d.h. $\mathbf{k}_{i} = \binom{1}{0}$ und die zugehörigen durch \mathbf{k}_{i} hervorgerufenen Verschiebungen in P_i sind nach (35)

$$\Delta \mathbf{x}_{i} = \mathbf{Q}_{\mathbf{X}_{i}\mathbf{X}_{i}}$$
(36)
$$\Delta \mathbf{y}_{i} = \mathbf{Q}_{\mathbf{V}_{i}\mathbf{X}_{i}}.$$

Wählen wir ϕ = 100^g, so wird **k**_i = (⁰₁), und die zugehörigen Verschiebungen sind Δx_i

$$= Q_{X_i y_i} \text{ und } \Delta y_i = Q_{y_i y_i}.$$
(37)

Wir denken uns den Einheitsvektor \mathbf{k}_i im Punkt P_i angetragen. Dann besagt (36): Der in x-Richtung weisende Vektor $|\mathbf{k}_i|$ = 1 «bewirkt» eine Verschiebung von P_i in x-Richtung im Betrag von $Q_{\mathbf{X}_i \mathbf{X}_i}$, und (37) besagt: der in y-Richtung weisende Vektor $|\mathbf{k}_i|$ = 1 «bewirkt» eine Verschiebung von P_i in y-Richtung im Betrag von $Q_{\mathbf{V}_i \mathbf{V}_i}$.

Verallgemeinert drückt also die Gleichung (35)

$$\Delta \mathbf{x}_{i} = \mathbf{Q}_{i,i} \, \mathbf{k}_{i} \qquad = (35)$$

aus, dass zu jedem vorgegebenen Richtungswinkel ϕ des in P_i «angreifenden» Einheitsvektors **k**_i eine bestimmte Gesamtverschiebung Δx_i von P_i gehört. In dieser Interpretationsweise drängt es sich förmlich auf, **k**_i als eine in P_i angreifende Einheitskraft zu interpretieren, welche entsprechende Verschiebungen Δx_i von P_i bewirkt. Diese Interpretation hält in der Tat einer genauen Untersuchung stand [6] (die wir jedoch hier nicht weiter heranziehen wollen und nicht heranzuziehen brauchen):

Denken wir das geodätische Netz durch ein elastisches Analogon materialisiert und das Ausgleichungsproblem in ein elastomechanisches Problem übersetzt, so ist am Analogen die Grösse \mathbf{k}_i tatsächlich eine in P_i angreifende Einheitskraft, welche elastische, mit dem Gleichgewichtszustand des Analogons verträgliche Punktverschiebungen $\Delta \mathbf{x}_i$ hervorruft!

Die Gleichung (35)

erlaubt aber geometrisch die Interpretation einer Abbildung, durch welche der «Kraftvektor» k, mit Hilfe der quadratischen Matrix Q_{i,i} in den Verschiebevektor $\Delta \mathbf{x}_{i}$ abgebildet werden kann. Da $\mathbf{Q}_{i,i}$ vom Grad 2 und positiv definit ist, erhält diese Abbildung das zusätzliche Charakteristikum einer affinen Abbildung, und da die Spitze des Vektors k, beim Durchlaufen aller Wertepaare ($\cos\varphi$, $\sin\varphi$) einen Einheitskreis beschreibt, durchläuft die Spitze des Bildvektors (= Verschiebungsvektor) Δx, eine Ellipse als affines Bild des Einheitskreises. Diese Ellipse wollen wir als «Verschiebungsellipse» von P, bezeichnen; ihre Konstanten können durch eine Hauptachsentransformation leicht bestimmt werden.

Seien λ_i^i und λ_2^i die Eigenwerte von $\mathbf{Q}_{i,i}, \mathbf{\hat{x}}_1^i$ und $\mathbf{\hat{x}}_2^i$ die zugehörigen, auf die Länge 1 normierten Eigenvektoren und $\mathbf{X}_i = (\mathbf{\hat{x}}_i^i, \mathbf{\hat{x}}_2^i)$ die (orthogonale) Modalmatrix.

Dann bewirkt Links- und Rechtsmultiplikation von $\mathbf{Q}_{i,i}$ mit $\mathbf{X}_i^{\mathsf{T}}$ und \mathbf{X}_i eine Transformation auf Diagonalform

$$\boldsymbol{X}_{i}^{\mathsf{T}}\boldsymbol{Q}_{i,i}\boldsymbol{X}_{i} = \boldsymbol{K}_{i} = \begin{pmatrix} \lambda_{1}^{i} & 0 \\ \lambda_{1}^{i} & 0 \\ 0 & \lambda_{2}^{i} \end{pmatrix} \stackrel{=}{\underset{(9,10)}{=}} \begin{pmatrix} Q_{\xi_{i}\xi_{i}} & 0 \\ 0 & Q_{\eta_{i}\eta_{i}} \end{pmatrix}$$

Andererseits kann wegen $\mathbf{X}_i^T \mathbf{X}_i = \mathbf{X}_i \mathbf{X}_i^T = \mathbf{E}$ die Matrix $\mathbf{Q}_{i,i}$ in der Form

$$\mathbf{Q}_{i,i} = \mathbf{X}_i \, \mathbf{K}_i \, \mathbf{X}_i^{\mathsf{T}} \tag{38}$$

dargestellt werden,

sodass aus Gleichung (35) wird

$$\Delta \mathbf{X}_{i} = \mathbf{X}_{i} \mathbf{K}_{i} \mathbf{X}_{i}^{\mathsf{T}} \mathbf{k}_{i}$$

bzw., nach Linksmultiplikation mit XT

$$\mathbf{X}_{i}^{\mathsf{T}} \Delta \mathbf{x}_{i} = \mathbf{K}_{i} \mathbf{X}_{i}^{\mathsf{T}} \mathbf{k}_{i}.$$
(39)

Damit ist die Hauptachsentransformation schon vollzogen, denn die Linksmultiplikation von Δx_i und k_i mit X_i^T entspricht – siehe Seite 347 – der Transformation ins ellipseneigene ξ, η -System:

$$\begin{array}{l} \mathbf{X}_{i}^{\mathsf{T}} \boldsymbol{\Delta} \mathbf{x}_{1} = \mathbf{y}_{i} = \begin{pmatrix} \boldsymbol{\xi}_{i} \\ \boldsymbol{\eta}_{i} \end{pmatrix} \\ \mathbf{X}_{i}^{\mathsf{T}} \mathbf{k}_{i} = \mathbf{t}_{i} = \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} \end{array} \Rightarrow \mathbf{y}_{i} = \mathbf{K}_{i} \mathbf{t}_{i}$$
 (40)

Vermessung, Photogrammetrie, Kulturtechnik, 7/88

(40) ist die Parameterdarstellung der Verschiebungsellipse in P_i mit den Halbachsen $a_i = Q_{\text{ElEi}}$, $b_i = Q_{\text{nini}}$, ausführlich

$$\begin{split} \xi_i &= \mathsf{Q}_{_{\xi i \xi i}} \cos \Psi \\ \eta_i &= \mathsf{Q}_{_{\eta i \eta i}} \sin \Psi. \end{split} \tag{40}$$

Die Mittelpunktgleichung findet man aus (40) nach Linksmultiplikation mit \mathbf{K}_{i}^{-1}

ausführlich

$$\frac{\xi_{i}^{2}}{Q_{\xi_{i}\xi_{i}^{2}}} + \frac{\eta_{i}^{2}}{Q_{\eta_{i}\eta_{i}^{2}}} = 1 \quad , \qquad \qquad \triangleq (41)$$

und der Richtungswinkel θ_i der grossen Halbachse ist (bestimmt analog den Gleichungen (8) und (3))

tang 2
$$\theta_i = \frac{2 Q_{x_i y_i}}{Q_{x_i x_i} - Q_{y_i y_i}} = (3$$

Schliesslich finden wir die Projektion des Verschiebungsvektors y_i auf die Kraftrichtung t_i durch das skalare Produkt $t_i^T y_i$; dies ist wegen

$$\mathbf{y}_{i} = \mathbf{K}_{i} \mathbf{t}_{i}$$
 $\triangleq (40)$

gleich

$$\mathbf{t}_{i}^{\mathsf{T}} \mathbf{y}_{i} = \mathbf{t}_{i}^{\mathsf{T}} \mathbf{K}_{i} \mathbf{t}_{i}^{\mathsf{T}} (\underline{10}) \mathbf{Q}_{\text{titi}} \mathbf{!}$$
(42)

Der Richtungswinkel ϑ des Verschiebungsvektors \boldsymbol{y}_i ist

$$\tan \varphi_{i} = \frac{\eta_{i}}{\xi_{i}} = \frac{Q_{\eta_{i}\eta_{i}} \sin \psi}{Q_{\xi_{i}\xi_{i}} \cos \psi} = \frac{Q_{\eta_{i}\eta_{i}}}{Q_{\xi_{i}\xi_{i}}} \tan \varphi = \tan \varphi \varepsilon \quad .$$

aber

Diese Ergebnisse wollen wir in Worte fassen:

Jedem Neupunkt eines geodätischen Netzes sind eine Fehlerellipse und eine «Verschiebungsellipse» zugeordnet. Die Richtungswinkel θ der grossen Halbachse beider Ellipsen sind identisch. Die Halbachsen der Verschiebungsellipse $Q_{\xi\xi}, Q_{\eta\eta}$ sind die Quadrate der Halbachsen $\sqrt{Q}_{\xi\xi}, \sqrt{Q}_{\eta\eta}$ der Fehlerellipse. Die von der Einheitskraft $\mathbf{k}^{\mathsf{T}} = (\cos\phi, \sin\phi)$ bzw. $\mathbf{t}^{\mathsf{T}} = (\cos\Psi, \sin\Psi)$ bewirkte Totalverschiebung ergibt sich in der Verschiebungsellipse als zur Kraftrichtung affiner Ellipsenvektor mit

dem Richtungswinkel tang $\varepsilon = \frac{Q_{\eta\eta}}{Q_{\xi\xi}} \cdot tang\Psi$,

und sie ergibt sich in der Fehlerellipse als doppelt affin abgebildeter Ellipsenvektor entsprechend (16)

$$\overline{\mathbf{y}}_{1} = \frac{\mathbf{K} \mathbf{t}}{\sqrt{\mathbf{t}^{\mathsf{T}} \mathbf{K} \mathbf{t}}} = \frac{\mathbf{y}_{i}}{\sqrt{\mathbf{t}^{\mathsf{T}}_{i} \mathbf{K}_{i} \mathbf{t}_{i}}} = \frac{\mathbf{y}_{i}}{\sqrt{\mathbf{Q}_{t_{i} t_{i}}}} .$$
(44)

Der richtungsvariable Kofaktor Q_{ititi} im Punkt P_i ist stets gleich der *in Kraftrichtung fallenden Komponente* der Totalverschiebung Δx_i , bewirkt durch eine in P_i angreifende richtungsvariable Einheitskraft k_i . Die Spitzen aller Kofaktorenvektoren $t_i \triangleq$ Q_{titi} beschreiben eine Fusspunktkurve, welche die gleichen Konstanten hat, wie die Verschiebungsellipse.

Für genau zwei ausgezeichnete Richtungen, nämlich θ_{i_1} und θ_{i_2} = Richtungen der Halbachsen – fallen die Kraftrichtung $\phi \triangleq \Psi$ und die Verschiebungsrichtung ϵ zusammen.

Unsere Analyse zeigt weiter, dass beim Anbringen einer Einheitskraft $|\mathbf{k}_i| = 1$ im Punkt P_i sich nicht nur dieser Punkt selbst sondern alle übrigen Punkte P_v mitverschieben, Gleichung (27i) Seite 351. Dabei gilt insbesondere: wird P_i mit einer in x-Richtung fallenden Kraft $\mathbf{k}_i = \binom{1}{0}$ belastet, so sind die in die x-Richtung fallenden Komponenten der Mitbewegungen Δx_v der übrigen Punkte P_v, $v = 1, \ldots, i-1, i+1, \ldots$, h) gleich den gemischten Kofaktoren Q_{xixv}, und die in die y-Richtung fallenden Komponenten der Mitverschiebungen sind gleich den gemischten Kofaktoren Q_{xixv}!

Die totale Mitverschiebung eines Punktes P_v als Folge von $\mathbf{k}_i = \binom{1}{0}$ ergibt sich als die vektorielle Summe von Q_{xixv} und Q_{xivv} .

Analog gilt für eine in P_i in y-Richtung angreifende Kraft $\mathbf{k}_i = \binom{0}{2}$:

Die Komponenten der Mitverschiebungen in y- bzw. x-Richtung in den Punkten P_v sind gleich den Kofaktoren Q_{vivv} und Q_{vixv} .

Wegen der Symmetrie von (A^TPA)⁻¹ gilt

(43)

Analog gilt für die in P_i angreifende Kraft in y-Richtung $\binom{0}{1}$ und die durch sie verursachten Mitbewegungen in $P_{\rm v}$

$$\begin{split} \mathsf{Q}_{\mathsf{y}\mathsf{i}\mathsf{y}\mathsf{v}} &= \mathsf{Q}_{\mathsf{y}\mathsf{v}\mathsf{y}\mathsf{i}} \\ \mathsf{Q}_{\mathsf{y}\mathsf{i}\mathsf{x}\mathsf{v}} &= \mathsf{Q}_{\mathsf{x}\mathsf{v}\mathsf{y}\mathsf{i}}. \end{split}$$

Da die Komponente der Mitverschiebungen Vektorcharakter haben, können wir zusammenfassend formulieren: Die Mitverschiebung Δx_v , welche die in P_i angreifende Kraft $\mathbf{k}_i = \begin{pmatrix} \cos v \\ \sin v \end{pmatrix}$ im Punkt P_v hervorruft, ist gleich der Mitverschiebung Δx_i , welche die in P_v angreifende Kraft \mathbf{k}_v = $\begin{pmatrix} \cos v \\ \sin v \end{pmatrix}$ im Punkt P_i hervorruft.

Dies ist der bekannte Maxwell'sche Satz von der Gegenseitigkeit der Formänderungen.

Insbesondere

mit $\mathbf{k} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \triangleq$ Einheitskraft in x-Richtung und $\mathbf{k} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \triangleq$ Einheitskraft in y-Richtung

geben in $(\mathbf{A}^{\mathsf{T}}\mathbf{P}\mathbf{A})^{-1}$ die gemischten Kofaktoren $Q_{X_iX_k} = Q_{X_kX_i}$, $Q_{y_iY_k} = Q_{y_ky_i}$ und $Q_{X_iY_k}$ $= Q_{y_kX_i}$ jeweils den Einfluss der i'ten Einheitskraft auf den k'ten Punkt – und umgekehrt – in x- und y-Richtung an.

Die «quadratischen» Verschiebungen Δx_i , welche die Einheitskräfte in x- und y-Richtung in Richtung und im Sinne von sich selbst hervorrufen, ergeben sich als die quadratischen Kofaktoren $Q_{X_iX_i}$, $Q_{y_iy_i}$, welche in der Hauptdiagonalen von $(\mathbf{A}^T\mathbf{PA})^{-1}$ stehen.

Schliesslich zeigt die Form der Gleichung (33), dass auch alle Mitverschiebungen Δx_v sich als affine Abbildungen der in P_i angreifenden Einheitskraft $\mathbf{k}_i = \begin{pmatrix} \cos q \\ \sin q \end{pmatrix}$ mit allerdings nicht symmetrischen Abbildungsmatrizen $\mathbf{Q}_{i,v}$, $\mathbf{Q}_{v,i}$ auffassen lassen: Lässt man $\mathbf{k}_i = \begin{pmatrix} \cos q \\ \sin q \end{pmatrix}$ in P_i alle Werte 0^g $\leq \phi < 400^g$ durchlaufen, so beschreiben die Radiusvektoren Δx_v der Mitverschiebungen in *allen* Punkten P_v, $v = 1, \ldots, i-1, i+1, \ldots, h$, «Mitverschiebungsellipsen». Mitverschiebungsellipsen sollen hier nicht detailliert dargestellt werden, lediglich einige Bemerkungen seien angefügt:

- $\begin{array}{l} \mbox{ Die Eigenwerte } \lambda_{i,v}^1, \lambda_{i,v}^2 \mbox{ mit den zugehörigen Eigenvektoren } \mathbf{\hat{x}}_{i,v}^1, \mathbf{\hat{x}}_{i,v}^2 \mbox{ ergeben diejenigen Totalverschiebungen in } P_v, \mbox{ welche zur Kraftrichtung } \mathbf{k}_i \mbox{ im Punkt } P_i \mbox{ parallel sind.} \end{array}$
- Die extremen Mitverschiebungen Δx_v

zeugten Mitverschiebungen sind gleich den von der in P, angreifenden Einheitskraft $|\mathbf{k}_v| = 1$ erzeugten Mitverschiebungen in P_i:

«Die von der in P, angreifenden Einheitskraft $|\mathbf{k}| = 1$ in P, er-

max, min ergeben sich als die Wurzeln der Eigenwerte der Matrix $(\mathbf{Q}_{v,i}^{\mathsf{T}} \mathbf{Q}_{v,i})$.

 Für bestimmte Kraftrichtungen k_i in P_i treten Parallelbewegungen der Punkte P_i und P_v auf, d.h. die vektoriellen Totalverschiebungen in P_i und P_v sind bis auf einen Proportionalitätsfaktor gleich. Diese lassen sich als Eigenwerte und Eigenvektoren der Matrix [Q⁻¹_{i,i} · Q_{i,v}] finden. Unsere Darstellung erlaubt auch, für die Formel $\Delta \mathbf{v}^{\mathsf{T}} \mathbf{P} \Delta \mathbf{v} = \mathbf{k}^{\mathsf{T}} \mathbf{w} = \mathbf{k}^{\mathsf{T}} \Delta \mathbf{x}$ eine plausible Deutung: Beim Angriff in P, leisten die Kräfte k eine Arbeit längs der in Kraftrichtung fallenden Verschiebungskomponenten. Diese Arbeit ist aber gerade gleich der Hälfte des Skalarproduktes k^Tw. Bei den Verschiebungen der Pi wird aber auch in allen inneren (elastisch zu denkenden) Elementen

Beobachtungen (!) Verformungsarbeit geleistet, nämlich zur Herstellung des neuen Verformungszustandes. Diese Arbeit ist $\frac{1}{2} \Delta \mathbf{v}^{\mathsf{T}} \mathbf{P} \Delta \mathbf{v}$. Innere und äussere Arbeit müssen aber bei der Überführung des ersten in den zweiten, benachbarten Gleichgewichtszustand einander gleich sein. Daher folgt $\Delta v^{T} P \Delta v =$ k[⊤]w.

Schliesslich sei ein weiterer Hinweis gegeben:

Das dem geodätischen Netz entsprechende elastomechanische Analogon, welches hier statisch aufgefasst wird - Betrachtung von virtuellen Gleichgewichtszuständen - kann auch als dynamisches elastomechanisches Analogon betrachtet werden. Dazu braucht man nur den elastischen Elementen des Analogons die entsprechenden Federungseigenschaften z.B. Hooke'sches Gesetz - und den Punkten entsprechende Massen zuzuordnen. Dann lassen sich unter verschiedenen Kopplungsbedingungen Bewegungsgleichungen für das elastische System aufstellen. Sie führen auf den harmonischen Oszillator. In ihm beschreiben die Fehlerellipsen Schwingungsvorgänge. Ein Beispiel dazu ist in [4] gegeben.

Praktisches Beispiel

Abb. 9 zeigt das Testnetz in Stuttgart-Vaihingen, bestehend aus 8 Punkten; davon sind für eine Ausgleichung die Punkte 1 und 5 als Fest- und die übrigen als Neupunkte angenommen. Es wurden 56 Richtungen und 33 Strecken beobachtet; die mittleren Fehler der ausgeglichenen Koordinaten liegen zwischen 1 mm und 5 mm und die Halbachsen der Fehlerellipsen zwischen 1 und 5 mm.

Wir zeigen nun in einer kleinen Analyse die hier entwickelten Hilfsmittel der Verschiebungs- und Mitverschiebungsellipsen. Wir greifen z.B. die Punkte P_4 und P_8

		P2		P ₃		P ₄		P ₆		P ₇		P ₈	
		×2	У ₂	×3	Y ₃	×4	У4	×6	У _б	×7	У ₇	×8	У8
P ₂	×2	4,424	0,046	1,784	0,0539	1,549	0,0067	0,396	0,353	1,968	-0,188	1,600	0,392
	^у 2	0,046	0,126	0,017	0,125	0,028	0,145	0,031	0,233	0,061	0,126	0,063	0,146
P ₃	×3	1,784	0,017	3,775	-0,085	1,857	-0,059	0,423	0,440	2,075	0,362	2,033	0,357
	У3	0,0539	0,125	-0,085	0,474	0,036	0,434	0,098	0,680	-0,264	0,292	0,158	0,374
P ₄	×4	1,549	0,028	1,857	0,036	3,801	-0,060	0,585	0,533	1,760	0,816	3,057	-0,635
	У ₄	0,0067	0,145	-0,059	0,434	-0,060	1,464	0,253	1,488	-0,538	0,494	0,190	0,678
^Р 6	× ₆					0,585	0,253	2,206	1,124	-0,027	0,019	0,813	0,063
	У6					0,533	1,488		6,856	-1,145	0,814	1,395	1,527
D	×7					1,760	-0,538			4,536	0,686	1,246	-0,354
7	У ₇					0,816	+0,494				4,935	0,589	0,409
P ₈	×8					3,057	0,190					4,201	-0,416
	У ₈					-0,635	0,678						2,402

Abb. 10

heraus. Aus der Abb. 10, welche die Inverse (A^TPA)⁻¹ normiert auf E-04 enthält, entnehmen wir die zu den beiden Punkten P₄ und P₈ gehörenden Submatrizen $Q_{4,4}$ und $Q_{8,8}$ zu

$$\mathbf{Q}_{4,4} = \begin{pmatrix} 3,801 & -0,060 \\ -0,060 & 1,464 \end{pmatrix}$$
, $\mathbf{Q}_{8,8} = \begin{pmatrix} 4,201 & -0,461 \\ -0,461 & 2,402 \end{pmatrix}$

und bestimmen daraus folgende Konstanten:

Punkt P_4 , Submatrix $\mathbf{Q}_{4,4}$ (der Punktindex «4» wird im folgenden fortgelassen):

Eigenwerte

$$\begin{split} \lambda_1 &= Q_{\xi\xi} = 3,8025; \qquad \sqrt{\lambda_1} = \sqrt{Q_{\xi\xi}} = 1,9500; \\ \lambda_2 &= Q_{\eta\eta} = 1,4624; \qquad \sqrt{\lambda_2} = \sqrt{Q_{\eta\eta}} = 1,2093; \end{split}$$

 $m_o = \pm 2,161$ mm aus der Ausgleichung.

Grosse Halbachse Fehlerellipse: 1,9500 × 2,161 = 4,21 mm, kleine Halbachse Fehlerellipse: 1,2093 × 2,161 = 2,61 mm. Richtungswinkel θ der grossen Halbachse: $\theta = -1,64^{\circ}$.

Punkt P_{8} , Submatrix $\mathbf{Q}_{8,8}$: Eigenwerte
$$\begin{split} \lambda_1 &= Q_{\xi\xi} = 4,2930; \qquad \sqrt{\lambda_1} = \sqrt{Q_{\xi\xi}} = 2,0720; \\ \lambda_2 &= Q_{\eta\eta} = 2,3100; \qquad \sqrt{\lambda_2} = \sqrt{Q_{\eta\eta}} = 1,5199; \\ m_0 &= \pm 2,161 \text{ mm}. \end{split}$$

Grosse Halbachse Fehlerellipse: $2,0720 \times 2,161 = 4,47 \text{ mm},$

kleine Halbachse Fehlerellipse: $1,5199 \times 2,161 = 3,28$ mm.

Richtungswinkel der grossen Halbachse θ = -13,78^g.

Wir machen mit dem Netz einige Experimente:

1) Punkt P_4 wird mit der Einheitskraft $\mathbf{k}_4 =$ $\binom{-1}{0}$ (d.h. \mathbf{k}_4 weist in die negative x-Richtung) belastet. Die virtuellen x-Verschiebungskomponenten sind dann nach Gleichung (27i) Seite 353 die in der P₄-Doppelspalte von (A^TPA)⁻¹ stehenden Kofaktoren. Diese können wir in beliebiger metrischer Einheit lesen, sofern nur die virtuellen Verschiebungen «klein» in dem Sinne sind, dass die in (ATPA)-1 steckende Linearisierung, welche sich auf den Taylorpunkt «unbelasteter Zustand» bezieht, gültig bleibt; oder, praktisch ausgedrückt, dass die Verschiebungen klein sind im Verhältnis zu den Gesamtabmessungen des Netzes. Da $m_o = \pm 2,16$ mm

Fachteil

ist, ist z.B. eine plausible Lesart, den Kofaktoren die Dimension mm zuzuteilen. Die Verschiebungen in x-Richtung sind dann im Punkt P₄ selbst -3,8 mm, und in den übrigen Punkten P₂: -1,55mm, P₃: -1,86 mm, P₆: -0,58 mm, P₇: -1,76 mm, P₈: -3,06 mm.

Wir erkennen aus der P₄-Doppelspalte aber auch, dass gleichzeitig Mitverschiebungen der Punkte in y-Richtung auftreten. Diese sind: P₂: -0,03 mm, P₃: -0,04 mm, P₄: +0,06 mm, P₆: -0,53 mm, P₇: -0,82 mm, P₈: +0,64 mm.

Die Totalverschiebungen ergeben sich jeweils als die Vektorsumme der x- und y-Komponenten. Sie sind in Abb. 9 im Netz dargestellt.

Natürlich könnten wir die virtuellen Verschiebungen auch in anderen Masseinheiten angeben: cm, Zoll oder vielfachen davon; lediglich im Vergleich verschiedener Netze spielt die Kalibrierung mit Hilfe von m_o eine Rolle.

- 2) Punkt P_8 wird mit der Einheitskraft $k_8 = \binom{-1}{0}$ belastet. Die entsprechenden Mitverschiebungen stehen in der 8. Doppelspalte von (A^TPA)⁻¹, Abb. 10, analog Fall 1). Insbesondere ist die x-Komponente der Mitverschiebung in P_4 : -3,06 mm gleich der Mitverschiebung von P_8 im Fall 1) (!), Maxwell'scher Satz.
- Die Punkte P₄ und P₈ werden gemeinsam betrachtet.
- a) Bereits die Submatrix Q_{4.8}

 $\mathbf{Q}_{4,8} = \begin{pmatrix} +3,057 & -0,635 \\ +0,190 & +0,678 \end{pmatrix}$

zeigt die hohe x-Korrelation zwischen den beiden Punkten. Nach Gleichung (33) beschreibt dann

die durch eine in P_8 angreifende variable Einheitskraft \mathbf{k}_8 in P_4 verursachten Mitverschiebungen.

$$\mathbf{Q}_{8,4} = \begin{pmatrix} +3,057+0,190 \\ -0,635+0,678 \end{pmatrix}$$

und dem Ansatz

$$\begin{pmatrix} \Delta \mathbf{x}_8 \\ \Delta \mathbf{y}_8 \end{pmatrix} = \begin{pmatrix} +3,057+0,190 \\ -0,635+0,678 \end{pmatrix} \begin{pmatrix} \cos \varphi_4 \\ \sin \varphi_4 \end{pmatrix}$$

$$\Delta \mathbf{x}_8 = \mathbf{Q}_{8,4} \cdot \mathbf{k}_4$$

die Mitverschiebungen im Punkt P_8 beschrieben, welche durch eine variable, in P_4 angreifende Einheitskraft k_4 hervorgerufen werden.

In beiden Fällen sind die in Kraftrichtung fallenden Komponenten der Totalverschiebung gleich den gemischten Kofaktoren $Q_{t_8t_4}$ bzw. $Q_{t_4t_8}$

 $\lambda_1 = 3,0083, \quad \lambda_2 = 0,7268,$

die zugehörigen Eigenrichtungen

 $\theta_1 = 5,04^{g}, \qquad \theta_2 = 83,5^{g}$

(welche *nicht* aufeinander senkrecht stehen!)

und die Eigenvektoren $\hat{\mathbf{x}}_1$ und $\hat{\mathbf{x}}_2$, welche in die parallelen Mitverschiebungen $\lambda_1 \cdot \hat{\mathbf{x}}_1$ und $\lambda_2 \cdot \hat{\mathbf{x}}_2$ abgebildet werden:

$$\widehat{\mathbf{x}}_{1} = \begin{pmatrix} \cos \theta_{1} \\ \sin \theta_{1} \end{pmatrix} = \begin{pmatrix} +0,996 \\ +0,088 \end{pmatrix} \cdot \lambda_{1} = \begin{pmatrix} 2,996 \\ 0,264 \end{pmatrix} = \mathbf{y}_{1} \quad ,$$
$$\widehat{\mathbf{x}}_{2} = \begin{pmatrix} \cos \theta_{2} \\ \sin \theta_{2} \end{pmatrix} = \begin{pmatrix} +0,256 \\ +0,967 \end{pmatrix} \cdot \lambda_{2} = \begin{pmatrix} 0,186 \\ 0,703 \end{pmatrix} = \mathbf{y}_{2} \quad .$$

Dies bedeutet: Die Einheitskraft \mathbf{k}_{8} im Punkt P₈ bewirkt für die Richtungswinkel $\theta_{1} = 5,04^{g}$ und $\theta_{2} = 83,5^{g}$ parallele Mitverschiebungen in P₄ der Grösse \mathbf{y}_{1} bzw. \mathbf{y}_{2} . Fehlertheoretisch liegt hier ein Fall «ausgezeichneter» Korrelation vor.

c) Wir bilden

$$(\mathbf{Q}_{4,8}^{\mathsf{T}} \, \mathbf{Q}_{4,8}) = \begin{pmatrix} +9,3813 & -1,8124 \\ -1,8124 & +0,8629 \end{pmatrix}$$

mit den zugehörigen Eigenwerten

$$\lambda_1 = 9,7509;$$
 $\sqrt{\lambda_1} = 3,1226,$
 $\lambda_2 = 0,4933;$ $\sqrt{\lambda_2} = 0,7024,$

und den Eigenrichtungen $\theta_1 = -12,81^9$, $\theta_2 = 87,19^9$ (welche jetzt wegen der Symmetrie von ($\mathbf{Q}_{4,8}^T$ $\mathbf{Q}_{4,8}$) aufeinander senkrecht stehen): Die maximalen und minimalen Mitverschiebungen \mathbf{Q}_{1418} max. = 3,123 und \mathbf{Q}_{1418} min. = 0,7024 treten in P₄ in den Richtungen $\theta_1 = -12,81$ und $\theta_2 = 87,19$ auf. (Der Beweis für die Gültigkeit dieser kleinen Rechnung ist hier nicht mitgeteilt).

$$\begin{split} \Delta \boldsymbol{x}_i &= \boldsymbol{Q}_{i,i} \cdot \boldsymbol{k}_i - \boldsymbol{Q}_{i,k} \cdot \boldsymbol{k}_i \ , \\ \Delta \boldsymbol{x}_k &= \boldsymbol{Q}_{k,i} \cdot \boldsymbol{k}_i - \boldsymbol{Q}_{k,k} \cdot \boldsymbol{k}_i \ , \end{split}$$

d) Wir ermitteln die Nachbarschaftsgenauigkeit zwischen P_8 und $\mathsf{P}_4.$ Auch diese bildet sich wieder als (relative) Verschiebung von virtuellen Belastungszuständen ab.

In sinngemässer Anwendung der Gleichungen (33) ff. gilt für zwei Punkte P_i und P_k , geschrieben in Hypermatrizen, die Gleichung

$$\begin{aligned} \Delta \mathbf{x}_{i} \\ \Delta \mathbf{x}_{k} \end{aligned} = \begin{pmatrix} \mathbf{Q}_{i,i} & \mathbf{Q}_{i,k} \\ \mathbf{Q}_{k,i} & \mathbf{Q}_{k,k} \end{vmatrix} \begin{pmatrix} \mathbf{k}_{i} \\ \mathbf{k}_{k} \end{pmatrix} .$$
 (45)

Damit die Verschiebungs*differenz* ermittelt werden kann, lassen wir in P_k eine Einheitskraft $\mathbf{k}_k = -\mathbf{k}_i$ angreifen.

Mechanisch bedeutet dies, dass wir in P_i P_k ein Kräftepaar mit – in Abhängigkeit von φ – Hebelarm variabler Länge angreifen lassen.

Dann wird aus (45)

$$\begin{pmatrix} \Delta \mathbf{x}_{i} \\ \Delta \mathbf{x}_{k} \end{pmatrix} = \begin{pmatrix} \mathbf{Q}_{i,i} & \mathbf{Q}_{i,k} \\ \mathbf{Q}_{k,i} & \mathbf{Q}_{k,k} \end{pmatrix} \begin{pmatrix} \mathbf{k}_{i} \\ -\mathbf{k}_{i} \end{pmatrix} , \qquad (46)$$

so dass wir erhalten

Formel (47)

Die Differenzmatrix D ergibt sich zu

$$\mathbf{D} = \begin{pmatrix} +1,888 & -0,031 \\ -0,031 & +2,510 \end{pmatrix}$$

und ihre Eigenwerte sind

$$\lambda_1 = 2,5105 \quad , \qquad \lambda_2 = 1,8875$$

$$Q_{\Delta\xi\Delta\xi} = \sqrt{\lambda_1} = 1,584 \quad ,$$

$$\sqrt{\lambda_2} = 1,374 = Q_{\Delta n \Delta r}$$

(47)

Vermessung, Photogrammetrie, Kulturtechnik, 7/88

mit den Eigenrichtungen $\theta_1 = 103,1^{g}, \theta_2 = 203,1^{g}$.

Damit werden die mittleren Fehler

$$\begin{split} m_{\Delta\xi} &\approx m_{\Delta x} &= 1,58 \cdot 2,16 \text{ mm} = \pm 3,4 \text{ mm} \\ m_{\Delta\eta} &\approx m_{\Delta y} &= 1,37 \cdot 2,16 \text{ mm} = \pm 3,0 \text{ mm}. \end{split}$$

Die Koordinatendifferenzen in x und y sind wegen des kleinen gemischten Elementes -0,031 kaum miteinander korreliert; die grosse Halbachse der Fehlerellipse für Koordinatendifferenzen zwischen den Punkten P₈ und P₄ fällt nahezu in y-Richtung, und die Eigenwerte sind – wie es dann sein muss – nahezu gleich den Elementen in der Hauptdiagonalen.

Schlussbemerkungen

Die hier entwickelten Hilfsmittel der Verschiebungs- und Mitverschiebungsellipsen beschreiben in *doppelter* Weise wichtige Aspekte der inneren Struktur eines geodätischen Netzes (mit und durch die Abbildung auf ein elastomechanisches Analogon):

- Sie zeigen einmal in anschaulicher Weise das Deformationsverhalten des Netzes bei *tatsächlichen* Verschiebungen, verursacht durch *Zwangsanschlüsse* des Netzes an weitere Festpunkte.
- Sie zeigen andererseits in ihrer anschaulichen Abbildung auf ein elastomechanisches Analogon die Struktur des netzinternen Fehlerverhaltens des geodätischen Netzes, welche sich in der Gestalt virtueller Verschiebungen unter Einheitskräften abbildet: Die quadratischen Kofaktoren Q_{xx}, Q_{yy}, Q_{tt} entsprechen virtuellen Verschiebungen un-

ter Einheitsbelastung im betreffenden Punkt, und die gemischten Kofaktoren entsprechen Mitverschiebungen. Damit sind sie ein Mass für die Nachgiebigkeit bzw. Steifigkeit des Netzes und für die Struktur des inneren Verbundes. Mitverschiebungen bilden unmittelbar die Korrelationen zwischen den ausgeglichenen Punkten ab.

Die (immer vorhandene) Möglichkeit, die Fehlerstruktur und das Fehlerverhalten eines geodätischen Netzes in virtuellen Verschiebungen eines elastomechanischen Analogons abzubilden, lässt umgekehrt den Schluss zu, dass z.B. bei Optimierungsaufgaben nach entsprechender Lagerung nur solche Matrizen (A^TPA)⁻¹ als erwünschte Genauigkeitsstruktur vorgegeben werden können und dürfen, die möglichen und sinnvollen virtuellen Verschiebungszuständen in einem elastomechanischen Analogon entsprechen.

Schliesslich sei erwähnt, dass die hier vorgestellten Methoden auch zur Analyse von Deformationsmessungen mit herangezogen werden können.

Literatur:

- Höpcke, W.: Fehlerlehre und Ausgleichungsrechnung. Walter de Gruyter, Berlin, New York 1980.
- [2] Gotthardt, E.: Einführung in die Ausgleichungsrechnung, Sammlung Wichmann, Neue Folge, Band 3. Herbert Wichmann Verlag, Karlsruhe 1968.
- [3] Wolf, H.: Ausgleichungsrechnung: Formeln zur praktischen Anwendung. Dümmlers Verlag, Bonn 1975.
- [4] Falkenberg, Th., Schnädelbach, K.: The interaction between error ellipses and

characteristic oscillations of geodetic networks. Presented paper IAG/IUGG, General Assembly, Vancouver, Canada 1987.

- [5] Linkwitz, K.: Über die Systematik verschiedener Formen der Ausgleichungsrechnung. Zeitschrift für Vermessungswesen, Hefte 5, 6, 7. Konrad Wittwer Verlag, Stuttgart 1960.
- [6] Linkwitz, K.: Fehlertheorie und Ausgleichung von Streckennetzen nach der Theorie elastischer Systeme. Deutsche Geodätische Kommission, Reihe C, Heft 46, München 1961.
- [7] Linkwitz, K.: Über einige Ausgleichungsprobleme und ihre Lösung mit Hilfe von Matrizen-Eigenwerten, in: Veröffentlichungen DGK Reihe B, Heft Nr. 216, München 1976.
- [8] Linkwitz, K.: Über fehlerzeigende Figuren. Allgemeine Vermessungsnachrichten, Hefte 11, 12. Herbert Wichmann Verlag, Karlsruhe 1985.
- [9] Linkwitz, K.: Messtechnische Überwachungen von Hängen, Böschungen und Stützmauern, Kapitel 3.4 im Grundbau-Taschenbuch, dritte Auflage, Teil 3. Verlag Wilhelm Ernst & Sohn, Berlin 1987.

Adresse des Verfassers: Prof. Dr.-Ing. Klaus Linkwitz Universität Stuttgart Institut für Anwendungen der Geodäsie im Bauwesen Keplerstrasse 10 D-7000 Stuttgart 1