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TORSION AUTOMORPHISMS OF SIMPLE LIE ALGEBRAS

by Mark Reeder *

l. Introduction

An automorphism a of a simple finite-dimensional complex Lie algebra g

is called torsion, if o has finite order in the group Aut(g) of all automorphisms
of g. The torsion automorphisms of g were classified by Victor Kac in [12],
as an application of his results on infinite-dimensional Lie algebras.

Those torsion automorphisms contained in the identity component G

Aut(g)° are called inner; they were classified in 1927 by Hie Cartan [6]
who used (and perhaps introduced) the affine Weyl group and the geometry
of alcoves for this purpose. This paper extends Cartan's method to cover all

torsion automorphisms of g, thereby recovering Kac's classification directly
from the geometry of the affine Weyl group, without the use of infini te -
dimensional Lie algebras.

Kac's classification can be roughly stated as follows. Each symmetry i)
of the Dynkin graph Z>(g) of g extends to a certain kind of automorphism
of g, which we again denote by r), called a pinned automorphism. The pinned
automorphisms represent the cosets of G in Aut(g), and the order of any
torsion element in Gi) is divisible by the order / of i). For a given pinned
automorphism i) of g, Kac defines a certain vector (bo- b\,... ,&*) of positive
integers. Here k is the number of â-orbits on the nodes of V(q). Then the

G-conjugacy classes of elements in Gi) of order m are parametrized by Kac
coordinates. These are vectors (so,s\,..., sr) of nonnegative relatively prime
integers s, satisfying

k
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4 M. REEDER

For a more precise statement see Theorem 3.7. When â 1, the integers b,

are the coefficients of the highest root in g. For nontrivial f), the s are

closely related to the coefficients of the highest short root in the fixed-point
subalgebra

The desire to understand torsion automorphisms and their Kac coordinates

in simple terms arose from the work of Benedict Gross and myself on adjoint

gamma factors of discrete Langlands parameters attached to representations of

p-adic groups [9]. Jean-Pierre Serre pointed us to Cartan's paper, which led

to the approach to Kac's classification presented here. A brief sketch of an

approach similar to this is given in [15]. However, the examples and details
worked out herein were useful to us, and I hope they will be useful to others.

Throughout, I make frequent use of Kostant's theory of the principal PGLz
and of conjugacy results due to Steinberg. I give many examples of interesting
torsion classes and show how to compute their Kac coordinates. For the

classical Lie algebras, the torsion automorphisms can be classified using linear
algebra; see Section 4, where each simple Lie algebra is examined separately.

I include some facts about centers and component groups of centralizers that

may not have appeared in the literature, and the last section gives a twisted

analogue (Proposition 5.1) of a result of Kostant on principal elements. These

complements are used in [9].
Since [9] was written, Gross, Jiu-Kang Yu and I have found further

connections between torsion automorphisms of simple Lie algebras and the

representation theory of p-adic groups. These applications will not be explained
here, but they have informed some of the examples below.

Acknowledgements. Gross' insights, requests and encouragement helped
form this paper. In particular, he suggested that the inner case be treated

in detail, before studying general torsion automorphisms. Yu and Stephen

DeBacker contributed many beneficial suggestions. The reviewers also made

valuable comments. It is a pleasure to thank all of these mathematicians for
their help.

2. Inner automorphisms

Reviewing Cartan's classification [6] of inner automorphisms will serve

to introduce some of the structure in what follows, and as a template for
the general case. See [18] for an introduction, and [3] for foundations of the

theory of root systems as used below.
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2.1 Basic structure
Let Aut(g) be the group of automorphisms of a simple complex Lie

algebra g. The identity component G Aut(g)° is a simple complex algebraic

group with trivial center and Lie algebra g. Let T c B be a maximal torus
and a Borel subgroup of G and let <3> be the set of roots of T in G, with
positive system <3>+ given by the roots in B and let À {au,..., q^} C th+
be the corresponding simple roots, where I is the rank of G.

Since G has trivial center, A is a Z-basis of the weight lattice X X*(T)
of algebraic homomorphisms 7 —> Cx We let

,): X x Y —> Z

be the natural pairing between X X*(T) and the co-weight lattice Y XJ.T)
of algebraic homomorphisms Cx —> T. Let {uj1;... be the Z-basis of
Y consisting of fundamental co-weights dual to A :

if i=j,
if i^j.

The Weyl group W N/T, where N is the normalizer of T in G, acts on
the real vector space

V Rig F

as a group generated by reflections r\,... ri, where r, fixes the hyperplane
(a,- 0) pointwise. We regard V as the Lie algebra of the maximal compact
subtorus S C T, via the exponential map

exp : V —ï S,

which is a surjective group homomorphism defined by the property :

a(exp(x)) e2xi{a.x) for g}} 0:(= <j>
^

where on the left side we view a as a character of T restricted to S and on
the right side a is a linear functional on V. Then

Y — kerexp {x V : (o:,x) G Z V« O}

so exp induces an isomorphism

V/Y ^S.
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2.2 Torsion elements in G

An element s G is semisimple if s acts diagonalizably on g. Any
semisimple element is G-conjugate to an element of T, and two elements

of T are G-conjugate if and only if they are W-conjugate. Thus, the set of
semisimple conjugacy classes in G is in bijection with the set of W-orbits

on T.

Any torsion element s e G is semisimple and is G-conjugate to an element
of S ; we have s exp(x), for some x G Vq := Q& Y. Our discussion so far
shows that two elements x.x' Vq give G-conjugate elements exp(x) and

exp(x') if and only if x,x' are conjugate under the extended affine Weyl group

W := W ix F,

where Y acts on V by translations. This analysis by Cartan in [6, Part I] is

perhaps the first appearance of the extended affine Weyl group in the literature.
— O ~

The (unextended) affine Weyl group is a normal subgroup W < W which
can be described in two ways : First,

vv° VV kZO,
where Z<l> c Y is the lattice of co-roots of T in G. The group W is also

the group of affine transformations of V generated by the reflections in V

about the affine root hyperplanes with equations a n, where a G T» and
— °

n Z In fact, W is generated by I + 1 such affine reflections chosen as

follows. An alcove is a connected component C of the set of points in V not

lying on any root hyperplane. A wall of C is a root hyperplane H meeting
the closure of C in an open subset of H. Each alcove has I-j-1 walls. The

~ o
two key facts [3, V.3.2] are first, that W is a Coxeter group generated by
the & + 1 reflections about the walls of any fixed alcove, and second, that
— O

W permutes the alcoves in V freely and transitively.
The basis A determines a particular alcove, as follows. Let ao ^1=1 a-, a.,

be the highest root with respect to A (here the a,- are positive integers), let

Qo be the affine linear function 1 — So on V and set ao 1, so that

t

y aim 1 •

1=0

Then the alcove determined by A is the intersection of half-spaces:

C {x G V : (m,x) >0 for 0 < i <

It is convenient to set

cvo 0 V.
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Then we can write the closure C of C in barycentric coordinates as

t
C xfa : Xi> 0 and atx, 1}.

i=0 i=0

Thus, C is the convex hull of its vertices

Vi : — a~ 1&j, for 0 < i < t.
Note that vo cco 0 is one of the vertices of C.

O

Since the affine Weyl group W is transitive on alcoves, so is the extended

affine Weyl group W. Hence the closure C meets all W-orbits in V. This
means that each torsion element s G is conjugate to expCxj for some

x G Cd Vq. Unlike W however, W does not act freely on the alcoves in V,

so we must also take into account the alcove stabilizer

Q:={peW : p-C C},
— O —

which is a complement to W in W :

(2.1) W=QxW°.
If x and x' are in C, the elements exp(x) and exp(x') are G-conjugate if
and only if x and x' are conjugate under Q. Pictures of C in the case £ 2,

along with fundamental domains for Q in C, can be found in [6, p. 224].
See also Section 2.5 below.

Let x C and suppose expfx) is a torsion element of order m. Since

exp(mx) 1, there are nonnegative integers sr,... ,sg such that
e

(2.2) x — Y Si cOj.
m

Ml
Since exp(x) has exact order m, it follows that gcd{/w, si...., sy} 1. As

x C, we have

0 < ((XQ,X) =1 y üjSi,/ I

m 4-j
i=0

so that the integer s0 := m — Y^=iaisi is > 0 and s0,.si,... ,S£ satisfy the

equation
f.

(2.3) djSi m,
(=0

where ao 1, and gcdji'o,..., sp] 1. We call the sequence (so-. s\,... ,sg)
the Kac coordinates of s. They determine the action of s on g explicitly as

follows. If a Yfi=lciai £ ^ we set C ' S Yl\=lCiSi' i^en S acts on
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the root space gty by the scalar Çc's, where Ç exp(27r\/-T//w) • Two such

elements s exp(x) and s' exp(x;) are G-conjugate if and only if their Kac
coordinates (so, se) and (s'0,, s'p) are conjugate under the permutation
action of Q on {0,1,...,^} induced by its action on the vertices of C.

To visualize this action, it is convenient to regard (so,. sP) as a labelling
of the nodes of the extended Dynkin diagram V(g). These nodes correspond

to the vertices of C and Q acts on the labellings via symmetries of V(g).
Thus, s and s' are G-conjugate if and only if their labellings of 'D(g) are

conjugate under Q.
To describe the group Q, we first observe from (2.1) and the definitions

of W, W that Q ~ YjZ<I>. In fact, each coset in Y/Z<I> contains a unique

co-weight cVi which is a vertex of C ; that is, we have a, 1 and Vi — iüi
Such co-weights are called minuscule. For each minuscule co-weight £>,- there

is a unique element p, G Q such that pi vq — This correspondence is an

explicit group isomorphism YfZ<h ~ Q, and we have

Q, {pi : ci-, 1}.
The group Q also has a topological interpretation : The lattice Z<l> is the co-

weight lattice XJJ'), where T' is a maximal torus in the simply-connected
cover G' of G. It follows that Q ~ Yj7À> is isomorphic to the fundamental

group tti(G) of G. For more details on the group Q, see [3, VI.2.3],

The above discussion is essentially the classification of torsion inner

automorphisms given by Cartan in [6, Part 1.4-6]. The minuscule vertices

appear in [6, Part 1.7], where they are denoted by 01?..., Oh^i, and are used

by Cartan to study 7ii(G).

Example 1. Let g sk+i, so that G PGL(+1 is the quotient of GL^+i
by its center, which consists of scalar matrices. Let [t\,..., q>+i] be the image
in G of a diagonal matrix diagfa, tz, -, te+i) £ GLe+i. All the coefficients

a, 1, so that an element in G of order m has Kac coordinates (so,, sp),
where the relatively prime non-negative integers s,- satisfy jy0^i + • • -+S(: m.
An element s e G with these Kac coordinates is given by

(2.4) 5 - [ÇSl+S2+-+St.^2+*+-+*^ .,çs>> ,1]

where exp(2-7r\/—1 /m). One can see this from equation (2.2) as follows.
We have

£

s exp(x) exp(—L,).
i=i

The vector space V is the quotient of R'':+1 by the diagonal, and the
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fundamental co-weight civ is the image in V of the vector (1,..., 1,0,..., 0),
with i entries equal to 1. On the line through civ the exponential map is

given by
exp(Al;) [e27uV^,e2*'^1, 1,..., 1],

so that

exp(^clv) [£% ÇSi, 1,.... 1],

where ÇSi appears i times; taking the product over i gives (2.4).
It may seem that s0 only appears in (2.4) indirectly, via the fact that £ has

order m so + • • • + sg. In fact so appears on equal footing with the other s,-'s.

To see this, one can check that

(2 5) [^'S2+s34 KS'£+iO ÇÏ3+S4H Kfi+iO

_ |-^52+J3 + "--Tf5^ ^S3-|-i4+---+5£ 2 ^s1+j2.4

which is conjugate to the element s in (2.4). This reflects the fact that V(q)
is an (d. + l)-gon, on which the group Q ~ Z/(I + 1) acts by rotations.

Exaniple 2. Fortunately, it is not necessary to have explicit realizations of
co-weights or group elements to get concrete information about torsion classes

in G. We illustrate this by finding the classes of order three in G Eß. The

diagram V(te) and the coefficients at are given by

1 2 3 2 1

2

1

and the group Q is cyclic of order three, acting on X>(ee) by rotations. There

are five classes of elements of order three, with Kac coordinates

oiooo oooio ooooo 00100 10001ooioo1110 1

The first two labellings are conjugate by the reflection of the diagram about
the vertical axis. This means that the union of these distinct classes in G

forms a single class in Aut(ee), which contains G with index two.

2.3 Computing Kac coordinates

In practice, one often seeks the Kac coordinates of a semisimple element

s expfx) of known order, for which x lies in V but not in C. For this we
have the following algorithm.
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Let s exp(x) have order m, where x V is arbitrary. Again there are

integers s\,... ,S£ with gcdjm.si,...,sy} 1 such that

j
e

X — > Si U>i
m

i=l

As before, we also define so by the equation Y^=0 aisi — m, and we have

(o,',r) — for i 0,1 £
m '

The difference now is that if x ^ C, then some of the s,-'s will be negative.

The algorithm runs as follows. If all sj > 0, then x is already in C.
Otherwise, select some sj < 0 and replace (so, • • • ,sg) by (sq,..., s'f), where

(2.6) s- - si - (a.i, Oj)sj

Repeat the previous steps with the new coordinates (s'0,..., sj,). Eventually one
arrives at coordinates s- which are all > 0, and these are the Kac coordinates

of s.
~ O

To see that the algorithm works, we recall that the affine Weyl group W

is a Coxeter group generated by the reflections ro,..., rt about the walls
of C ; these are given explicitly by the formulas

rj • x x — (aj, x}âj

where dy is the co-root corresponding to the gradient of the affine root aj.
— O

For w W let £(w) be the minimal length of a word expressing w in the

generators {r,}. We have é(r/uj) < £(w) if and only if w~laj is negative

on C. For any x V, set

d{x) i(w),
~ O

where w W is of minimal length such that the point y := w~ x is

contained in C. Clearly d(x) 0 if and only if x £ C. Now the transformed
coordinates (s'0,... ,sr(:) given by (2.6) are those of rj x. If sj < 0 then

° >
m

(aj>w-y) (m-1Oy,y),

so that m-1ay <0 on C. Hence £(r/w) < Since y (ryuO-1^ - x, we
have

dxjjx) < CXjjW) < £(w) — d(x)

Hence the algorithm succeeds in £(w) steps.

Regard the vector (so..... s^) as a labelling of the affine Dynkin diagram

®(ß) by placing s,- on the ithnode of V(g). We can implement the algorithm by
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manipulating the labelling, as illustrated in the following example. Let G G2,
1 2 3

where the coefficients at are given by o—0^0. Consider the element t G G

of order five with Kac diagram 0—0^0. Let us compute the conjugacy
class of s t2, which also has order five. We have t exp(y), where

y — -~(u)i -j- 0)2) C, and s exp(x), where x — 2y ^(2&i + 2H12) ^ C.

Thus, s\ S2 2 and so 5 — (2 • 2 + 3 • 2) — 5, so the algorithm runs as

-5 2^2 r0
v

5 -3_^2 n
^

2 ^ ~1 r2, 2

The final diagram gives the Kac coordinates of t2, and shows that t2 is not

conjugate to t m G2

2.4 Centralizers

The centralizer Cc(s) of a torsion element s 6 G can be described in
terms of the geometry of the alcove C and the action on C by Q. The
closure C is partitioned into a disjoint union of 2/:+1 — 1 facets:

c uu.
j

indexed by the proper subsets J C {0, The facet CJ consists of the

points x G C such that {a-„x) 0 for i E J and (a,,x) > 0 for i <t J For

example, C0 C and for J {0, - {i} we have CJ {ty}. Let
Oy be the set of roots in O which are constant on CJ. Then Oy is a root
subsystem of O of rank |/|, with basis Ay := ja,- : j E /}. If x CJ Pi Vq,
the Kac coordinates (^o, • • ,s() of the torsion automorphism r exp(x) have

sj 0 if and only if j E ./.
The subalgebra qs of vectors in 5 fixed by s is reductive, and depends

only on J. Namely,

mm s1 < + £ so
<>£$>j

The (unextended) Dynkin diagram V(gs) of is the subgraph of V(g)
supported on J.

For example, the element s is regular if t. This occurs exactly when

x E C, or equivalently, when all 57 > 0. Taking all ,57 1 gives the unique
class of regular elements of minimal order

(2.8) h := öq -j- öj H h a^

the Coxeter number of G [3, VI.1.11], We will return to this in Section 2.5.
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The identity component Cg(s)° of Cg(s) is determined by g-5', hence it
too depends only on J. Explicitly, the root datum of is that of G but

with the roots <E> and co-roots 4> replaced by the roots d>/ and the co-roots
4>/ {a : a G <E>/} respectively.

However, the component group As of Cg(s) is more sensitive : it depends

on the actual point x CJ. For example, if g sln then V is the set of
vectors in R" whose coordinates sum to zero. The simple roots a-, xt —x,-+1

define the alcove

C {(xi,... ,xn) V : xn + l > xi > x2 > > xn}

There is an open dense subset U c C for which Cg(s) — T when s exp(t/).
On the other hand, at the barycenter x := -^(n — l.n—3.... ,3-n, 1 —n) of C,

the element I expx has order n and has Kac coordinates (1,1,. ..,1). The
centralizer Cg(s) of s in G PGLn(C) is a semidirect product T x (<r),

where a G N is a lift of a Coxeter element w G W and has order n.
Since it is the barycenter of C, the point x is fixed by the group Q
which is also cyclic of order n, generated by the affine transformation

Pi- (xi,x2,.. .,xn) i-> + 1 - -i, xi - 1, x2 - ..,xn_i - ^ and we

can take w to be the projection of pi to W. This example is generalized in
the next section.

The relation between As and the geometry of C is governed by the alcove

stabilizer Q, as follows.

PROPOSITION 2.1. For s exp(x) with x C, the component group /fi
of Cc(s) is isomorphic to the stabilizer {p G Q : p x x}.

Proof. Let Wx {w G W : w -x x} be the stabilizer of x in W. This
' ~ O

group is finite, and its normal subgroup Wx, generated by reflections about

hyperplanes through x, acts simply-transitively on the set of alcoves containing

x in their closure [3, V, Thmsl,2]. It follows that Wx decomposes as

(2.9) Qx ix Wx

On the other hand, let VL be the stabilizer of ^ in W. The projection
rr: VF —^ W sends Wx to Ws. Since Wx is finite and Y is torsion-free, the

map TT is injective on Wx. If w s s, then w x e x + Y, so there is y G F

such that tyV: -x x. It follows that tt restricts to an isomorphism Wx Ws.
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~ O

The image ir(Wx) is the subgroup W° c Ws generated by reflections for
the roots in <0+ := {a <E>+ : a(s) =1}. Hence tt induces an isomorphism

(2.10) QX^WS/W°.

The group CG(s)° is reductive, with maximal torus T and Borel subgroup
Bs BC\ CG(s). Put

Ns N fl CG(s) and N° N n CG(s)°

Then N°/T is the Weyl group of T in CG(s)° [7, 3.5] and

(2.11) Ws/W° ~ NJN°S

Since CG(s)° acts transitively on its Borel subgroups and N° acts transitively
on the Borel subgroups of CG(s)° containing T, it follows that the inclusion
Ns > CG(s) gives an isomorphism

(2.12) NS/N°~AS.

Combining equations (2.10), (2.11) and (2.12), we get as claimed.

Finally, since we have seen that Q is abelian, it follows that As is abelian.

In the example for G Ee in Section 2.2, the first three classes have trivial
stabilizer in Q, hence have connected centralizer in G, while the centralizers

of
0 0 1 0 0 1 0 0 0 1

o and o

o l
have three components.

Remarks. 1) The projection of Q into W is the subgroup F of W

preserving the set A {—Fo, ai..... of simple roots augmented by
the lowest root, and Qx projects isomorphically onto the subgroup r5 of T

preserving the base A fl <I>5 of This group r5 is a complement to
in fl/,.

2) Recall that we can identify Q with the fundamental group ttRG) of G.

From this point of view, the embedding As tti(G) can be seen as follows.
Let G' —» G be the simply-connected covering of G, with kernel 7ri(G).
Choose a lift g' G G' of every element g CG(s). Then the commutator

g I—r [g'.s'~\ induces a well-defined homomorphism As —> -k\(G) which is

injective, since the centralizer of s' in G' is connected [21, 8.1].
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2.5 KAC COORDINATES OF PRINCIPAL ELEMENTS

The smallest simple Lie algebra is siz, consisting of all 2x2 matrices of
trace zero, with bracket [A,#] AB - BA. In [14], Kostant showed that si2

plays a powerful role in the structure theory of an arbitrary simple complex Lie
algebra g. There are finitely many embeddings of sl2 in g, up to conjugacy
by G Aut(g)°. One class of embeddings is distinguished by its behavior

on Cartan subalgebras. Fix a Cartan subalgebra to of sl2. For example, we

could take to to be the diagonal matrices in 0(2. Each embedding 5(2 c-> 0
sends to into a Cartan subalgebra t of g, and usually into infinitely many
such t's. However, there is exactly one G-conjugacy class of embeddings

ip: sI2 *=->• g with the property that y>(to) is contained in a unique Cartan

subalgebra of g.
This has the following implication on the level of groups. The

automorphism group of siz is PGLz, the quotient of GLz by the scalar

matrices, which acts on SI2 by conjugation. The above facts mean that
there is a unique conjugacy class of algebraic subgroups Go C G which
are isomorphic to PGLz, with the property that any maximal torus To

of Go is contained in a unique maximal torus T of G. Such a

subgroup Go is called a principal PGLz in G. We say that an element

s 6 G is a principal element if s lies in some principal PGLz in G.
In this section we study the Kac coordinates of principal torsion elements

of G.

We can choose Go, a principal PGLz in G, along with a maximal torus

To in Go, so that T is the unique maximal torus of G containing To

and the simple roots m,..., of T each restrict to the same root a
of To in Go- This means that To is the closed subgroup of T defined

by the equations 0:1 a2 ** W, and W(T0) is the subgroup of

XJT) generated by the co-weight p XJJ) defined by the conditions

(a,-,p) 1 for 1 < i < I. In the line Vo R % XJjTo) we have the

alcove

Co {rp : 0 < r < 1} C V0.

However, only part of Co is contained in C. Indeed, we have

t
{a0, rp) 1 - r^ a, 1 - r(h - 1),

1=1

where we recall from (2.8) that h is the Coxeter number of G. It follows
that rp C if and only if r < (h — l)-1.



TORSION AUTOMORPHISMS OF SIMPLE LIE ALGEBRAS 15

Suppose s exp(rp) E Go has finite order m > 1. Then r n/m for
relatively prime positive integers n < m. For 1 < i < £ we then have

aj(s) a(s) exp(27ïT\/—1).

If r < (h — l)-1, so that rp E C, the Kac coordinates of s are obtained as

follows.

Since

j
t

rp — > nuji,
m

i=i

we have sq s2 • • • s% n. Then

t.

m so + n ctj so n(h — 1

i=i

Hence the Kac coordinates of 5 exp(rp) are

tl 1

(2.13) (n — nh + m. «, n n). when r -<-' m h — 1

We have x E C if and only if r < l/(h — 1). For this inequality to hold, we
must then have m > h.

If m — h then n — 1 and s is Koslant's principal element, with Kac
coordinates (1,1,..., 1), having the smallest possible order & of a regular
torsion element in G [14]. We have s expÇt), where x p/h is the

unique point in the alcove C at which all simple affine roots take the same

value, namely 1 fh (cf. [14, 8.6]). Kostant's principal elements appeared in
Section 2.4 for G PGLn. For a twisted analogue of them, see Section 5

below.

If we continue on the path rp for r > l/(h — 1), the Kac coordinates

become less obvious than those of (2.13); one must use the algorithm of
Section 2.3, for which the number of steps depends on r, to conjugate back

into C. We need only go up to r 1/2, since every torsion element of
Go is conjugate to some exp(rp) for rational r E [0,1/2]. As we exit C at

r 1 /(h - 1 and proceed, we enter new alcoves, creating segments in each

alcove. Each of these segments is W -conjugate to a unique segment in C.
The resulting collection of segments in C forms the path of a billiard ball
with initial direction from 0 to p.
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Pictures for SO5 and G2 are shown below. The dotted line consists of
points in Co lying outside C and the points where the billiard path bounces off
a wall of C are labelled by their Kac coordinates. The faint lines intersecting
at Kostant's principal element (111) are those with equations a:, 1/h, for
i 0.1.2. In the picture for S05 we have continued out to p, to show how
the symmetry rp (1 — r)p by conjugation in Go is transformed into the

nontrivial symmetry of the alcove C.

(?2 U)<2

2.6 Kac coordinates .and regular elements in the. Weyl group

In the examples above, many of the interesting torsion classes have all of
their Kac coordinates s,- {0,1}. Such classes often come from the Weyl

group of G. For example, Kostant showed that his class of principal elements,

with all Si 1, meets the normalizer N of T in a single /V-conjugacy class

which projects to the class of Coxeter elements in W.
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Other classes in W arise similarly. Following Springer [20], we say that

an element w W is regular if w has an eigenvector in t whose stabilizer in
W is trivial. For example, any power of a Coxeter element is regular. Using

Springer's classification of regular elements, along with more recent results

of Panyushev [16], one can prove1)

PROPOSITION 2.2. Let w e W N/T be a regular element of order m.
Then

1. w has a representative o N which has order m and is principal;

2. the G-conjugacy class of a is uniquely determined by the properties
in 1. ;

3. the Kac coordinates of a (which are well-defined, by 2.) have all
s-t e {0,1}.

We call o the principal lift of w. For a given regular element w, there

are often several ways to find the Kac coordinates of its principal lift a. We

give just one method, which is not the most efficient, nor can we guarantee
that it always works, but it is fun.

As above, let m be the common order of w and a. A simple argument,

using the regularity of w [20, Prop. 4.1], implies that (w) permutes the

roots in <!> in orbits of size m. Let S be a set of representatives for the

(w) -orbits on 4>. For each a S, choose a root vector Ea gtt and

let

Za E,y + (7 E(i + • • • + <7m
*

• E,y

The set {Za : a G 5}, along with a basis of t"', is a basis of Qa, so we
have the dimension formula

(2.14) dim aa dim tw 4- —
m

On the other hand, one can tabulate all possible Kac coordinates for
elements of order m, and compute dimensions of centralizers in each

case.

^) Some, if not all of this proposition is known to experts, but I could not find complete
proofs in the literature. These will appear in forthcoming work of B. Gross, J.-K. Yu and the
author.
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Let us try this for Es. Here |<3>| 240, and the extended Dynkin diagram

V(g) has labellings a-, given by

1 2 3 4 5 6 4 2

3

There is exactly one regular class in W(ßs) for each order m G {1,2,3,4.
5,6,8,10,12,15,20,24,30} (see [20, 5.4]). These are precisely the classes

in W(Es) with irreducible minimal polynomials on t (cf. [17]) and each

nontrivial regular element w has t'" 0. For each of the m > 1 on this list,
we have

v a 240
dim g — —m

by equation (2.14). We search through the vectors (sL... ,4) f°r which all
s- G {0,1} and Yùi=o ais'i m Each vector corresponds to an automorphism
a' G of order m and we calculate the dimension of the centralizer

using (2.7). Remarkably, we find in each case that

r a' 240
dim g > —m

with equality for just one vector (s0, ,sg), which must then be the Kac
coordinates of the principal lift a of w.

These Kac coordinates have a deeper meaning. If we omit so and double
the remaining s,-'s, we obtain the weighted Dynkin diagram of another

embedding

if-\ PGLZ -4 G

(see [7] for background). This means that <j lies in this fiPGL^) as well as

the principal PGL2. The two PGL2 s are conjugate exactly when w is the

Coxeter element. The results are tabulated below, using Carter's notations [8]
and [7] for Weyl group elements and embeddings f. PGLi '—f G, respectively.
The first four lines of this table appear in Springer [20, 9.11,2] (who arrived

at them by completely different means). Those entries where so 1 are
related to the map between nilpotent elements in g and conjugacy classes

in W defined by Kazhdan and Lusztig (see [13] and [19]). S. DeBacker
informs me that the entries with so 0 are related to a variant of the

Kazhdan-Lusztig map. A complete list of Kac coordinates for certain lifts
of all Weyl group elements (for Es and some smaller groups) can be found
in [5].
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Table 1

Principal lifts of regular elements in W(E%)

Class of
w e W(E8)

m |'£t)| | CT | dim g" Kae coordinates of cr
Class of

PGL2 <-> G

Es 30 8 11111111
1

Es

Ee<fli) 24 10 111110 11
1

Es(aO

Es(a2) 20 12 1110 10 11
1

Es (a2

Es(a$) 15 16 110 10 10 1

0
ES(ÜA)

Es (a$) 12 20 10 10 0 10 1

0
Es (a5

Es (aß) 10 24 10 10 0 10 0

0
Es(a&)

Ds(as) 8 30
0 1 0 0 0 1 0 0

0
Es Q>6

Es (as) 6 40
1 0 0 0 1 0 0 0

0
Es (ai)

2A4 5 48
0 0 0 0 1 0 0 0

0
Es (&i)

2£>4(<3ti) 4 60
0 0 0 1 0 0 0 0

0
A4 + A2

4A2 3 80 00000000
1

Û4(ai) + A2

8AI 2 120
0 0 0 0 0 0 0 1

0
2A2

3. SEMISIMPLE AUTOMORPHISMS

We come now to our main purpose, which is to extend Cartan's analysis
of inner automorphisms to all torsion automorphisms of g. Recall that we
have fixed a maximal torus and a Borel subgroup T C B in G Aut(0)°,
and A {on,..., is the set of simple roots of T in B.
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3.1 Pinned automorphisms

Choose a nonzero vector X, in the root space ga;, for each 1 < i < £.

The triple

r=>p\%f^;=1)
is called a pinning (Fr. épinglage) and automorphisms of g normalizing T, B

and permuting {X,-} are called pinned automorphisms. The group Aut(g,£)
of pinned automorphisms is finite and is a complement to G in Aut(g) :

(3.1) Aut(g) Aut(s,£) k G.

(See [4, VIII. 5.2].) A pinned automorphism can be viewed as a permutation
of {1 which gives a symmetry of the Dynkin graph P(g) of g.
Conversely, for any permutation tt of {1,... J!} giving a symmetry of D(g)
there is a unique pinned automorphism t) G Aut(g, 8) such that 'OX, X-,
for all i. More precisely, for each i there exists Y, g_a;;, such that the Lie
algebra g is generated by {X;, Yi : 1 < i < 8} and

0Xi Xwi, 0Yi YKi.

Thus, Aut(g, 8) is isomorphic to the symmetry group of T>(g), hence has

order six when g has type D4, order two in types An, Dn (n > 5) and Ee, and

is trivial otherwise. The nontrivial pinned automorphisms and their fixed-point
subalgebras are tabulated as follows.

Type 0 D(g) / [V| 8*

2A2„

(»>])
Sl2n+1 0-0-...0-0...-0-0 2 0-0 Sf>2«+1

2A2n- 1

(«>2)

Skn 0-0-...0...-0-0 2 0—0 *02«

2Dn+1 S02„+2 _...p 2 0—0 0^0 S02«+l

3 04 S08 1r 3 o-^o 02

2E6 ee 2 0—0^0—0 f4

Fix now a pinned automorphism 0 Aut(g. £) of order / and denote also

by d the permutation of {1.... J.} which it induces. We have / G {1,2,3},
and / 1 reduces to the inner case treated above. Let / be the set of orbits
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in under â. The fixed-point algebra gâ is simple and is generated

by the elements

X,=^2xi, Y,, Yi, for t e /
<6 i i(zi

(see [10, X.5]).

LEMMA 3.1. For any t) G Aut(g, £), the fixed-point groups T'1 and G1'

are connected and Td is a maximal torus in G(l. If'd is nontrivial then G"
is equal to the full automorphism group Aut(g'L.

Proof. Since â permutes the basis {Li,..., u;.?} of X*(T), it follows that
Td is connected, of dimension equal to the number of i) -orbits on this basis.

Let G' —> G be the simply-connected covering of G with kernel Z' tti(G)
and let T' be the pre-image of T in GL The set M {cc(- : at — 1} of
minuscule weights of V restricts bijectively to the character group of Z',
so that the â-invariant elements of M are the characters of Z'/(l — i?)ZL

It follows that the map

Z'/(l - d)Z' —> T'/Cl - i9)T'

induced by the inclusion Z! '—r T' is injective. The connectedness of Gd now
follows from [21, 9.3,9.5].

Since X\ + + Xp, is a regular nilpotent element in g contained in g^,
there is a principal PGLz in G contained in G'L It follows that Tß contains

regular elements in G. Since the centralizer of a principal PGLz in G is
trivial, it follows that G'} has trivial center.

The nodes of the DynMn graph V(gi)) correspond to the -^-orbits on

{1,..., and from the table above, we see that V(g'9) has trivial symmetry

group. Hence Aut(g*9) is connected and G° AutCg'9).

3.2 CONJUGACY RESULTS

The first step in the classification of semisimple inner automorphisms was

the fact that T meets every semisimple conjugacy class in G. In the outer

case, we begin with an analogous result.

LEMMA 3.2. Every semisimple automorphism a of g is G-congugate to

one of the form i)s, where i) Aut(g,£) and s T'}.

Proof From [21, Thm.7.5], a preserves a Borel subgroup of G and a

maximal torus therein. Replacing a by a G-conjugate, we may assume that
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these are B and T, respectively. Let Ô be the projection of a in Aut(g,£)
according to (3.1). So a ßs', for some s' E G. Since ß preserves T.B, the

element s' normalizes T. B. Hence s' projects to an element w of the Weyl

group of T which preserves the set of simple roots A determined by B. This

means that w — 1, so s' ET.
Let p: Tê —> T/(l - &)T be the restriction to Vj of the natural projection

T -> T/(I - ß)T. The kernel

kerp T° f] (1 - ß)T

is finite. Indeed, if / is the order of ß then the mapping 1H' t-ß(t) •

sends (1 — ß)T to 1 and sends every element of T3 to its /th power. It follows
that kerp is contained in the /-torsion subgroup of T, hence kerp is finite
of order dividing f'. Since T': and T/(I - i))T have the same dimension, it
follows that p is surjective. Hence there is t T such that

E Ti}.

Conjugating in Aut(g), we have

tat~l tâs'r1 — â âT1',

as claimed.

Thus, any element of t)G is G-conjugate to one of the form a ds, with
51 E Tr>. As a partial step towards torsion automorphisms, we will first restrict

s to lie in S'd, where S exp( V) is the maximal compact subgroup of T.
The conjugation action of G on ÛG induces actions of W'1 and S on ßS,

hence an action of W3 x S on dS.

LEK'ttvLX 3.3. If two elements of t)S are G-conjugate, then they are
conjugate under W'3 X S.

Proof. Suppose s, s' E S and g E G are such that gflsg~1 — ßs'. Writing
gd 'ß~l(g)t this means that

gd s s' g.

For the moment we care only that s, s' E T. Following the argument in [1,

Lemma 6.5], we will show that ßs and ßs' are conjugate under Ni:> T. Using
the Bruhat decomposition for G, there is a unique n E N such that g unv,
with u, v in the unipotent radical U of our -stable Borel subgroup B.
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We can replace g by n. Indeed, we have

zriVV' • s s' unv

Writing both sides in the form UNU and comparing the parts in N on both

sides, we find that

(3.2) rid s s' n.

This shows that n{ih)n~l — Us', as claimed, and also that the image of n in
W belongs to W'd. We have already remarked that every element to G W0

has a representative w G Nr). Hence n wt, for some t G T, so t)s and i)s'
are N'} T-conjugate, as claimed.

Now suppose s,s' GS. Using the polar decomposition T S x H, where

H ~ (R>0)/, we write t tcth, with tc G S and th G H. From equation (3.2)
we have

(s')w 0tcthf • s (tcthyl (fcÇls) tfç1.
Since both (s1)"' and belong to S, it follows that th, and that

nf s s1 nc

where nc — wtc G N'â - S. Since the action of N'° on ÛS factors through
N'â jv' — Wf>, the lemma is proved.

To study 5-conjugacy on r)Sd, we linearize as follows. Our pinned
automorphism d permutes the basis {d.1,-1 of Y. Let

Po =f~\ 1 +•(? + ••• + 'd/_1) G End(V)

be the projection onto V"'9 and set

Y» P{} Y.

Then Yß is a lattice in Vt}, and contains the group Y'â of -^-invariants in Y

as a (generally proper) sublattice.

LEMfvIA 3.4. Let x.x' G V0 Then i) exprix) and d exp(x') are S-conjugate

if and only if x — x' G Yt>.

Proof. A straightforward calculation shows that

exp(—v) d expfx) • exp(v) é expÇx')

for some v G V if and only if

x-x' e[(l - d)V +Y]n W9.
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We show that

(3.3) [(1 - ê)V + Y] fi V* Y,).

Since P<) kills (1 - i))V and is the identity map on Vi}, the left side of (3.3)
is contained in the right side. The reverse containment follows from the fact
that the polynomial

p(x) =/_1( 1 + X+32 + hx/_1)

satisfies the differential equation p(x) (1 — x)p'(x) + x^~1.

The W'} -action on V1' extends to an affine action of the group

W# := Wâ tx Y.d

where y 6 Y.q acts by the translation ty : x 1—7 x + y. Lemmas 3.3 and 3.4
combine to yield

LEMMA 3.5. Let x.x' £ V" Then if exp(x) and i) exp(x') are G-conjugate

if and only if x and x' belong to the same Wr) -orbit on Vi}.

Since exp(x) is torsion if and only if x Vq := Q <S; Y, Lemma 3.5

implies

COROLLARY 3.6. The map x I—> rf exp(x) induces a bijection between

the set of W-o-orbits on Vq and the set of G-conjugacy classes of torsion
elements in ifG.

3.3 A FUNDAMENTAL DOMAIN FOR W.ß IN Vâ AND KAC COORDINATES

We shall use the geometry of the Wß -action on V'1 to recover Kac's

parametrization of the G-conjugacy classes of torsion elements in ifG.

Throughout this section it may help the reader to look ahead at Table 2

and Section 4, where the individual cases are treated in detail.

Recall that I denotes the set of orbits in {1,... under the permutation
induced by the action of d on the set A {cv1...., o/:j of simple roots. For
1, e I, let to,, be the unique element in the subgroup of W generated by the

reflections {rt : i / } such that {w,a, : i /.} {-a,- : i 4 /.}. Then W'3

is a Coxeter group with generators {wt : 1 G /} and Vi:> is the reflection
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representation of W9 (see [21]). The lattice Y-o has the Z-basis {pL : i G /},
where Pß(pd for any i G i. That is,

lh,
let

where |/.| denotes the cardinality of the d -orbit t The action of W$ on V9

is generated by the reflections w,_ and the translations by As the notation
indicates, W$ is an extended affine Weyl group, of a root system defined

as follows. Say that two roots a. ß in O are d-equivalent if their restrictions

ä and 3 to V° are positively proportional: a rd for some r > 0.

A d-equivalence class a c <î> can have one of two types:

I. a {a, da,... } is a d-orbit consisting of mutually orthogonal roots;

II. a {a, da. a + da), occurring only in type 2A2n.

Let <h/d denote the set of d-equivalence classes of roots in <E>. For each

a G O/d, set

:= ^2 a ' ^ ;= {la ' a £ <I>/'d}

Then is a reduced root system and is its extended affine Weyl group.
Note that pa is generally not the restriction to V9 of a root in a. If we
choose a G a as in the definitions of types I and II, i.e., so that â is not
twice the restriction of another root in a, and set ßa â, then ja faßa,
where

_ I |a| in type I,
1 4 in type II.

A base A,? of O,? is obtained from the base A of <ti as follows. Given a

d-orbit i G I, let a,, G <3>/d denote the unique d-equivalence class containing
(a,- : i G t}, and set

l'i, l'at ft — fat

Then A,? := {7,, : 1 G 1} is a base of O# ; we have (7= 0 if t/ 1!

and

f, I 1 if a, has type I,
(3.4) (lirh) l±. { •yi

M [^2 if aL has type II.

The equations pa — n, for pa G and n G Z, give hyperplanes in V9

and the complement of all these hyperplanes is a union of alcoves which
are permuted transitively by the group W'1 x Y$. Outside of 2A2n this
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follows from (3.4), which shows that the jl, are the fundamental weights
for A,,?. For 2Ä2n see Section 4.1.

Just as in the inner case, the base A,,? determines an alcove CL in V{>,

as follows. Let 70 be the highest root of with respect to the base A^.
We obtain positive integers c,,, for 1 6 /, defined as

7o cru
tl

The integers cL are found in Table 2 below. As in the inner case, we set

7 := {0} U / O'o : — 1 — AA co 1
;

so that

~ 1

t.£Ï

on V9, and our alcove is defined by

C,9 := {x e Ve : (-/,,,x) >0 V/. 7}

Note that C-s is not equal to C n V°, in general. The set of vertices of CL

is {?;, : /,£/}, where

'Co — Co — 0 and vL (70, /L.)
1

p,,, for l E I
A point x e C-i) may be uniquely expressed in barycentric coordinates as

x x,.?;,., with 1 and xt > 0 V1 G /.
/,e/" /.ef

As in the inner case, any point in Vf> is W.ß -conjugate to a point in C<) and

two points in Cß are conjugate under if and only if they are conjugate
under the alcove stabilizer

Q# := {p E W# : p C{) Cß\

The action of each element on CL is given in barycentric coordinates

as a permutation of /, via the action of p on the vertices of CL-
We recover the Kac classification by taking a closer look at the vertices

v, — (70, /L)-1//,. From (3.4), we have

9Ét &,«,} yp
I claim that

/ divides ficl for all 1, E /.
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This is clear if f |i|. Otherwise, we are not in type 2Azn and since / is a

prime, the orbit v {i} is a singleton. Being the highest root of <0^, 70 is
a long root, hence it is the sum of a $-equivalence class (in fact a i) -orbit)
a0 {07,..., a/} of cardinality /. From (3.5) we have

fc,, {"/o, /A.) {«I + • • • + =f(ai, &i),

which is divisible by /, as claimed. If we set

fo=f,
then (3.6) also holds for /, 0. Thus, we have integers

(3.7) b:= for /, / with bo 1

We can now state the Kac classification of torsion elements in iJG.

THEOREM 3.7. The G-conjugacy classes of torsion elements in i)G are
classified as follows.

1. Every torsion element in i)G is G-conjugate to one of the form
a l) exp(x), where x C$ fi Vq

2. There are nonnegative integers s,,, indexed by 1 /, such that

gcd{5t : </} — 1, the order m of o is given by

m / • b<-s' '
i.eT

and x is given in barycentric coordinates as

r
x — • b,s,vr.

m
i-e/

3. Two torsion automorphisms a. a', with coordinates (s,) and (s'), are

G-conjugate if and only if there is a permutation p of I arising from Q.,9

such that s[ — sf)L for all 1 E /.

Proof The assertions in parts 1. and 3. are immediate from the above

discussion and Corollary 3.6. Since exp(x) and i) commute, the order m of
a d exp(x) is divisible by / and we have exp(mx) 1. Hence there are

integers jt, sz, se such that

e.

x — V* si H'i.
m t—'

1=1
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Since x is â -fixed, each 57 depends only on the d -orbit 1 containing i ; we
write s,, := Si for i £ 1, and we have

(3.8) x -V" \i\sLp,t.
l£I

Since igQ, we have

1 > (7o, x) - Y] st |/-| {70; h) - Y] StCtf - Y] bt st.
m z—' m ' m

We define a nonnegative integer so by

So 7 ~Y1 b'-s'- '
J ie/

so that

/ • ^ btst « •

/•£/'

If d divides s,, for all /, /, then J divides m//, so / divides m/d and we
have

1 — exp (mx/d)

implying that — 1. Therefore d — 1 and the integers s,_ are relatively
prime.

From (3.8) and (3.5), the integers (st) are related to the barycentric
coordinates (x,) of x by

kls/. x, \i\x,. kU,,
m (ïof/h) cJL fb, '

or /xL — bLsL.
m

This shows that all sL are nonnegative and completes the proof of part 2.

REMARK. The integers (s,,)Lej are the Kac coordinates of a (cf. [12,

Thm.8.5]). The integers bL are the labels of Kac's twisted affine diagrams,
as we will see in the next section.

3.4 Fixed-point subalgebras

In this section we determine the subalgebra 0er fixed by a torsion

automorphism a £ i)G, in terms of the geometry of the alcove Q>. The
first step is to compute the matrix of %} acting on g. For each -equivalence
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class a <£>/#, the direct sum

is preserved by r), the root spaces being permuted. I claim that if a —

{et, da,...} has type I, then d acts on ga via the permutation matrix of an

fa -cycle. If fa>l, and we choose any nonzero Xa G g(>:, then {X„, dX(X. }
is a basis of ga permuted by d. If a {a} has type I with fa 1 then we

can find w W'd and i G I such that a wß, where ß G A. By [21] we
can choose a lift n G N1'1 of w so that Ad(n): gß —v gtt is f)-equivariant. By
definition, the pinned automorphism d fixes g£j pointwise, so â also fixes

gn, pointwise, as claimed.

If a — {o:. da, a + -do:} has type II, and we again choose any nonzero
Xa G 0a, then (Xa. 'dXa,[Xa, âXa]) is an ordered basis of ga on which â

has matrix

Now let o ds, where s G T°. The characteristic polynomial of a on ga

is given as follows. Recall from the previous section that we defined ßa to
be the shortest restriction to V'1'' of a root in a, and that we have

f — ßa(s'/" if a has type I,
(3.9) det(* — (r\ga) — <

"

[(f1 — ßa(s) )(t + ßa(s) if a has type II.

In all cases, the roots of det(* — <y\ga) are distinct and we have

det(l - a\Qa) 1 - ßa(s)fa - 1 - -fais).

If s exp(x) with x G V'} this means that

Thus, the integrality of f'a-.x) determines when gf is nonzero. However, the

root % is not the character of T° on ga Indeed, if (aa,x) G Z, the matrix
calculations above show that the line ga affords the character ßa or 2ßa, the

latter occurring if and only if a has type II and (xa,x) is odd.

0 1 0
1 0 0

0 0-1

Our matrix calculations show that

(3.10)
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As we saw for â 1, the closure

C.ß {x G V'9 : 7, > 0 VtG/}
is partitioned into a disjoint union of 2^ - 1 facets:

4 U ö •

JÇÏ

indexed by the subsets J c / with J f /. The facet C]fj consists of the points

x G Co such that =0 for /, G J and (j,..x) >0 for /, G / — J. For a

general root 7a G we have (7a,x) G Z if and only if (ya,x) G {—1,0,1}.
Thus, we have proved:

PROPOSITION 3.8. If x G CJd and o â exp(x), then we have the root-

space decomposition
„T r'l? \ 1 „(70 =i 2^ 0« '

a

where the sum is over those i)-equivalence classes a G O/t? for which

(ya.x) G { — 1,0,1}. Each such gaa is a one-dimensional eigenspace for Tl),
affording either the root 3a or 2ßa, the latter occurring if and only if a has

type II and {ya.x) ±1.

The root 2ßa appears only in the case 2Ä2n ; for more details in this case

see Section 4.1.

Taking x 0, Proposition 3.8 says that f1 has root system

:= {ßa : a G O/d) with base A.# := {ßL : 1 G /}
where ßt. —ff1y, • If we set 30 =f~1y0, then

(3.11) ä
tei

where the integers b, — c,f /f are the ones previously arrived at in (3.7).
For (G. â) not of type 2Azn, the root 3q is the highest short root of 0,9. For
2^2n. Po is twice the highest short root of <E>,? (see 4.1). In all cases, we set

ßo f~170, and recall that bo 1, so that

tel
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To complete the picture, we must also give the co-roots of <E>u • For every
'd -equivalence class a O/tf, the co-root Ba is defined by

(3.12) ßa J2&,
a£a

which makes (ßa, ßa) — 2, and we set 3,. 3a,, for i £ I. Then the reflection

wL W-d about the hyperplane ßL 0 is given by

(3.13) wL x x — {ßi,,x)ßb, for all tel.
We also define ßo so that (3.13) also holds for /, 0. Recall that ao is the

r?-equivalence class such that ßo ßao- Our ßo will be a multiple of ßao,

where the latter has been defined in (3.12). To make (3.13) hold, we must
take

ß /~Ä' in type 2A2n

I — ßa0 in all other types.

All of this data is displayed in the Kac diagram X>(g,$), which has nodes

indexed by i / and labelled by the integers bL, for te/; the number of
bonds between nodes t, k is the integer

«Mt := (A,&> • (ßKJt) {0,1,2,3,4}.

We get nL,K 4 only in type 2A2 (see Section 4.1), and we get nhK 3

only in type 3D4 (see 4.4). If > 2, then we may order t. k so that

(ß,,,ßK) — 1 and (ßK,ß,) —n^K. Then on the bonds we put an arrow

pointing towards t, as in the following example:

o^o means {ßb,ßK) — —1, {ßK,ß,ß — —3.
b K

The Kac diagrams appear in the fourth column of Table 2. For any x Cr),

deleting from T>(g,â) the nodes t for which (jb, x) 6 Z gives the Dynkin
diagram V(q'j), by Proposition 3.8. We denote the node corresponding to ß0

by •; deleting just this node gives the Dynkin diagram T>(g'9). Above each

node of V(q, ê), we give the integers b,,. These integers are denoted by Kac

as at in [12, Chap. 8]; he arrived at them, along with his diagrams T>(g, â),
in a completely different way.
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Table 2

Root systems <f><?, and Kac diagrams £>(g,$)

Type (0,7-diagram)
h

b,,

T>(s, 0) |Q,)|

2A2 Cl
l
o
4

1 2
• >o B\ 1

2A2„

(«>2)

Cn
2

2

2 1

>-. • 04=0
2 4

^ 2 2 2. ^2 Bn 1

2^2„-l
(n>3)

Bn 12 2 2

2 2 2
^

1

12 2 1

0 Ï 04=0

1

Cn 2

2Dn+l
(n>2)

Cn
2 2 2 1

11 1
'

2

1

^ Q__o_ _o o Bn 2

3D4 G2
2 3

O^-O
3 1

1 2 1

• 0<£=0 C2 1

FA
2 3 4 2 1 2 3 2 1

h 1

2 2 1 1
• O O 0 O

On the left side of Table 2, we also give the unextended diagrams of the

root systems along with the integers c, and f above and below each

node, respectively. Recall that these numbers were used to compute the bjs,
via the relation cLf, — b,J. The rightmost column of Table 2 gives the alcove

stabilizer discussed in Section 3.6 below.

3.5 Computing Kac coordinates in tee outer case
~o —

As we saw for ?/ 1, the subgroup W# of generated by the reflections

wt, for i, G /, is the affine Weyl group of the root system <h#, and the alcoves
n ~ O

in V are permuted simply transitively by W#. From the formula

wL x x — {ßt,x)ßt, for x e V0 and /, 7,
— O q

we can express the action of W.â on V in terms of Kac coordinates, just as

we did in Section 2.3: if x G V0 has barycentric coordinates (st)/ej where

some of the s,' s may be negative, then wK x has barycentric coordinates

(s',)cej, where

SI. \ß5 ßK.) SK •

The algorithm for conjugating x into Cq runs just as in Section 2.3. Thus
the diagram D(g,i9) contains instructions for finding the Kac coordinates of
the automorphism x) exp(x), where x is any rational point in Vd.
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3.6 The component group of Ga

Let x G C{i, with a x) • exp(x) as before. Lemma 3.8 determines

the connected centralizer (Ga)° up to isogeny, in terms of the facet CJß

containing x. As in case x) 1, the component group Aa of Ga depends

on the location of x in Cf9, and is governed by the alcove stabilizer

Qtf {p G W$ : p C-d Cd}

More precisely, we have :

LEMMA 3.9. If a — d exp(v), with x Cs, then An Q,ß.X) where

is the stabilizer of x in Qj

Proof. Let — N" jT'' be the subgroup of W whose elements can be

represented by o -fixed elements of N. If n e Na, then i)(n) n modulo T.
Hence Wn is a subgroup of W'd. Let Wr>.x denote the stabilizer of x in Wß.
I claim that the projection tt: Wn W"0 sends Wx>.x onto Wa and gives an

isomorphism

(3.14) Wn.x^Wa.

If w G Wr> is the projection of an element of Wß.x then w x — x G Yß. By
equation (3.3), there are v G V and y G Y such that

w x vx 1 v + y.

Setting s — exp(x), t — exp(?;), we have

w(s) t~1,d(t)s.

By [21, 8.2(4)] we may choose w G N'd such that w wT. Then the element

n tw belongs to N" and nT w. Thus, the projection (3.14) maps Wn,x
into Wer. The argument is reversible, showing that 7r(VL^jX) Wa. Finally,
since the kernel of <r is torsion free and W$.x is finite, the map (3.14) is

injective, completing the proof of (3.14). With this in hand, the rest of the

argument is entirely similar to that of Proposition 2.1, and is left to the

reader.

Remark. From Table 2, we see that for â ^ 1 the group Ga has at

most two components, is always connected in types 2A2n, 3Ö4 and 2Eq and

is disconnected in types 2A2n-i and zDn+i exactly when the Kac coordinates

(sL)lQj are fixed by the nontrivial symmetry of V(q, â) (cf. [21, 9.8]).
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3.7 The center of Ga

Let cr — i) exp(x), with x contained in the facet C}i} of Ca. The center

Za of G7 centralizes Ta T'd, hence is contained in Td. Since G° has

trivial center, the character group is generated by restrictions of roots
of T. It follows that the character group of Za is

X*(ZCT) XUTr)jZ&0 ZA.,?/ZAJ

where AJ{) is the set of gradients of the affine roots 6, for t e /. Since all

but at most one root of A# are contained in A,?, the possible exception being

—ßo - yLç/ bjßj, it follows that X*(Zt7) has rank equal to |/| - |./| and the

torsion subgroup of X*(Za) is cyclic of order equal to the gcd{£>, : /, I—J].
For example, Zc is connected if 0 £ J.

3.8 Isolated automorphisms

A semisimple automorphism a G Aut(g) is isolated if the fixed-point
subalgebra q17 is semisimple. Such a a is necessarily torsion, lest the Zariski-
closure of (a) contain a nontrivial torus in the center of G". The previous
section shows that, for x e Co, the automorphism a — â exp(x) is isolated

exactly when x is a vertex of Co. Hence every isolated automorphism of g

is conjugate to some

<jt : x) exp(t'i), te/,
where v,, {70,are the vertices of Co (see Section 3.3). The order

mt of o,_ is given by

mt ~ ctf. — fb,,.

From Section 3.7, the center of G"7' is cyclic of order b,, generated by

a{ exp(fvL). Equivalently, the center of (aßG171 is generated by at/.

4. The various cases

4.1 2A2„

Here g sl2n+i • Instead of writing F as a quotient, as we did in Example 1

of Section 2.2, it is convenient now to express F as a cross-section of that

quotient :

2«+l

V={(xU... ,X2n+l) e R2"+1 : X,- 0}
1=1
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We have Aut(g) (&) PGLzn+i with pinned automorphism & of order two,
acting on V by

'() (xi, ,X2n+l) (~X2n+l -*l) •

Hence
V1'' {(xi,... ,xni 0, -xn,.... -xi) : Xi R}

can be identified with R" via the first n coordinates and we may take

I {1.2.... .n} as the indexing set for the i) -orbits on {1,2,..., 2n}. The
lattice Yr) has basis {ji, : 1 < i < n}, where

ßi — \(ei + e2 + •" + £/)•

and {ei,... ,enj is the standard basis of R" The simple roots a-, x, — x,+1
on V restrict to Vd as

{x-t
— x,-^i for 1 < i < n,

xr for i n.

For 1 < i < n the $-equivalence classes a,- {cti,azn+i-i} have type I and

o-n — an+i.oin + ctw+i} has type II, so we have fi 2 for 1 < i < n,

fn 4 and

J 23, 2(xi — x,-+i) for 1 < i < n,
46n — 4x„ for i — n.

The root system O.,?, with basis A.,9 {71,..., 7„}, has type Cn. The highest
root 7o is given by

To — 271 4- 272 -I- • • • + 27„_ 1 + 7„ 4xi

and arises from the type-11 equivalence class 00 {ao, &<xo
-, cto + &<xo}, where

ao «i I- «2 H h a„ xi — xn+i. We have c-t {70, /q) 2 for all i. It
follows that the alcove Cx> C V"0 is defined by the inequalities

\ > xi > x2 > > xn > Q

and has vertices vq 0 and v, for 1 < i < n. For 1 < i < n we have

bi 2ci/2 2 and

ßo =f 1x,o 2xi

(which equals 2ß\ if n 1). Thus, we get the diagrams V(g, â) in Table 2:
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1 2
and • >o if n 1. The group Q.,? is trivial, so every torsion element in

ÔG is G-conjugate to a unique one of the form â expO) with x Cß fi Vq
The isolated automorphisms

a, : 'â expO,-)

have order

if i 0.

K
if 1 < * < re.

The fixed-point subalgebras are

ga' ~ sp2i 0 SO^n-b+l

By Lemma 3.9 the fixed-point subgroups G7' are connected. They have center

of order two, for 1 < i < n with trivial center for i 0. Indeed, we have

G7' ~ Spzt x SOz(n-i)-\-1 •

To see this directly via linear algebra, let (• | •) be the usual dot-product
on C2,!+1, let J be the matrix equal to one on the anti-diagonal and zero
elsewhere, and let 57 be a diagonal matrix with characteristic polynomial
(î2 + 1 )\t - Then the bilinear form

{u.v)i := (sjU I Jv)

is orthogonal on the 1 —eigenspace of Si and symplectic on the sum of the

imaginary eigenspaces of 57. The subgroup of GLzn+1 preserving is

Spzi x O^n-o+i. whose image in PGL2n+i is isomorphic to Sp2, x S02(n-l)+i.

4.2 2A2n-1, n> 2

Here g sl2n and

In
V {Cxi,... ,x2n) G R2* : ^Xi 0}.

!=1

We have Aut(g) ('S) • PGL2n with pinned automorphism â of order two,
acting on V by

i) Oi, • •, x2n) x2n,

Hence
V'9 {Oi,- - • -xn, -xn,-xO : xi e R}
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can be identified with R" via the first n coordinates and we may take

/ {1,2,..., n} as the indexing set for the P -orbits on {1,2,..., 2n]. The
lattice Yß has basis {fi, : 1 < i < n\, where

Pi |(ei + e2 + • • ' + eß

and {ei,...,enj is the standard basis of R" The simple roots a-, — x, — xl+1
on V restrict to Vâ as

{Xj
— for 1 < i < n,

2xn for i n.

All r?-equivalence classes have type I and are P-orbits on the roots. We have

li
2ßi 2(xj — Xi+\) for 1 < i < n.

6„ 2x„ for i n.

The root system <!».,<>, with basis {71, has type Bn and the

highest root 70 is given by

n

7o — c«7« — 7i + 272 4- • • • 4- 2q7_i 4- 2~in — 2(xi + X2),
i=i

arising from the M-orbit ao {xi —X2n-i,X2 — X2„] It follows that the alcove

C{) c V' is defined by the inequalities

2

and has vertices

i - x2 > Xi > x2 > • • • > Xn > 0

Vq 0, v'i ß\, Vi jjij for 2 < i < n.

We have ßo =/_1To *1 +.*2> so we get the diagram T>(q,P) in Table 2:

2 1

The group has order two, and the nontrivial element p £ Qß acts on Vi:>

by

p (Xl,X2, ,Xn-i,Xn) (| -Xi,X2, ,Xn-l,Xn)

Hence p-v0 — 17 and p gives the nontrivial symmetry of the diagram X>(g, P).
For 1 < i < n, the isolated automorphism

<Ti := x)exp(?,',)
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has order

if i 1 or n,
if 1 < i < n.

We will ignore i — 1, since a\ is conjugate to oo — &. For 0 < i < n, i ^ 1,
the fixed-point subalgebra is

0er' - S02i G sp2(n—,)

For i 0 the fixed-point subgroup Gl> Sp2n/{±I} is connected with trivial
center. For 1 < i < n the fixed-point group G7' has two components and has

center of order two. Indeed, we have

Ga' ~ [02i X SP2(n-0]/{±hn}

To see this directly via linear algebra, let (• | •) be the usual dot-product
on Cz", let ./ be the matrix equal to one on the anti-diagonal and zero

elsewhere, and let Sj be a diagonal matrix with characteristic polynomial

(f + 1 — l)2'. Then the bilinear form

(u, v)i := (sjU I ./?;)

is orthogonal on the 1 —eigenspace of 57 and symplectic on the sum of the

imaginary eigenspaces of s,. The subgroup of GL2n preserving is

02, x Sp2(n-i), which has kernel {±/2„} when projected into PGL2n

4.3 2Dn+1

Here g s 02^+2 and V R"+1. We have

Aut(g) {3) PS02n+2 02n+2/{±l}

with pinned automorphism â of order two, acting on V by

â (*l, ,Xn,Xn+l); =(Xl,. ..,Xn, ~Xn+l)

Hence

: XiGR}

can be identified with R" via the first n coordinates and we may take

I {1,2,... .n) as the indexing set for the à -orbits on {1,2,+ 1}.
The lattice Yd has basis \Ji, : 1 < i < n}, where

if 1 < i < n,
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The simple roots

ai x, - xi+i (1 < i < n), o„+i =xn+

on V restrict to V9 as

{Xj
— i for 1 < i < n.

xn for i — n.

All $-equivalence classes have type I, and are $-orbits on the roots. We have

7/
ßi Xj — x,_|_ i for 1 < i < n,
23n ~ 2xn for i n.

The root system O,?, with basis Ar> {71,..., 7„}, has type Cn and the

highest root 70 is given by

n

70 ^ cm 271 + 272 + h 2y„_i + -yn 2*i,
1=1

arising from the 3-orbit ciq {xi — x„+i,xi +.xrt+i}. It follows that the alcove

Cr) C V'} is defined by the inequalities

2

and has vertices

i > xi > x2 > • • > xn > 0

vo 0, Vi \{e\ H hq) for 1 < i < n.

We have ßo /-17o -M. so we get the diagram V(q,3) in Table 2:

1
_

.i ^1 ^
The group Q.$ has order two, and the nontrivial element p Q,? acts on V"9

by

p (-M,X2, ..xn—1,xn) (2 xn, 2 xn— i, •. 2 Xi, 2 -H) •

Hence p • v, — and p gives the nontrivial symmetry of the diagram

D(g.'&). For 1 < i <n, the isolated automorphism

(7i : — x) exp(u,-)

has order

mt =fbj 2 for 1 < i < n
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The fixed-point subalgebra is

~ S02(«-0-|-l O 502,--|-i •

Since all bt — 1, the fixed-point subgroup G7' has trivial center for all i
and is connected unless re is even and i re/2. In that case, there are two

components. More precisely, for i ^ re/2 we have

G"' ~ S02(n-i)+l X S02i+1,

and for re 2k we have

Gak ~ 2 • [S02*+i x S02*+i]

where the outer involution switches the two components.
To see this directly via linear algebra, note that the automorphism 07

is conjugation by an element of order two in 02„+2 having characteristic

polynomial (t + - l)2i+1.

4.4 3D4

Here g sog has Aut(g) S3 PSOg and we take â S3 of order
three. Denote the set of simple roots of £>4 by A {on, a2, a3, a4}, where

o;2 corresponds to the branch node, and let a),- be the fundamental co-weight
dual to a-,. We write / {0,1,2}, where "1" and "2" stand for the â-orbits

{1,3,4} and {2}, respectively. The equivalence classes a and corresponding

restricted roots ßa <>.,9 and roots ja <J>,9 are as follows :

a Pa 7a

0:1

Q3

a4
ßl 71 3dl

0.2 p2 72 ßl

»2 T cei

Ct2 + «3

f>2 + «4

ßl + ßl 71 + 372 3(dl + ßi)

OC2 + 03 + ce4

0:2 + o:4 + 0:1

«2 + ai + ce3

Vh + fh ßo 2ji + 372 70 3(201 + ßl)

ai + tt2 + a3 + a4 301 + ß2 71 + 72 — 301 + 02

(>: 1 + 2a.2 + 03 -|- 0.4 301+202 71 + 272 30i + 202
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From Table 2 we have the Kac diagram £>(g.$), with label bL above the

node @ :

^ Q
which shows that the isolated automorphisms aL d expft'j, of order

mh c,.f f b, where vh are the vertices of Q>, have semisimple fixed-

point groups G7'- of types G2, A\ x A1? A2, for 1 0.1.2 respectively. More

precise information, including the exact isomorphism type of G7', is given
in the next table.

1 h G, L, m,, |(T,,| h W G"L

0 3 1 1 3 0 G V'â 0 G V'9 G2

1 3 2 2 6 j(4'i + 4*3 + 4~4) i(4i 4- 4'3 + 44) SO4

2 1 3 1 3 4-2 5-^2 PGL-i

Since Q# 1, Lemma 3.9 shows that each G7' is connected. From

Section 3.7, the center of G7" is trivial for m 0,2. This gives G9 ~ G2 and

G72 ~ PGL3. Since 3.7 also shows that the center of Gai has order two, we

can pin down the isomorphism type of G'71 as follows. Its simply-connected
cover G£J ~ SL2 x St2. The weight /fi appears in g and

(ßi-,i%) — —(ßiißi) — 1 •

Hence the center of each SL2 factor is nontrivial on g, so the kernel of the

covering G7cl -a G71 must be the diagonal embedding &ß2 of ß2 {±1}
into the center of GJcl. Thus, we find that Gn ~ SO4.

With more work, one can also see this by decomposing g — sag under G7'.
Let Symm be the irreducible representation of SL2 on the mth symmetric power
of C2 and write SyriT"'" := Sym'" 0 Sym" for the irreducible representations
of SL2 x SL2. For each 7 -orbit a we compute the polynomial

det(t - or|ga) t|a| - e2^{la'"x)

as in (3.9). This leads to the decomposition of the representation of G7i on
the o"i-eigenspace g(() for each sixth root of unity as follows:

g(l) ~ Sym2'0 © Sym0'2, g(—1) ~ Sym3'1,
<41)

SC»F/3) ^ mFn « Sym8-2. ssF¥«| m .Sym"

The parity of m, n for the various Sym"*'" appearing in g and the fact that
G"71 is faithful on g, confirm that G71 ~ 50(4).
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4.5 Example: zE6

We label the Ee Dynkin graph as: 0—(2)—©—(5)—(§), so that the

$-orbits of simple roots are

öl {«1, a6\ ; «2 {Oi2, «5 } «3 {«3 [ «4 {<*4}

and

7i 2/?i, 72 — 2ft 73 #3, 74 A •

The highest root of <E>,^ is 70 — 7oq where

«0 {«1 + 2a2 + 2tt3 + «4 + 05 4- o6, a:i + «2 + 20:3 4- 0:4 + 2a5 + ae}

so that

7o — 271 + 372 4- 473 4- 274

and therefore

ßo 2.6\ 4- 3ßz 4- 2& 4- ß4

giving the Kac diagram from Table 2, with label bc above the node 0 :

1 2 3 2 1

®—®—®«=(D—0.
Since ê acts by inversion on Û ~ Z/3, we have Q# 1, so Lemma 3.9

shows that each Ga' is connected for all 1. From Section 3.7, the center
of G°l is trivial for l 0,4. This gives Gi} ~ F4 and GrTi ~ PSps. The

remaining centers have orders bt 2,3,2, for 1 1,2,3 respectively. We can

pin down the isomorphism types as we did for 3 £>4, by computing (3,, ß;±i),
to arrive at the table below, where A//„ denotes a diagonal embedding of the

group of nth roots of unity into the center of a product of simply connected

groups.

i h L b,. m,. |cr,;| ßi. v,.

0 1 1 1 2 0 G Ve 0 G F4

1 2 2 2 4 1(d) 1 + U>6> 4(41 + 4g) [SZ-2 X Spöl/A/22

2 2 3 3 6 j(&2 4 d's) ^(4-2 + 4g) [SL3 x SZ.3]/.A/i3

3 1 4 2 4 4-3 [S.L4 X S£-2]/A/i2

4 1 2 1 2 Cc'4 i*4 PSpg
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5. Twisted Coxeter elements

We close with a twisted analogue of Kostant's result on principal elements,

mentioned in Section 2.5. Let w E W be the product, taken in any order,

of a set of representatives for the -orbits on the set {rt : 1 < i < /}
of simple reflections in W. The element i)w E dW is called a 'd-twisted
Coxeter element [20]. Such elements form a single VV-conjugacy class in dW,
independent of the choice of representatives or the order in the product.
The order ho of diu is the â -twisted Coxeter number. By construction, the

length i(w) to is the rank of G1. These are tabulated below, along with
the sum ht(rio) of the labels of the diagrams X>(Q,d), and the degrees of
the basic W-invariant polynomials affording a primitive /th root of unity as

^-eigenvalue.

Type T>(0. 4) $,5 ho ht(do) /-degrees

2A2
1 2
• i-Q Bl 6 3 3

2A2„
(«> 2)

• =>o——o— —o ö Bn 4n + 2 In + 1 3, 5,.... 2« -4- 1

2^2„-l
(«> 3)

12 2 1

o—^
O--J=O

1

Cn 4n — 2 In - 1 3,5, ...,2B - 1

2Dn+1
(n> 2)

^ j. ^ ^1 Bn In + 2 n + 1 n + 1

3D4 2,^1, Gl 12 4 4,4

2Ê6 ^ 2^ ^ 1 / Fa 18 9 5,9

B. Gross pointed out to me that ho — / ht(/?o), meaning that a torsion

automorphism a E dG with Kac coordinates s, — 1 for all /. E / has order
h.g. In fact, the table shows that twisted Coxeter numbers have the properties :

ho / • ht(/30) J^l / • largest /-degree
to

generalizing other well-known properties of ordinary Coxeter numbers. This
indicates that a might be a lift to Aut(G) of a twisted Coxeter element. We

will prove that this is the case :
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PROPOSITION 5.1. Let a E DG be a torsion automorphism with Kac
coordinates st 1 for all i E /. Then a preserves a Cartan subalgebra of
g and acts there via a â-twisted Coxeter element.

For ii 1 this is Kostant's result, proved in [14], and mentioned in
Section 2.5 above. We will use some of Kostant's arguments in what follows,
but instead of his theory of cyclic elements, we will invoke the classification
of torsion automorphisms. The main point is the following lemma, which is

also used in [9] :

LEMMA 5.2. Let o ON be a torsion automorphism of q of order m,
let L denote the number of o -orbits on the set <î> of roots of T in g. Then

(5.1) dim t* < dim t° + L

and equality implies the following :

1. 0er is abelian and Ier 0, so that dim id L;
2. the projection of a to dW has the same order m as a ;
3. m > h^, with equality if and only if a has all Kac coordinates st 1.

Proof Partition $ U • • • U % into o -orbits of size ni |<t>/1 and

let Qi be the span of the root vectors Xa for a <!>,•. Then

L

i—i

Since <jni fixes every root in O,, it acts on g(- as scalar multiplication by
some z,- E Cx and we have

if Zi 1,

On the other hand, since a E DG, the subalgebra is G-conjugate to a

Cartan subalgebra of It follows that

dim tö < dim0e7 dim t17 + |{i : Zi 1}| < dim ta + L.

If equality holds at both steps, then L' and are G-conjugate and z, 1

for all 1 < i < L. Hence g*7 is abelian and

L

g^P+^CX,-,
i=l



TORSION AUTOMORPHISMS OF SIMPLE LIE ALGEBRAS 45

where Xt is a nonzero vector in gf. If HE ta then the value ;/, (oc,H) is
constant for a G O/, and [H,X[\ ï],X, But since g"7 is abelian, we have all

'//,• 0, so {.a,H} 0 for all a G <l>, meaning that H 0. Hence f7 0 and

assertion 1 holds. Moreover, since g'7 is abelian it has empty root-system, so
the Kac coordinates sL of a are all non-zero and the order m of a satisfies

the inequality

m=f -^2 bts' > / • Wo) ho

with equality if and only if all sL 1. Assertion 3 is proved. The projection
of a to iiW has order equal to the least common multiple n of {n\...., ni}
and a" — I on t. If zi — 1 for all i, then a" I on 0; for all i, so n m,
completing the proof of the lemma.

Next, following Kostant, we have an inequality in the reverse direction.
Assume now that tCT 0. Let Na {a e O"1" : aa -<3>+}. Then

\Na\ — Hw), where âw is the projection of a to iiW, and £(w) is the

Coxeter length of w with respect to the base A. For each i, the intersection

flNn is nonempty. For otherwise, all roots in <£>,• would have the same sign,

so their sum would be non-zero and cr-invariant, contradicting our assumption
that V7 0. Therefore, we have

L

(5.2) ^L,
i= 1

with equality if and only if |<E>,- fl W,T| —;T for all i.

We now prove Proposition 5.1, by computing the Kac coordinates of a lift
a G $N of a twisted Coxeter element 'div in'd W. From [20, 7.4 (i)] we have

that ia =0. By the construction of w, we have è(iu) dim From (5.2)
we have dim > L. Hence we have equality in Lemma 5.2, so a and i)w
have the same order, namely and st 1 for all i. Since there is a unique
torsion class in i)G with these Kac coordinates, this proves Proposition 5.1.
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