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ON THE CLASSIFICATION OF RATIONAL KNOTS

by Louis H. Kauffman and Sofia Lambropoulou

Abstract. In this paper we give combinatorial proofs of the classification of
unoriented and oriented rational knots based on the now known classification of
alternating knots and the calculus of continued fractions. We also characterize the

class of strongly invertible rational links. Rational links are of fundamental importance
in the study of DNA recombination.

1. Introduction

Rational knots and links comprise the simplest class of links. The first

twenty five knots, except for 85, are rational. Furthermore all knots and links

up to ten crossings are either rational or are obtained by inserting rational

tangles into a small number of planar graphs, see [6]. Rational links are

alternating with one or two unknotted components, and they are also known
in the literature as Viergeflechte, four-plats or 2-bridge knots depending on
their geometric representation. More precisely, rational knots can be represented
as :

• plat closures of four-strand braids (Viergeflechte [1], four-plats). These

are knot diagrams with two local maxima and two local minima.

• 2-bridge knots. A 2-bridge knot is a knot that has a diagram in
which there are two distinct arcs, each overpassing a consecutive sequence
of crossings, and every crossing in the diagram is in one of these sequences.
The two arcs are called the bridges of the diagram (compare with [5], p. 23).

• numerator or denominator closures of rational tangles (see Figures 1, 5).
A rational tangle is the result of consecutive twists on neighboring endpoints
of two trivial arcs. For examples see Figure 1 and Figure 3.
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numerator
>

closure

T [[2],[-2], [3]] N(T)

Figure 1

A rational tangle and a rational knot

All three representations are equivalent. The equivalence between the first
and the third is easy to see by planar isotopies. For the equivalence between
the first and the second representation see for example [5], pp.23, 24. In
this paper we consider rational knots as obtained by taking numerator or
denominator closures of rational tangles (see Figure 5).

The notion of a tangle was introduced in 1967 by Conway [6] in his work

on enumerating and classifying knots and links, and he defined the rational
knots as numerator or denominator closures of the rational tangles. (It is worth

noting here that Figure 2 in [1] illustrates a rational tangle, but no special

importance is given to this object. It is obtained from a four-strand braid by

plat-closing only the top four ends.) Conway [6] also defined the fraction of
a rational tangle to be a rational number or oo. He observed that this number

for a rational tangle equals a continued fraction expression with all numerators

equal to one and all denominators of the same sign, that can be read from a

tangle diagram in alternating standard form. Rational tangles are classified by
their fractions by means of the following theorem.

THEOREM 1 (Conway, 1975). Two rational tangles are isotopic if and

only if they have the same fraction.

Proofs of Theorem 1 are given in [21], [5] p. 196, [13] and [15]. The

first two proofs invoked the classification of rational knots and the theory of
branched covering spaces. The 2-fold branched covering spaces of S3 along
the rational links give rise to the lens spaces L(p, q). See [33] for a pioneering
treatment of branched coverings. The proof in [13] is the first combinatorial

proof of this theorem. The proofs in [21], [5] and [13] use definitions different
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from the above for the fraction of a rational tangle. In [15] a new combinatorial

proof of Theorem 1 is given using the solution of the Tait Conjecture for

alternating knots [42], [20] adapted for tangles. A second combinatorial proof
is given in [15] using coloring for defining the tangle fraction.

Throughout the paper by the term 'knots' we will refer to both knots

and links, and whenever we really mean 'knot' we shall emphasize it. More

than one rational tangle can yield the same or isotopic rational knots and the

equivalence relation between the rational tangles is mapped into an arithmetic

equivalence of their corresponding fractions. Indeed we have the following

THEOREM 2 (Schubert, 1956). Suppose that rational tangles with fractions
- and Pj are given (p and q are relatively prime; similarly for p' and q').
q q

If K(£) and K(^7) denote the corresponding rational knots obtained by taking

numerator closures of these tangles, then K(ff) and K(ff) are isotopic if and
q q

only if
1. p —p' and
2. either q q' mod p or qq' 1 mod p.

Schubert [31] originally stated the classification of rational knots and links

by representing them as 2-bridge links. Theorem 2 has hitherto been proved
by taking the 2-fold branched covering spaces of S3 along 2-bridge links,
showing that these correspond bijectively to oriented diffeomorphism classes of
lens spaces, and invoking the classification of lens spaces [28]. Another proof
using covering spaces has been given by Bürde in [4]. See also the excellent
notes on the subject by Siebenmann [35]. The above statement of Schubert's
theorem is a formulation of the Theorem in the language of Conway's tangles.

Using his methods for the unoriented case, Schubert also extended the
classification of rational knots and links to the case of oriented rational knots
and links described as 2-bridge links. Here is our formulation of the Oriented
Schubert Theorem written in the language of Conway's tangles.

THEOREM 3 (Schubert, 1956). Suppose that orientation-compatible rational

tangles with fractions | and ^ are given with q and q' odd (p and q

are relatively prime; similarly for p' and q' If K(^) and K(^'7) denote the

corresponding rational knots obtained by taking numerator closures of these

tangles, then K(!p and 7) are isotopic if and only if
1. p p' and
2. either q q' mod 2p or qq' 1 mod 2p.
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Theorems 2 and 3 could have been stated equivalently using the denominator

closures of rational tangles. Then the arithmetic equivalences of the

tangle fractions related to isotopic knots would be the same as in Theorems
2 and 3, but with the roles of numerators and denominators exchanged.

This paper gives the first combinatorial proofs of Theorems 2 and 3 using
tangle theory. Our proof of Theorem 2 uses the results and the techniques

developed in [15], while the proof of Theorem 3 is based on that of Theorem 2.

We have located the essential points in the proof of the classification of rational
knots in the question : Which rational tangles will close to form a specific
knot or link diagram By looking at the Theorems in this way, we obtain

a path to the results that can be understood without extensive background in
three-dimensional topology. In the course of these proofs we see connections

between the elementary number theory of fractions and continued fractions,
and the topology of knots and links. In order to compose these proofs we
use the fact that rational knots are alternating (which follows from the fact
that rational tangles are alternating, and for which we believe we found the

simplest possible proof, see [15], Proposition 2). We then rely on the Tait

Conjecture [42] concerning the classification of alternating knots, which states

the following:

Two alternating knots are isotopic if and only if any two corresponding
reduced diagrams on S2 are related by a finite sequence offlypes (see Figure 6).

A diagram is said to be reduced if at every crossing the four local regions
indicated at the crossing are actually parts of four distinct global regions in
the diagram (see [19], p. 42). It is not hard to see that any knot or link has

reduced diagrams that represent its isotopy class. The conjecture was posed by
P. G. Tait [42] in 1877 and was proved by W. Menasco and M. Thistlethwaite,

[20] in 1993. Tait did not actually phrase this statement as a conjecture. It
was a working hypothesis for his efforts in classifying knots.

Our proof of the Schubert Theorem is elementary upon assuming the Tait

Conjecture, but this is easily stated and understood. This paper will be of
interest to mathematicians and biologists.

The paper is organized as follows. In Section 2 we give the general set up
for rational tangles, their isotopies and operations, as well as their association

to a continued fraction isotopy invariant. In this section we also recall the

basic theory and a canonical form of continued fractions. In Section 3 we

prove Theorem 2 about the classification of unoriented rational knots by means

of a direct combinatorial and arithmetical analysis of rational knot diagrams,
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using the classification of rational tangles and the Tait Conjecture. In Section 4

we discuss chirality of knots and give a classification of the achiral rational

knots and links as numerator closures of even palindromic rational tangles in

continued fraction form (Theorem 5). In Section 5 we discuss the connectivity

patterns of the four end arcs of rational tangles and we relate connectivity

to the parity of the fraction of a rational tangle (Theorem 6). In Section 6

we give our interpretation of the statement of Theorem 3 and we prove the

classification of oriented rational knots, using the methods we developed in the

unoriented case and examining the connectivity patterns of oriented rational

knots. In Section 6 it is pointed out that all oriented rational knots and links are

invertible (reverse the orientation of both components). In Section 7 we give

a classification of the strongly invertible rational links (reverse the orientation

of one component) as closures of odd palindromic oriented rational tangles in
continued fraction form (Theorem 7).

Here is a short history of the theory of rational knots. As explained in

[14], rational knots and links were first considered by O. Simony in 1882,

[36, 37, 38, 39], taking twistings and knottings of a band. Simony [37] was

the first one to relate knots to continued fractions. After about sixty years
Tietze wrote a series of papers [43, 44, 45, 46] with reference to Simony's
work. Reidemeister [27] in 1929 calculated the knot group of a special class

of four-plats (Viergeflechte), but four-plats were really studied by Goeritz [12]
and by Bankwitz and Schumann [1] in 1934. In [12] and [1] proofs are given

independently and with different techniques that rational knots have 3 -strand-

braid representations, in the sense that the first strand of the four-strand braids

can be free of crossings, and that they are alternating. (See Figure 20 for
an example and Figure 26 for an abstract 3-strand-braid representation.) The

proof of the latter in [1] can be easily applied on the corresponding rational
tangles in standard form. (See/ Figure 1 for an example and Figure 8 for
abstract representations.)

In 1954 Schubert [30] introduced the bridge representation of knots. He
then showed that the four-plats are exactly the knots that can be represented
by diagrams with two bridges and consequently he classified rational knots by
finding canonical forms via representing them as 2-bridge knots, see [31]. His
proof was based on Seifert's observation that the 2-fold branched coverings
of 2-bridge knots [33] give rise to lens spaces and on the classification of
lens spaces by Reidemeister [28] using Reidemeister torsion and following the
lead of [32] (and later by Brody [3] using the knot theory of the lens space).
See also [25]. Rational knots and rational tangles figure prominently in the

applications of knot theory to the topology of DNA, see [40]. Treatments of
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various aspects of rational knots and rational tangles can be found in many
places in the literature, see for example [6], [35], [29], [5], [2], [22], [16], [19].

2. Rational tangles and their invariant fractions

In this section we recall from [15] the facts that we need about rational

tangles, continued fractions and the classification of rational tangles. We intend
the paper to be as self-contained as possible.

A 2-tangle is a proper embedding of two unoriented arcs and a finite
number of circles in a 3-ball B3, so that the four endpoints lie in the

boundary of B3. A rational tangle is a proper embedding of two unoriented

arcs ol\,ol2 in a 3-ball B3, so that the four endpoints lie in the boundary of
B3, and such that there exists a homeomorphism of pairs :

h: (.B3, an, a^) —> (D2 x /, {x,y} x /) (a trivial tangle).

This is equivalent to saying that rational tangles have specific representatives
obtained by applying a finite number of consecutive twists of neighboring
endpoints starting from two unknotted and unlinked arcs. Such a pair of arcs

comprise the [0] or [oo] tangles, depending on their position in the plane,

see illustrations in Figure 2.

[-2] [-1] [0] [1] [2]

Figure 2

The elementary rational tangles and the types of crossings

We shall use this characterizing property of a rational tangle as our

definition, and we shall then say that the rational tangle is in twist form.
See Figure 3 for an example.
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Figure 3

A rational tangle in twist form

To see the equivalence of the above definitions, let S2 denote the two-
dimensional sphere, which is the boundary of the 3-ball B3 and let p
denote four specified points in S2. Let further h : (S2,p) —f (S2,p) be a

self-homeomorphism of S2 with the four points. This extends to a self-

homeomorphism h of the 3-ball B3 (see [29], page 10). Further, let a denote

the two straight arcs {x,y} xl joining pairs of the four points in the boundary
of B3. Consider now h(a). We call this the tangle induced by h. We note that

up to isotopy (see definition below) h is a composition of braidings of pairs of
points in S2 (see [24], pages 61 to 65). Each such braiding induces a twist in the

corresponding tangle. So, if /z is a composition of braidings of pairs of points,
then the extension h is a composition of twists of neighboring end arcs. Thus

h(a) is a rational tangle and every rational tangle can be obtained this way.

A tangle diagram is a regular projection of the tangle on a meridian disc.

Throughout the paper by 'tangle' we will mean 'regular tangle diagram'. The

type of crossings of knots and 2-tangles follow the checkerboard rule: shade

the regions of the tangle (knot) in two colors, starting from the left (outside) to
the right (inside) with grey, and so that adjacent regions have different colors.

Crossings in the tangle are said to be of positive type if they are arranged with
respect to the shading as exemplified in Figure 2 by the tangle [+1], i.e. they
have the region on the right shaded as one walks towards the crossing along
the over-arc. Crossings of the reverse type are said to be of negative type and

they are exemplified in Figure 2 by the tangle [-1]. The reader should note
that our crossing type conventions are the opposite of those of Conway in
[6] and of those of Kawauchi in [16]. Our conventions agree with those of
Ernst and Sumners [10], [40] which in turn follow the standard conventions
of biologists.
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We are interested in tangles up to isotopy. Two rational tangles, F, S,

in B3 are isotopic, denoted by T ~ S, if and only if any two diagrams of
them have identical configurations of their four endpoints on the boundary of
the projection disc, and they differ by a finite sequence of the well-known
Reidemeister moves [27], which take place in the interior of the disc. Of
course, each twisting operation used in the definition of a rational tangle
changes the isotopy class of the tangle to which it is applied.

2-Tangle operations. The symmetry of the four endpoints of 2-tangles
allows for the following well-defined (up to isotopy) operations in the class

of 2-tangles, as described in Figure 4. We have the sum of two 2-tangles,
denoted by ' + ' and the product of two 2-tangles, denoted by This

product is not to be confused with Conway's product in [6].
In view of these operations we can say that a rational tangle is created

inductively by consecutive additions of the tangles [± 1] on the right or on
the left and multiplications by the tangles [d=l] at the bottom or at the top,
starting from the tangles [0] or [oo]. And since, when we start creating a

rational tangle, the very first crossing can be equally seen as a horizontal

or as a vertical one, we may always assume that we start twisting from the

tangle [0]. Addition and multiplication of tangles are not commutative. Also,
they do not preserve the class of rational tangles. The sum (product) of two
rational tangles is rational if and only if one of the two consists in a number

of horizontal (vertical) twists.

T* S

Figure 4

Addition, multiplication and inversion of 2-tangles

The mirror image of a tangle F, denoted -F, is obtained from F by
switching all the crossings. So we have -[n\ [-n\ and -p
Finally, the rotation of F, denoted Fr, is obtained by rotating F on its plane
counterclockwise by 90°, whilst the inverse of F, denoted T, is defined to

be — Fr. Thus inversion is accomplished by rotation and mirror image. For
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example, [nf^ and p* =s [n\.Notethat T and are in general not

isotopic to T.

Moreover, by joining with simple arcs the two upper and the two lower

endpoints of a 2-tangle T, we obtain a knot called the Numerator of T,
denoted by N(T). Joining with simple arcs each pair of the corresponding

top and bottom endpoints of T we obtain the Denominator of T, denoted

by D{T). We have N(T) D(Tr) and D(T) N(Tr). We point out that the

numerator closure of the sum of two rational tangles is still a rational knot

or link. But the denominator closure of the sum of two rational tangles is not

necessarily a rational knot or link, think for example of the sum

Figure 5

The numerator and denominator of a 2-tangle

Rational tangle isotopies. We define now two isotopy moves for
rational tangles that play a crucial role in the theory of rational knots and
rational tangles.

Definition 1. A flype is an isotopy of a 2-tangle T (or a knot or link)
applied on a 2-subtangle of the form [±1]+/ or [±l]*f as illustrated in Figure 6.

A flype fixes the endpoints of the subtangle on which it is applied. A flype
shall be called rational if the 2-subtangle on which it applies is rational.

Figure 6

The flype moves
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We define the truncation of a rational tangle to be the result of partially
untwisting the tangle. For rational tangles, fiypes are of very specific types.
Indeed, we have:

Let T be a rational tangle in twist form. Then

(i) T does not contain any non-rational 2-subtangles.

(ii) Every 2-subtangle of T is a truncation of T.

For a proof of these statements we refer the reader to our paper [15]. As
a corollary we have that all fiypes of a rational tangle T are rational.

Definition 2. A flip is a rotation in space of a 2-tangle by 180°. We

say that Thflip is the horizontal flip of the 2-tangle T if 7ilfllp is obtained
from T by a 180° rotation around a horizontal axis on the plane of T, and
rvfiip is the vertical flip of the tangle T if Tvflip is obtained from T by a

180° rotation around a vertical axis on the plane of T. See Figure 7 for
illustrations.

R

OoCO

B
\J
hflip

180°

vflip

Figure 7

The horizontal and the vertical flip

Note that a flip switches the endpoints of the tangle and, in general, a flipped
tangle is not isotopic to the original one ; the following is a remarkable property
of rational tangles :

THE FLIPPING LEMMA. If T is rational, then :

(i) T ~ 7*, (ii) T ~ Tvflipand(iii) T ~ (77 (Tr)r.
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To see (i) and (ii) we apply induction and a sequence of flypes, see [15]

for details. (T1)' (Tr)r is the tangle obtained from T by rotating it on

its plane by 180°, so statement (iii) follows by applying a vertical flip after

a horizontal flip. Note that the above statements are obvious for the tangles

[0], [oo], [n] and p Statement (iii) says that for rational tangles the inversion

is an operation of order 2. For this reason we shall denote the inverse of
a rational tangle T by l/7\ and hence the rotation of the tangle T will be

denoted by —l/T. This explains the notation for the tangles ^. For arbitrary

2-tangles the inversion is an order 4 operation. Another consequence of the

above property is that addition and multiplication by [±1] are commutative.

Standard form, continued fraction form and canonical form for
rational TANGLES. Recall that the twists generating the rational tangles could
take place between the right, left, top or bottom endpoints of a previously
created rational tangle. Using obvious flypes on appropriate subtangles one can

always bring the twists all to the right (or all to the left) and to the bottom (or
to the top) of the tangle. We shall then say that the rational tangle is in standard

form. For example Figure 1 illustrates the tangle (([3]*p2j) + [2]) in standard

form. In order to read out the standard form of a rational tangle in twist form
we transcribe it as an algebraic sum using horizontal and vertical twists. For

example, Figure 3 illustrates the tangle ((([3] * p) + [-1]) * pp) + [2] in
non-standard form.

Figure 8

The standard representations

Figure 8 illustrates two equivalent (by the Flipping Lemma) ways of
representing an abstract rational tangle in standard form: the standard
representation of a rational tangle. In either illustration the rational tangle
begins to twist from the tangle [an\ (\a5\ in Figure 8), and it untwists from
the tangle [aj ]. Note that the tangle in Figure 8 has an odd number of sets
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of twists (n 5) and this causes [a\] to be horizontal. If n is even and [an]

is horizontal then [a\] has to be vertical.

Another way of representing an abstract rational tangle in standard form
is illustrated in Figure 9. This is the 3 -strand-braid representation. For an

example see Figure 10. As Figure 9 shows, the 3-strand-braid representation
is actually a compressed version of the standard representation, so the two
representations are equivalent by a planar rotation. The upper row of crossings
of the 3 -strand-braid representation corresponds to the horizontal crossings of
the standard representation and the lower row to the vertical ones. Note that,

even though the type of crossings does not change by this planar rotation,

we need to draw the mirror images of the even terms, since when we rotate
them to the vertical position we obtain crossings of the opposite type in the

local tangles. In order to bear in mind this change of the local signs we

put on the geometric picture the minuses on the even terms. We shall use

both ways of representation for extracting the properties of rational knots and

tangles.

iHäJ - te®)

Figure 9

The standard and the 3-strand-braid representation

Figure 10

The ambiguity of the first crossing
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From the above one may associate to a rational tangle diagram in standard

form a vector of integers (a\,a2,.. mjan), where the first entry denotes the

place where the tangle starts unravelling and the last entry where it begins to

twist. For example the tangle of Figure 1 is associated to the vector (2, —2,3),
while the tangle of Figure 3 corresponds after a sequence of flypes to the vector

(2, -4, —1,3,3). The vector associated to a rational tangle diagram is unique up
to breaking the entry an by a unit, i.e. (a\, a2, • • • s an) iß\ > a2-> • • • an — 1

>
1)»

if an > 0, and (a\,a2i • • • 7 an) (au a2, • • • > an + 1? — 1)» if < 0- This

follows from the ambiguity of the very first crossing, see Figure 10. If
a rational tangle changes by an isotopy, the associated vector might also

change.

Remark 1. The same ambiguity implies that the number n in the above

notation may be assumed to be odd. We shall make this assumption for proving
Theorems 2 and 3.

The next thing to observe is that a rational tangle in standard form can be

described algebraically by a continued fraction built from the integer tangles
FhL [ai\, • • • 5 lan] with all numerators equal to 1, namely by an expression
of the type:

1

[[ai], \a2],..., [an]] := [a\] H

1

[a2] + • • • H
1

[an~ 1] + -—-
[an]

for ö2,..., an e Z — {0} and n even or odd. We allow [a{\ to be the tangle
[0]. This expression follows inductively from the equation

T
1 1

T * —
M 1

\n\ + -
Then a rational tangle is said to be in continued fraction form. For example,
Figure 1 illustrates the rational tangle [[2], [-2], [3]], while the tangles of
Figure 8 and 9 all depict the abstract rational tangle [fo], [a2], [a3], [04], [a5]].

The tangle equation T * d. implies also that the two simple
algebraic operations: addition of [+1] or [-1] and inversion between
rational tangles generate the whole class of rational tangles. For T -[[a{], \a2f [an]] the following statements are now straightforward.
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1. r+[±l] [[ai±l],[a2],...,K]],

j [[0],[ûi],[a2x...,[fln]],

-T [[—öi], [—Ö2], [~an]],

2.

3.

4. T [[ai], [a2], • • •, K - 1], [1]], if > 0,

and T [[<21], [a2], + 1], [-1]], if < 0.

A tangle is said to be alternating if the crossings alternate from under

to over as we go along any component or arc of the weave. Similarly, a

knot is alternating if it possesses an alternating diagram. We shall see that
rational tangles and rational knots are alternating. Notice that, according to j

the checkerboard shading (see Figure 2 and the corresponding discussion),
the only way the weave alternates is if any two adjacent crossings are of
the same type, and this propagates to the whole diagram. Thus, a tangle or
a knot diagram with all crossings of the same type is alternating, and this
characterizes alternating tangle and knot diagrams. It is important to note that

flypes preserve the alternating structure. Moreover, flypes are the only isotopy
moves needed in the statement of the Tait Conjecture for alternating knots.

An important property of rational tangles is now the following :

A rational tangle diagram in standard form can be always isotoped to an

alternating one.

Figure 11

Reducing to the alternating form

The process is inductive on the number of crossings and the basic isotopy

move is illustrated in Figure 11, see [15] for details. We point out that this

isotopy applies to rational tangles in standard form where all the crossings



ON THE CLASSIFICATION OF RATIONAL KNOTS 371

are on the right and on the bottom. We shall say that a rational tangle
T [[a\], felp..., [««]] is in canonical form if T is alternating and n is

odd. From Remark 1 we can always assume n to be odd, so in order to

bring a rational tangle to the canonical form we just have to apply the isotopy

moves described in Figure 11. Note that T alternating implies that the af s

are all of the same sign.

The alternating nature of the rational tangles will be very useful to us

in classifying rational knots and links. It turns out from the classification of
alternating knots that two alternating tangles are isotopic if and only if they

differ by a sequence offlypes. (See [41], [20]. See also [34].) It is easy to see

that the closure of an alternating rational tangle is an alternating knot. Thus

we have:

Rational knots are alternating, since they possess a diagram that is the

closure of an alternating rational tangle.

Continued fractions and the classification of rational tangles.
From the above discussion it makes sense to assign to a rational tangle in
standard form, T [[a\], [a2],..., [an]]9 for a\ G Z, a2,... ,an G Z - {0}
and n even or odd, the continued fraction

F(T) [aua2,...,an] := ax H

cl2 + • • • H

an-l H

an

if r / [oo], and F([oo]) := oo A, as a formal expression. This rational
number or infinity shall be called the fraction of T. The fraction is a

topological invariant of the tangle T.Weexplain briefly below how to see
this.

The subject of continued fractions is of perennial interest to mathematicians.
See for example [17], [23], [18], [47], In this paper we shall only consider
continued fractions of the above type, i.e. with all numerators equal to 1.

As in the case of rational tangles we allow the term a{ to be zero.
Clearly, the two simple algebraic operations addition of +1 or —1 and
inversion generate inductively the whole class of continued fractions starting
from zero. For any rational number | the following statements are really
straightforward.
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1. There are <21 G Z, <22, • • • an G Z — {0} such that - [<21, <22,..., an],
q

2.

3. q
— [0, ü\. 02 5 • • • 5 ^n] 5

4.

5.

Property 1 is a consequence of Euclid's algorithm, see for example [17].
Combining the above we obtain the following properties for the tangle fraction.

1. F(r+[±l]) F(r)±l,

The last ingredient for the classification of rational tangles is the following
fact about continued fractions: Every continued fraction [a\, 02,..., an] can
be transformed to a unique canonical form [ß\, /fe*».., ßm] > where all ßi's
are positive or all negative integers and m is odd.

One way to see this is to evaluate the continued fraction and then apply
Euclid's algorithm, keeping all remainders of the same sign. There is also

an algorithm that can be applied directly to the initial continued fraction to
obtain its canonical form. This algorithm works in parallel with the algorithm
for the canonical form of rational tangles, see [15] for details.

From the Tait conjecture for alternating rational tangles, from the uniqueness

of the canonical form of continued fractions and from the above properties
of the fraction we derive that the fraction not only is an isotopy invariant

of rational tangles but it also classifies rational tangles. This is the Conway
Theorem. See [15] for details of the proof. For the isotopy type of a rational

tangle with fraction | we shall use the notation [|]. Finally, it is easy to see

the following useful result about rational tangles :

2. F(—) —T F(T)'
F(-T) —F(T).3.

Suppose that T + [n\ is a rational tangle, then T is a rational tangle.
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3. The classification of unoriented rational knots

In this section we shall prove Schubert's theorem for unoriented rational

knots. It is convenient to say that reduced fractions p/q and p'/V are

arithmetically equivalent, written p/q ~ p'/q', if p — pf and either qq' 1

mod p or q cf mod p. We shall call two rational tangles arithmetically
equivalent if their fractions are arithmetically equivalent. In this language,
Schubert's theorem states that two unoriented rational tangles close to form

isotopic knots if and only if they are arithmetically equivalent.
We only need to consider numerator closures of rational tangles, since

the denominator closure of a tangle T is simply the numerator closure of
its rotate — From the discussions in Section 2 a rational tangle may be

assumed to be in continued fraction form and by Remark 1, the length of a

rational tangle may be assumed to be odd. A rational knot is said to be in
standard form, in continued fraction form, alternating or in canonical form
if it is the numerator closure of a rational tangle that is in standard form,
in continued fraction form, alternating or in canonical form respectively. By
the alternating property of rational knots we may assume all rational knot
diagrams to be alternating. The diagrams and the isotopies of the rational
knots are meant to take place in the 2-sphere and not in the plane.

Figure 12

Twisting the bottom of a tangle

Bottom twists. The simplest instance of two rational tangles being non-
isotopic but having isotopic numerators is adding a number of twists at the
bottom of a tangle, see Figure 12. Indeed, let be a rational tangle and let
T* l/[n] be the tangle obtained from T by adding n bottom twists, for any
ne Z. We have N(T * l/[n]) - N(T), but *l/[«]) F(l/([n] + 1

l/(n+l/F(D); so, if
F(T)=p/q,
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then

F(T * l/[n]) p/(np + q)f

thus the two tangles are not isotopic. If we set np + q qf we have q q'
mod p, just as Theorem 2 predicts.

Reducing all possible bottom twists of a rational tangle yields a rational
p
Q

\P\>\Q\

tangle with fraction ~ such that

To see this, suppose that we are dealing with with P < Q' and both P and

Q! positive (we leave it to the reader to fill in the details for Q negative).
Then

P 11 1

Q! QL^ p n + § l
P/Q

where

Qf np + Q Q mod P,

for n and ß positive and Q < P. So, by the Conway Theorem, the

rational tangle [^r] differs from the tangle [£] by n bottom twists, and

' N([gJ). Figure 13 illustrates an example of this arithmetic. Note
Lq/j UU.W, — — -6- LßJ

so N([0
that a tangle with fraction £ such that |P| > \Q\ always ends with a number
of horizontal twists. So, if T [aa], • • •, [an]] then a\ ^ 0. If T is in
twist form then T will not have any top or bottom twists. We shall say that

a rational tangle whose fraction satisfies the above inequality is in reduced

form.

[3/11] [[0],[3],[1],[2]]

&>
N([3/11])~N([[1],[2]J) N([3/2])

N([3/11])

FIGURE 13

Reducing the bottom twists
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The proof of Theorem 2 now proceeds in two stages. First, (in 3.1) we look
for all possible places where we could cut a rational knot K open to a rational

tangle, and we show that all cuts that open K to other rational tangles give
tangles arithmetically equivalent to the tangle T. Second, (in 3.2) given two
isotopic reduced alternating rational knot diagrams, we have to check that the

rational tangles that they open to are arithmetically equivalent. By the solution
to the Tait Conjecture these isotopic knot diagrams will differ by a sequence
of flypes. So we analyze what happens when a flype is performed on K.

3.1 The cuts

Let K be a rational knot that is the numerator closure of a rational
tangle T. We will look for all 'rational' cuts on TT. In our study of cuts

we shall assume that T is in reduced canonical form. The more general case
where T is in reduced alternating twist form is completely analogous and we
make a remark at the end of the subsection. Moreover, the cut analysis in the
case where a\ 0 is also completely analogous for all cuts with appropriate
adjustments. There are three types of rational cuts.

open to
the tangle

02 • open toS - isotopy the tangle

Figure 14

Standard cuts

The standard cuts. The tangle T [fa], fa],..., fa]] is said to arise
as the standard cut on KN(T).Ifwe cut K at another pair of 'vertical'
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points that are adjacent to the ith crossing of the elementary tangle [a\]
(counting from the outside towards the inside of T) we obtain the alternating
rational tangle in twist form V [[a\ - /], [<z2], • • •, [an]] + [i]. Clearly, this
tangle is isotopic to T by a sequence of flypes that send all the horizontal
twists to the right of the tangle. See the right hand illustration of Figure 14

for i 2. Thus, by the Conway Theorem, T' will have the same fraction
as T. Any such cut on K shall be called a standard cut on K.

The SPECIAL CUTS. A key example of the arithmetic relationship of the

classification of rational knots is illustrated in Figure 15. The two tangles
T [—3] and S [1] + ^ are non-isotopic by the Conway Theorem, since

F(T) —3 3/ — 1, while F(S) =1 + 1/2 3/2. But they have isotopic
numerators: N(T) ~ N(S), the left-handed trefoil. Now —1=2 mod 3,

confirming Theorem 2.

We now analyze the above example in general. Let K N(T), where

T [hu], [<22], • • • 5 lan]] • Since T is assumed to be in reduced form, it
follows that a\ ^ 0, so T can be written in the form T [+1] +R or

T [— 1] +R, and the tangle R is also rational.

The indicated horizontal crossing [+1] of the tangle T [+1] +R, whicl
is the first crossing of [a\] and the last created crossing of T, may also be

seen as a vertical one. So, instead of cutting the diagram K open at the twc
standard cutpoints to obtain the tangle T, we cut at the two other marked

'horizontal' points on the first crossing of the subtangle [a\] to obtain a new

2-tangle Tf (see Figure 16). T' is clearly rational, since R is rational. The

tangle T' is said to arise as the special cut on K.
We would like to identify this rational tangle T'. For this reason we first

swing the upper arc of K down to the bottom of the diagram in order to free

the region of the cutpoints. By our convention for the signs of crossings in

T= [-3]

Figure 15

An example of the special cut
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Figure 16

Preparing for the special cut

terms of the checkerboard shading, this forces all crossings of T to change

sign from positive to negative and vice versa. We then rotate K by 90° on

its plane (see right-hand illustration of Figure 16). This forces all crossings
of T to change from horizontal to vertical and vice versa. In particular, the

marked crossing [+1], that was seen as a vertical one in T, will now look
as a horizontal [—1] in T'. In fact, this will be the only last horizontal
crossing of T', since all other crossings of [a\] are now vertical. So, if
T [[ax], [a2],\an]] then R |[ax - 1], [a2\..., \an]] and

Tf [[-ll[l-ail[-a2l...d-an]\-
Note that if the crossings of K were all of negative type, thus all the at's would
be negative, the tangle T' would be T' [[+1], [-1 — a\], [~a2],..., [~an]\.
In the example of Figure 15 if we took R [-2], then T — [-1] + R and
T' S=[[+1],[+2]].

The special cut is best illustrated in Figure 17. We consider the rational
knot diagram K 7V([-Fl] +R). (We analyze N([-l] +R) in the same way.)
As we see here, a sequence of isotopies and cutting K open allow us to read
the new tangle:

T [-1] - R
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open
>

to obtain

Figure 17

The tangle of the special cut

From the above we have iV([+l]+P) ~ N{[— 1] — ^). Let now the fractions
of T,R and T be F(T) P/Q, F(R) p/q and F(T') P'/ß' respectively.
Then

The two fractions are different, thus the two rational tangles that give rise to
the same rational knot are not isotopic. We observe that P P/ and

This arithmetic equivalence demonstrates another case for Theorem 2. Notice

that, although both the bottom twist and the special cut fall into the same

arithmetic equivalence, the arithmetic of the special cut is more subtle than

the arithmetic of the bottom twist.

If we cut K at the two lower horizontal points of the first crossing of
[a\] we obtain the same rational tangle T. Also, if we cut at any other pair
of upper or lower horizontal adjacent points of the subtangle [a\] we obtain

a rational tangle in twist form isotopic to T'. Such a cut shall be called a

special cut. See Figure 18 for an example. Finally, we may cut K at any

pair of upper or lower horizontal adjacent points of the subtangle [^]. We

shall call this a special palindrome cut. We will discuss this case after having

analyzed the last type of a cut, the palindrome cut.

F(T) F([+1] +R) l+p/q (p + q)/q P/Q

while

F(T'y F([-l] - 1 /R)-1 -q/ppj

q=—p mod (p+ q)<£=>Q Q! mod P.
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Figure 18

A special cut

Note. We would like to point out that the horizontal-vertical ambiguity

of the last crossing of a rational tangle T — [[a\ [an-\], [an]],
which with the special cut on K N(T) gives rise to the tangle
[[=F 1], [dzl — ai], [—a2], • • •, [—<z«]L is very similar to the horizontal-vertical

ambiguity of the first crossing that does not change the tangle and it gives
rise to the tangle continued fraction [[a\],..., [<z„_i], [an =F 1], [±1]].

Remark 2. A special cut is nothing more than the addition of a bottom
twist. Indeed, as Figure 19 illustrates, applying a positive bottom twist to the

tangle T' of the special cut yields the tangle S ([-1] — l/R) * [+1],
and we find that if F(R) p/q then F([+l] -f R) (p + q)jq while

^(([-1] - l/R)* [+1]) 1/(1 + l/(— 1 — q/p)) (pJrq)/q. Thus we see that
the fractions of T [+1] +R and S ([-1] - l/R) * [+1] are equal and by
the Conway Theorem the tangle S is isotopic to the original tangle T of the
standard cut. The isotopy move is nothing but the transfer move of Figure 11.

The isotopy is illustrated in Figure 19. Here we used the Flipping Lemma.

Figure 19

Special cuts and bottom twists



380 L. H. KAUFFMAN AND S. LAMBROPOULOU

The palindrome cuts. In Figure 20 we see that the tangles

T [[2], [3], [4]] [2] +
1

and

S =[[4], [3], [2]] [4] +

[3] +M

[31 +&
both have the same numerator closure. This is another key example of the

basic relationship given in the classification of rational knots.

In the general case if T — [[<2j], \a{\,.... [an]], we shall call the tangle
S [[an], \an-1 [«l ]] the palindrome of T. Clearly these tangles have

the same numerator : K N{T) — N(S). Cutting open K to yield T is the

standard cut, while cutting to yield S shall be called the palindrome cut on K.

T [2] + 1/( [3] + 1/[4]
\

S [4] + 1/( [3] + 1/[2]

N(T) N(S)

Figure 20

An instance of the palindrome equivalence

The tangles in Figure 20 have corresponding fractions

1 30 1 30
TO 2+3TI Î3 ^ F(5) 4+3TI r-

Note that 7 • 13 1 mod 30. This is the other instance of the arithmetic
behind the classification of rational knots in Theorem 2. In order to check the

arithmetic in the general case of the palindrome cut we need to generalize
this pattern to arbitrary continued fractions and their palindromes (obtained

by reversing the order of the terms). Then we have the following

THEOREM 4 (Palindrome Theorem). Let {^i, ^2? • • • an} be a collection of
n non-zero integers, and let [<21,^2, • • • ^n] and ^7 [an,an-1,... ,a\].
Then P Pf and QQ' (-l)n+1 mod P.
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The Palindrome Theorem is a known result about continued fractions.

For example see [35] or [16], p. 25, Exercise 2.1.9. We shall give here our

proof of this statement. For this we will first present a way of evaluating
continued fractions via 2x2 matrices (compare with [11], [18]). This method

of evaluation is crucially important in our work in the rest of the paper. Let

I [<22, (23,..., an\. Then we have :

1 q d\p + q p'
[(2i, (22, an] — (2i + y — d\ ~\ — — —

q P P q

Taking the convention that [(q)] := f > with our usual conventions for formal

fractions such as we can thus write a corresponding matrix equation in
the form

(ax 1\ (p\ _(d\p + q\ _(p'\
U Oj \q) V P J W) '

We let

J).
The matrices M(ßi) are said to be the generating matrices for continued
fractions, as we have:

Lemma 1 (Matrix interpretation for continued fractions). For any sequence
of non-zero integers {ax,a2,... ,an} the value of the corresponding continued
fraction is given through the following matrix product

[aua2,..«ian] [M(ax)M(a2) • • • M(an) • v]

where

Proof We observe that

[M(an) Q] [(ffj]=an ian]

and

Now the lemma follows by induction.
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Proofof the palindrome theorem. We wish to compare ^ [a\, <22,..., an]

and ^7 [an, an_ 1,..., dq]. By Lemma 1 we can write

P P'
— [M(ai)M(a2) • • • M(an) • v] and — [M(a„)M(a„_i) • • • M(ai) • v].

Let

M — M(fli)Af(a2) • * *

and

Then £ [M • v] and ^7 [M/ • We observe that

M(ai)M(a2)• • -M(a„))r - (M(an))T(M{an_x))T i))r
M(a„)M(a„_!) • • -A/fa)

since M(ai) is symmetric, where MT is the transpose of T. Thus

M' — Mt

Let

M
X Y

Z U

In order that the equations [M v] — g and [Mr • ^] L_ are satisfied it is

necessary that X P, X P', Z Q and Y Qf. That is, we should have :

Furthermore, since the determinant of M(a;) is equal to — 1, we have that

det(M) (-If.
Thus

PU-QQ' (-\ )n,

so that

ôô' a (-1)"+1 mod

and the proof of the Theorem is complete.



ON THE CLASSIFICATION OF RATIONAL KNOTS 383

Remark 3. Note in the argument above that the entries of the matrix

M ^ ^ I of a given continued fraction \a\, a2, an] £ involve
\Q uJ

also the evaluation of its palindrome [.an, an-1,,.., a\] ^
Returning now to the analysis of the palindrome cut, we apply Theorem 4

in order to evaluate the fraction of palindrome rational tangles T [^] and

S — [^7]. From the above analysis we have P P. Also, by our assumption

these tangles have continued fraction forms with odd length n, so we have

the relation
QQf 1 mod P

and this is the second of the arithmetic relations of Theorem 2.

If we cut K N(T) at any other pair of 'vertical' points of the subtangle

[an] we obtain a rational tangle in twist form isotopic to the palindrome
tangle S. Any such cut shall be called a palindrome cut.

Having analyzed the arithmetic of the palindrome cuts we can now return
to the special palindrome cuts on the subtangle [an]. These may be considered

as special cuts on the palindrome tangle S. So, the fraction of the tangle of
such a cut will satisfy the first type of arithmetic relation of Theorem 2

with the fraction of 5, namely a relation of the type q q[ mod p, which,
consequently, satisfies the second type of arithmetic relation with the fraction
of T, namely a relation of the type qtf I mod p. In the end a special
palindrome cut will satisfy an arithmetic relation of the second type. This
concludes the arithmetic study of the rational cuts.

T'

Figure 21

A non-rational cut

We now claim that the above listing of the three types of rational cuts is
a complete catalog of cuts that can open the link to a rational tangle : the
standard cuts, the special cuts and the palindrome cuts. This is the crux of
our proof.
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In Figure 21 we illustrate one example of a cut that is not rational. This is

a possible cut made in the middle of the representative diagram N(T). Here

we see that if T' is the tangle obtained from this cut, so that N(T') — K, then

D(T') is a connected sum of two non-trivial knots. Hence the denominator
K' — D(Tf) is not prime. Since we know that both the numerator and the

denominator of a rational tangle are prime (see [5], p. 91 or [19], Chapter 4,

pp. 32-40), it follows that T' is not a rational tangle. Clearly the above

argument is generic. It is not hard to see by enumeration that all possible
cuts with the exception of the ones we have described will not give rise to
rational tangles. We omit the enumeration of these cases.

This completes the proof that all of the rational tangles that close to a

given standard rational knot diagram are arithmetically equivalent.

/ ÈW 23 3^—^ Js/vV vV\( \YY\,(YYV/C/' j tdbw/
Special cutsStandard cuts

Palindrome cuts Special palindrome cuts

Figure 22

Standard, special, palindrome and special palindrome cuts

In Figure 22 we illustrate on a representative rational knot in 3-strand-
braid form all the cuts that exhibit that knot as a closure of a rational tangle.
Each pair of points is marked with the same number.

Remark 4. It follows from the above analysis that if T is a rational tangle
in twist form, which is isotopic to the standard form [[a\\, [a2],..., [an]], then

all arithmetically equivalent rational tangles can arise by any cut of the above

types either on the crossings that add up to the subtangle [ai] or on the

crossings of the subtangle \an].

3.2 The flypes

Diagrams for knots and links are represented on the surface of the two-

sphere, S2, and then notationally on a plane for purposes of illustration.
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Let K N(T) be a rational link diagram with T a rational tangle in

twist form. By an appropriate sequence of flypes (recall Definition 1) we

may assume, without loss of generality, that T is alternating and in continued

fraction form, i.e. T is of the form T — [[a\],[<22],... t [an]] with the afls
all positive or all negative. From the ambiguity of the first crossing of a

rational tangle we may assume that n is odd. Moreover, from the analysis

of the bottom twists in the previous subsection we may assume that T is in
reduced form. Then the numerator K N(T) will be a reduced alternating
knot diagram. This follows from the primality of K.

Let K and K' be two isotopic, reduced, alternating rational knot diagrams.

By the Tait Conjecture they will differ by a finite sequence of flypes. In
considering how rational knots can be cut open to produce rational tangles,

we will examine how the cuts are affected by flyping. We analyze all possible
flypes to prove that it is sufficient to consider the cuts on a single alternating
reduced diagram for a given rational knot K. Hence the proof will be complete
at that point. We need first two definitions and an observation about flypes.

Definition 3. We shall call region of a flype the part of the knot diagram
that contains precisely the subtangle and the crossing that participate in the

flype. The region of a flype can be enclosed by a simple closed curve on the

plane that intersects the tangle in four points.

Definition 4. A pancake flip of a knot diagram in the plane is an
isotopy move that rotates the diagram by 180° in space around a horizontal
or vertical axis on its plane and then it replaces it on the plane. Note that
any knot diagram in S2 can be regarded as a knot diagram in a plane.

N([+1]+R)

Figure 23

Decomposing into A([=L1] + R)
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In fact, the pancake flip is actually obtained by flypes so long as we allow
as background moves isotopies of the diagram in S2. To see this, note as

in Figure 23 that we can assume without loss of generality that the diagram
in question is of the form iV([±l] + R) for some tangle R not necessarily
rational. (Isolate one crossing at the 'outer edge' of the diagram in the plane
and decompose the diagram into this crossing and a complementary tangle,
as shown in Figure 23.) In order to place the diagram in this form we only
need to use isotopies of the diagram in the plane.

i Pancake js2- isotopy

Figure 24

Pancake flip

Note now, as in Figure 24, that the pancake flip applied to V([±l] -F R)

yields a diagram that can be Obtained by a combination of a planar isotopy,
S2 -isotopies and a flype. (By an S2 -isotopy we mean the sliding of an arc

around the back of the sphere.) This is valid for R any 2-tangle. We will use

this remark in our study of rational knots and links.

We continue with a general remark about the form of a.flype in any
knot or link in S2. View Figure 25. First look at parts A and B of this

figure. Diagram A is shown as a composition of a crossing and two tangles
P and Q. Part B is obtained from a flype of part A, where the flype
is applied to the crossing in conjunction with the tangle P. This is the

general pattern of the application of a flype. The flype is applied to a

composition of a crossing with a tangle, while the rest of the diagram can

be regarded as contained within a second tangle that is left fixed under the

flyping.
Now look at diagrams C and D. Diagram D is obtained by a flype using

Q and a crossing on diagram C. But diagram C is isotopic by a planar isotopy
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planar isotopy
pancake fa

flip and | S*- isotopy

/>

Figure 25

The complementary flype

to diagram A, and diagrams B and D are related by a pancake flip (combined
with an isotopy that swings two arcs around S2). Thus we see that:

Up to a pancake flip one can choose to keep either of the tangles P

Q fixed in performing a flype.
or

Let now K — N(T) and K' N(T') be two reduced alternating rational
knot diagrams that differ by a flype. The rational tangles T and T' are

in reduced alternating twist form and without loss of generality T may be

assumed to be in continued fraction form. Then, recall from Section 2 that
the region of the flype on K can either include a rational truncation of T or
some crossings of a subtangle [ai], see Figure 26. In the first case the two
subtangles into which K decomposes are both rational and each will be called
the complementary tangle of the other. In the second case the flype has really
trivial effect and the complementary tangle is not rational, unless i — 1 or n.

Figure 26

Flypes of rational knots
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For the outpoints of T on K N(T) there are three possibilities :

1. they are outside the region of the flype,

2. they are inside the flyped subtangle,

3. they are inside the region of the flype and outside the flyped subtangle.

If the outpoints are outside the region of the flype, then the flype is taking
place inside the tangle T and so there is nothing to check, since the new
tangle is isotopic and thus arithmetically equivalent to T.

We concentrate now on the first case of the region of a flype. If the

outpoints are inside the flyped subtangle then, by Figure 25, this flype can
be seen as a flype of the complementary tangle followed by a pancake flip.
The region of the flype of the complementary tangle does not contain the cut

points, so it is a rational flype that isotopes the tangle to itself. The pancake

flip also does not affect the arithmetic, because its effect on the level of the

tangle T is simply a horizontal or a vertical flip, and we know that a flipped
rational tangle is isotopic to itself.

If the region of the flype encircles a number of crossings of some [af\

then the cutpoints cannot lie in the region, unless i— 1 or n. If the cutpoints
do not lie in the region of the flype, there is nothing to check. If they do, then
the complementary tangle is isotopic to T, and the pancake flip produces an

isotopic tangle.

Finally, if the cutpoints are inside the region of the flype and outside the

flyped subtangle, i.e. they are near the crossing of the flype, then there are

three cases to check. These are illustrated in Figure 27.

(i)

(ü)

(iü)

< R 1

< R

< R

flype

flype

flype

x
x
X

Figure 27

Flype and cut interaction

In each of these cases the flype is illustrated with respect to a crossing
and a tangle R that is a subtangle of the link K N(T). Cases (i) and
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(ii) are taken care of by the trick of the complementary flype. Namely, as in

Figure 25, we transfer the crossing of the flype around S2. Using this crossing

we do a tangle flype of the complementary tangle, then we do a horizontal

pancake flip and finally an S2-isotopy, to end up with the right-hand sides of
Figure 27.

In case (iii) we note that after the flype the position of the cut points is

outside the region of a flyping move that can be performed on the diagram
K' to return to the original diagram K, see Figure 28. This means that

after performing the return flype the tangle T is isotopic to the tangle T".
One can now observe that if the original cut produces a rational tangle, then
the cut after the returned flype also produces a rational tangle, and this is

arithmetically equivalent to the tangle T. More precisely, the tangle T" is the

result of a special cut on N(T).

N(T) N(T') N(T")

Figure 28

Flype and special cut

With the above argument we conclude the proof of the main direction of
Theorem 2. From our analysis it follows that:

If K N(T) is a rational knot diagram with T a rational tangle then, up
to bottom twists, any other rational tangle that closes to this knot is available
as a cut on the given diagram.

We will now show the converse. We wish to show that if two rational
tangles are arithmetically equivalent, then their numerators are isotopic knots.
Let TuT2 be rational tangles with F(T\) | and F(T2) |r, with \p\ > \q\
and \p\ > \q'\,and assume first qq'1 mod p. If | with
n odd, and ,a\]isthe corresponding palindrome continued
fraction, then it follows from the Palindrome Theorem that qc{' 1 mod p.
Furthermore, it follows by induction that in a product of the form

M(a,)M{a2)---M{an)=(P
\q u J

we have that p>qandp>q",q>and q" > u whenever
aua2,...,an are positive integers. (With the exception in the case of



390 L.FL KAUFFMAN AND S. LAMBROPOULOU

M( 1) where the first two inequalities are replaced by equalities.) The
induction step involves multiplying a matrix in the above form by one

more matrix M(a), and observing that the inequalities persist in the product
matrix.

Hence, in our discussion we can conclude that \p\ > \q"\. Since \p\ > \q'\
and \p\ > \q"\, it follows that q' q", since they are both reduced

residue solutions of a mod p equation with a unique solution. Hence

\an, an_i,..., a\] |r, and, by the uniqueness of the canonical form for
rational tangles, T2 has to be:

T2 \ß-n— 1 ]? • • • i \ß\W -

For these tangles we know that N{T\) — N(T2). Let now T2 be another

rational tangle with fraction

By the Conway Theorem, this is the fraction of the rational tangle

P 1

q' + kp

1

jr + lk]

Hence we have (recall the analysis of the bottom twists) :

Finally, let F(St) f and F(S2) Then

1

q + kp j+k'
which is the fraction of the rational tangle
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We close the section with two remarks.

Remark 5. In the above discussion about flypes we used the fact that

the tangles and flyping tangles involved were rational. One can consider the

question of arbitrary alternating tangles T that close to form links isotopic

to a given alternating diagram K. Our analysis of cuts occurring before and

after a flype goes through to show that for every alternating tangle T, that

closes to a diagram isotopic to a given alternating diagram K, there is a cut

on the diagram K that produces a tangle that is arithmetically equivalent to

T. Thus it makes sense to consider the collection of tangles that close to an

arbitrary alternating link up to this arithmetic equivalence. In the general case

of alternating links this shows that on a given diagram of the alternating link
we can consider all cuts that produce alternating tangles and thereby obtain
all such tangles, up to a certain arithmetical equivalence, that close to links

isotopic to K.
Even for rational links there can be more than one equivalence class

of such tangles. For example, N(l/[3] + l/[3]) N([-6]) and F(l/[3] +
1 /[3 ]) 2/3 while E([-6]) -6. Since these fractions have different
numerators their tangles (one of which is not rational) lie in different
equivalence classes. These remarks lead us to consider the set of arithmetical
equivalence classes of altenating tangles that close to a given alternating
link and to search for an analogue of Schubert's Theorem in this general
setting.

Remark 6. DNA supercoils, replicates and recombines with the help
of certain enzymes. Site-specific recombination is one of the ways nature
alters the genetic code of an organism, either by moving a block of DNA
to another position on the molecule or by integrating a block of alien DNA
into a host genome. In [7] it was made possible for the first time to see

knotted DNA in an electron micrograph with sufficient resolution to actually
identify the topological type of these knots and links. It was possible to design
an experiment involving successive DNA recombinations and to examine the
topology of the products. In [7] the knotted DNA produced by such successive
recombinations was consistent with the hypothesis that all recombinations were
of the type of a positive half twist as in [+1]. Then D.W. Sumners and
C. Ernst [9] proposed a tangle model for successive DNA recombinations and
showed, in the case of the experiments in question, that there was no other
topological possibility for the recombination mechanism than the positive half
twist [+1]. Their work depends essentially on the classification theorem for
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rational knots. This constitutes a unique use of topological mathematics as a

theoretical underpinning for a problem in molecular biology.

4. Rational knots and their mirror images

In this section we give an application of Theorem 2. An unoriented knot
or link K is said to be achiral if it is topologically equivalent to its mirror
image —K. If a link is not equivalent to its mirror image then it is said

be chiral. One then can speak of the chirality of a given knot or link,
meaning whether it is chiral or achiral. Chirality plays an important role in
the applications of knot theory to chemistry and molecular biology. In [8] the

authors find an explicit formula for the number of achiral rational knots among
all rational knots with n crossings. It is interesting to use the classification
of rational knots and links to determine their chirality. Indeed, we have the

following well-known result (for example see [35] and [16], p. 24, Exercise

2.1.4; compare also with [31]):

THEOREM 5. Let K — N(T) be an unoriented rational knot or link,
presented as the numerator of a rational tangle T. Suppose that F{T)
p/q with p and q relatively prime. Then K is achiral if and only if
q2 — 1 mod p. It follows that the tangle T has to be of the form
[[aß, \a2], •.., [aß, [aß,..., [a2], [aß] for any integers au...,ak.

Note that in this description we are using a representation of the tangle
with an even number of terms. The leftmost twists [aß are horizontal, thus

\p\ > \q\. The rightmost starting twists are then vertical.

Proof With — T the mirror image of the tangle T, we have that

—K N{—T) and F{—T) — p/(—q). If K is isotopic to —K, it follows from
the classification theorem for rational knots that either q{—q) 1 mod p or

q=—q mod p. Without loss of generality we can assume that 0 < q < p.
Hence 2q is not divisible by p and therefore it is not the case that q m —q

mod p. Hence q2 m —1 mod p.

Conversely, if q2 — 1 mod p, then it follows from the Palindrome

Theorem that the continued fraction expansion of p/q has to be palindromic
with an even number of terms. To see this, let p/q [c\,. cn] with n

even, and let p'/q' [cn,...,cß. The Palindrome theorem tells us that

p' —p and that q q' — 1 mod p. Thus we have that both q and f satisfy
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the equation qx — 1 mod p and both q and 4 are between 1 and p — 1.

Since this equation has a unique solution in this range, we conclude that

q q'. It follows at once that the continued fraction sequence for p/q is

symmetric.

Figure 29

An achiral rational link

It is then easy to see that the corresponding rational knot or link K N(T)
is equivalent to its mirror image. One rotates K by 180° in the plane and

swings an arc, as Figure 29 illustrates. The point is that the crossings of the

second row of the tangle 7\ that are seemingly crossings of opposite type
than the crossings of the upper row, become after the turn crossings of the

upper row, and so the types of crossings are switched. This completes the

proof.

5. On connectivity

We shall now introduce the notion of connectivity and we shall relate it
to the fraction of unoriented rational tangles. We shall say that an unoriented
rational tangle has connectivity type [0] if the NW end arc is connected to
the NE end arc and the SW end arc is connected to the SE end arc. These are

the same connections as in the tangle [0]. Similarly, we say that the tangle
has connectivity type [oo] or [1] if the end arc connections are the same as

in the tangles [oo] and [+1] (or equivalently [—1]) respectively. The basic

connectivity patterns of rational tangles are exemplified by the tangles [0],
[oo] and [+1]. We can represent them iconically by

[0] x
[oo] ><

[1] X
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For connectivity we are only concerned with the connection patterns of the four
end arcs. Thus [n\ has connectivity x whenever n is odd, and connectivity

x whenever n is even.

Note that connectivity type [0] yields two-component rational links, whilst i

type [1] or [oo] yields one-component rational links. Also, adding a bottom
twist to a rational tangle of connectivity type [0] will not change the jj

connectivity type of the tangle, while adding a bottom twist to a rational |

tangle of connectivity type [oo] will switch the connectivity type to [1] and j

vice versa. ;

We need to keep an accounting of the connectivity of rational tangles in
relation to the parity of the numerators and denominators of their fractions.
We adopt the following notation: e stands for even and o for odd. The j

parity of a fraction p/q is defined to be the ratio of the parities (e or j

o) of its numerator and denominator p and q. Thus the fraction 2/3 is

of parity e/o. The tangle [0] has fraction 0 0/1, thus parity e/o.
The tangle [oo] has formal fraction oo 1/0, thus parity o/e. The j

tangle [+1] has fraction 1 1/1, thus parity o/o, and the tangle [—1] j

has fraction -1 —1/1, thus parity o/o. We then have the following j

result. j

THEOREM 6. A rational tangle T has connectivity type x if and only if
its fraction has parity e/o. T has connectivity type >< if and only if its

fraction has parity o/e. Finally, T has connectivity type % if and only if its

fraction has parity o/o.

Proof. Since F([0]) 0/1, F([±l]) ±1/1 and F([oo]) 1/0, the

theorem is true for these elementary tangles. It remains to show by induction
that it is true for any rational tangle T. Note how connectivity, type behaves

under the addition and product of tangles :

X + X -
X + - X

x + >< ><
x±>< ><

>< + >< ><>< 8><
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x*x ><

X*x x

X*><=x
X * >< X

><*>< ><

The symbol Ö stands for the value of a loop formed. Now any rational

tangle can be built from [0] or [oo] by successive addition or multiplication
with [il]. Thus, from the point of view of connectivity, it suffices to show

that [7] +[il] and [7]* [il] satisfy the theorem whenever [T] satisfies the

theorem. This is checked by comparing the connectivity identities above with

the parity of the fractions. For example, in the case

X i x x we have o/o i ojo — e/o

exactly in accordance with the connectivity identity. The other cases correspond

as well, and this proves the theorem by induction.

COROLLARY 1. For a rational tangle T the link N(T) has two components

if and only if T has fraction F(T) of parity e/o.

Proof By the Theorem we have F(T) has parity e/o if and only if T has

connectivity type x. It follows at once that N(T) has two components.

Another useful fact is that the components of a rational link are individually
unknotted embeddings in three dimensional space. To see this, observe that

upon removing one strand of a rational tangle, the other strand is an unknotted

arc.

6. The oriented case

Oriented rational knots and links are numerator (and denominator) closures
of oriented rational tangles. Rational tangles are oriented by choosing an
orientation for each strand of the tangle. Two oriented rational tangles are

isotopic if they are isotopic as unoriented tangles via an isotopy that carries the
orientation of one tangle to the orientation of the other. Since the end arcs of a

tangle are fixed during a tangle isotopy, this means that isotopic tangles must
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have identical orientations at their end arcs. Thus, two oriented tangles are
isotopic if and only if they are isotopic as unoriented tangles and they have

identical orientations at their end arcs. It follows that a given unoriented
rational tangle can always yield non-isotopic oriented rational tangles, for
different choices of orientation of one or both strands.

In order to compare oriented rational knots via rational tangles we are only
interested in orientations that yield consistently oriented knots upon taking the

numerator closure. This means that the two top end arcs have to be oriented

one inward and the other outward. Same for the two bottom end arcs.

Reversing the orientation of one strand of an oriented rational tangle that

gives rise to a two-component link will usually yield non-isotopic oriented
rational links. Figure 30 illustrates an example of non-isotopic oriented rational
links, which are isotopic as unoriented links. But reversing a single strand

may also yield isotopic oriented rational links. This will be the subject of the

next section.

M close8 close

LA 88
Figure 30

Non-isotopic oriented rational links

An oriented knot or link is said to be invertible if it is oriented isotopic
to its inverse, i.e. the link obtained from it by reversing the orientation of
each component. We can obtain the inverse of a rational link by reversing the

orientation of both strands of the oriented rational tangle of which it is the

numerator. It is easy to see that any rational knot or link is invertible. See

the example on the right-hand side of Figure 31.

Q.Q
O I O

Figure 31

Isotopic oriented rational knots and links



ON THE CLASSIFICATION OF RATIONAL KNOTS 397

LEMMA 2. Rational knots and links are invertible.

Proof. Let K N(T) be an oriented rational knot or link with T an

oriented rational tangle. We do a vertical 180°-rotation in space, as the left-
hand side of Figure 31 demonstrates. This rotation is a vertical flip for the

rational tangle T. Let T' denote the result of the vertical flip of the tangle T.
The resulting oriented knot K' N(T') is oriented isotopic to K, while the

orientation of T' is the opposite of that of T on both strands, and thus on
all end arcs. But as we have already noted T is isotopic to its vertical flip as

unoriented tangles, thus they will have the same fraction. It follows that 7y

can be isotoped to T through an (unoriented) isotopy that leaves the external
strands fixed. Therefore, the result of the vertical 180°-rotation is the tangle
T but with all orientations reversed. Thus K' is the inverse of K, and from
the above K is oriented isotopic to its inverse.

Using this observation we conclude that, as far as the study of oriented
rational knots is concerned, all oriented rational tangles may be assumed

to have the same orientation for their two upper end arcs. Indeed, if the
orientations of the two upper end arcs are opposite of the fixed ones we do a

vertical flip to obtain the orientation pattern that agrees with our convention.
We fix this orientation to be downward for the NW end arc and upward for the
NE end arc, as in the examples of Figure 30 and as illustrated in Figure 32.

Figure 32

Compatible and incompatible orientations

Thus we may reduce our analysis to two basic types of orientation for the
four end arcs of a rational tangle. We shall call an oriented rational tangle of
type I if the SW arc is oriented downward and the SE arc is oriented upward,
and of type II if the SW arc is oriented upward and the SE arc is oriented
downward, see Figure 32. From the above remarks any tangle is of type I or
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type II. Two tangles are said to be compatible it they are both of type I or
both of type II and incompatible if they are of different types.

In order to classify oriented rational knots, seen as numerator closures of
oriented rational tangles, we will always compare compatible rational tangles.

While the connectivity type of unoriented rational tangles may be [0], [oo]
or [i] note that an oriented rational tangle of type I will have connectivity type
[0] or [oo] and an oriented rational tangle of type II will have connectivity
type [0] or [1].

Bottom twist basics. If two oriented tangles are incompatible, adding
a single half twist at the bottom of one of them yields a new pair of
compatible tangles, as Figure 32 illustrates. Note also that adding such a

twist, although it changes the tangle, does not change the isotopy type
of the numerator closure. Thus, up to bottom twists, we are always able

to compare oriented rational tangles of the same orientation type. Further,
note that if we add a positive bottom twist to an oriented rational tangle T
with fraction F(T) p/q we obtain the incompatible tangle T1 T * [+1]
with fraction F(T') 1/(1 + \/F(T)) — p/(p + q). Similarly, if we add a

negative twist we obtain the incompatible tangle T" T * [—1] with fraction

F{T") l/(— 1 + 1 /F(T)) p/(—p + q). It is worth noting here that the

tangles T' and T" are compatible and p + q (—p + q) mod 2p, confirming
the Oriented Schubert Theorem.

Schubert [31] proved his version of Theorem 3 by using the 2-bridge
representation of rational knots and links. We give a tangle-theoretic proof of
Schubert's Oriented Theorem, based upon the combinatorics of the unoriented

case and then analyzing how orientations and fractions are related.

In our statement of Theorem 3 in the introduction we restricted the

denominators of the fractions to be odd. This is a restriction made for the

purpose of comparison of tangles. There is no loss of generality, as will be

seen when we analyze the palindrome case in the proof at the end of this

section. What happens is this : In the case of p odd and only one of q and <f

even, one finds that the corresponding tangles are incompatible. We can then

compare them by adding a bottom twist to one of the tangles. Adding this

twist, the even denominator is replaced by an odd denominator. In the case

where p is odd and both q and q[ are even, one finds that the corresponding

tangles are compatible. In this case, we add a twist at the bottom of each
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tangle to preserve the hypothesis that both denominators are odd. This extra

twisting yields compatible tangles and a successful comparison.

The strategy of our proof is as follows. Consider an oriented rational knot

or link diagram K given in standard form as N(T), where T is a rational tangle

in continued fraction form. Our previous analysis tells us that, up to bottom

twists, any other rational tangle that closes to this knot is available as a cut

on the given diagram. If two rational tangles close to give K as an unoriented

rational knot or link, then there are orientations on these tangles, induced from

K, so that the oriented tangles close to give K as an oriented knot or link.
Two tangles so produced may or may not be compatible. However, adding

a bottom twist to one of two incompatible tangles results in two compatible
tangles. It is this possible twist difference that gives rise to the change from
modulus p in the unoriented case to the modulus 2p in the oriented case.

We now analyze when, comparing with the original standard cut, another

cut produces a compatible or incompatible tangle. See Figure 34 for an example

illustrating the compatibility of orientations in the case of the palindrome cut.
Note that reducing all possible bottom twists implies \p\ > \q\ for both

tangles, if the two reduced tangles that we compare each time are compatible,
or for only one, if they are incompatible. Recall Figure 12 and the related

analysis for the basic arithmetic of the bottom twists.

Even bottom twists. The simplest instance of the classification of
oriented rational knots is adding an even number of twists at the bottom of
an oriented rational tangle T. We then obtain a compatible tangle T* 1 / [2n],
and N(T * l/[2n]) ~ N(T). If now F(T) p/q, then F(T * l/[2n\)
F(l/([2n] + l/T)) 1/(2n + 1/F(T)) p/(2np + q). Hence, if we set

Inp + q q' we have

q q' mod 2p,

just as Theorem 3 predicts.

We then have to compare the special cut and the palindrome cut with
the standard cut. Here also, the special cut is the easier to see whilst the
palindrome cut requires a more sophisticated analysis. Figure 17 explained
how to obtain the unoriented tangle of the special cut. Moreover, by Remark 2,
adding a bottom twist to the tangle of the special cut yields a tangle isotopic
to the tangle of the standard cut.

Figure 33 demonstrates that the special cut yields oriented incompatible
tangles. More precisely, in the case of the special cut we are presented with
the general fact that for any tangle R, 7V([+1] + R) and 7V([—1] - \/R)
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N([1] +R)

A /

N([-1] - ~

Isotopic oriented knots

N(([-1] " p)* [+1])

Isotopic oriented tangles

Figure 33

The oriented special cut yields incompatible tangles

are unoriented isotopic. With orientations coming from the cut we find that
S [+1] + R and S' [— 1] — l/R are incompatible. Adding a bottom
twist yields oriented compatible tangles, which from the above are isotopic.
So, there is nothing to check and the Oriented Schubert Theorem is verified
in the strongest possible way for the oriented special cut.

Figure 34

Oriented standard cut and palindrome cut

We are left to examine the case of the palindrome cut. In order to analyze
this case, we must understand when the standard cut and the palindrome cut are

compatible or incompatible. Then we must compare their respective fractions.

Figure 34 illustrates how compatibility is obtained by using a bottom twist,
in the case of a palindrome cut. In this example we illustrate the standard
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and palindrome cuts on the oriented rational knot K N(T) — N(Tf) where

T [[2], [1], [2]] and T' its palindrome. As we can see, the two cuts place

incompatible orientations on the tangles T and T'. Adding a twist at the

bottom of T' produces a tangle T" T' * [-1] that is compatible with T.

Now we compute F(T) — F(Tf} 8/3 and F{T") — F(T' * [—1]) 8/ — 5

and we notice that 3 • (—5) 1 mod 16, as Theorem 3 predicts.

Figure 35

The six connection structures, compatibility and parity of the palindrome cut

The study of the compatibility or not of the palindrome cut involves a

deeper analysis along the lines of Theorem 6. With the issues of connectivity
in place we can begin to analyze the different connectivities and parities
in the standard and palindrome cuts on a rational knot or link in standard

3-strand-braid representation. See Figure 35. In this figure we have enumerated

the six connection structures for a 3-strand braid (corresponding to the six

permutations of three points) with plat closures (of the braid augmented by
an extra strand) corresponding to oriented rational knots and links. These

closed connection patterns shall be called connectivity charts. We then show
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corresponding to each connectivity chart the related standard and palindrome
cuts and the connectivity and parity of the corresponding tangles. Compatibility
or incompatibility of these tangles, specified by an 'i' or 'c\ can be read from
the oriented diagrams in the figure.

Proof of the palindrome cut. It suffices to verify the Theorem in all cases

of the comparison of standard and palindrome cuts on a rational knot K in
continued fraction form. We can assume that K — N([[a\],..., [an]]) with n

odd. Then the tangle T — [[a\\,..., [an]] is, by construction, the standard cut

on K. We know that the matrix product

encodes the fractions of T and its palindrome T' [[an],..., [<zi]], with
F(T) — p/q and F(T') =p/q'. Note that, since Det{M) — — 1, we have the

formula

q q' 1 + up

relating the denominators of these fractions.

Case 1. p odd, Part A:

If only one of q or q' is even (parts 1 and 3 of Figure 35), then the

fact that qq' 1 + up implies the parity equation e — 1 -\- uo, hence u

is odd. Now refer to Figure 35 and note that the standard and palindrome
cuts are incompatible in both cases 1 and 3. (The cases are {o/e,o/o} and

{o/o,o/e}.) In order to obtain compatibility, add a bottom twist to the cut
with even denominator. Without loss of generality, we may assume that f is

even, so that we will compare p/q and p/ip + qJ). Note that

Since u is odd and q is odd, it follows that (u+q) is even. Hence, q(p+<f) 1

mod 2p, proving Theorem 3 in this case.

Case 1. p odd, Part B :

Now suppose that both q and q' are even. We are in part 4 of Figure 35

and the two cuts are compatible. Therefore we apply a bottom twist to each

cut giving the fractions p/(p-\-q) and p/(p + qf) for comparison. Note that

q(p + q') qp + qq' qp + 1 + up I + (u + q)p .'

(p + 4)(p + q') p2 + qp + q'p + qq' i + (p + q + 4 + u)p
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and we have the parity equation

p + q-\-q/jrU oJreJre + o e.

Hence (p T- q)(p + q') 1 mod 2p verifying the Theorem in this case.

Case 1. p odd, Part C:

Finally (for Case 1) suppose that q and c[ are both odd. Then the parity

equation corresponding to q 4 — 1 + up is

o — 1 + uo

Hence u is even so that qq' 1 mod 2p. We are in part 2 of Figure 35,

and the standard and palindrome cuts are compatible. This is in accord with
the congruence above, hence the Theorem is verified in this case.

Case 2. p even :

Now we assume that p is even. This corresponds to parts 5 and 6 in

Figure 35 (two components). In part 5 the cuts are compatible, while in part 6

the cuts are incompatible. In either case, both q and c[ are odd so that the

fractions p/q and p)4 both have the parity e/o. The equation qq' 1 + up
has corresponding parity equation o — 1 + ue, and u can be either even or
odd. In order to accomplish the proof of Case 2 we will show that

1. u is even if and only if the standard and palindrome cuts are compatible.

2. u is odd if and only if the standard and palindrome cuts are incompatible.

We prove these statements by induction on the number of terms in the

continued fraction [a\,..., an]. The induction step consists in adding two
more terms to the continued fraction (thereby maintaining an odd number
of terms). That is, we shall examine a continued fraction in the form
Tn+2 — [ait - - ,£77+2] that is given to be in cases 5 or 6 of Figure 35. See

Figure 36. In Figure 36 the numbers that label the diagrams refer to the cases
in Figure 35. We consider the structure of the "predecessor" Tn [a\,... ,an]
of r„+2 which may be in the form 5 or 6, as shown in Figure 36 (in which
case we can apply the induction hypothesis) or it may be in one of the other
four cases shown in Figure 36.

In Figure 36 we have shown the connectivity patterns that result in Tn+2

landing in cases 5 or 6. In this figure the rectangular boxes indicate the internal
connectivity of Tn, and we have separated these specific cases into three types
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connection
possibilities:
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C
c 3 c 33 OO
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G D

5 or 6 5 or 6

Figure 36

Inductive connections

labeled A, B and C (not to be confused with subcases of this proof). In this

figure each case is labeled with the type of the predecessor. Thus in the A

row one sees the labels 3 and 4 because the boxed patterns are respectively
of types 3 and 4. In rows A and B the left hand entries are of type 6 after
the addition of the two new terms, and the right hand entries are of type 5.

We then check each of these cases to see that the induced value of u in
Tn+2 has the right parity. The calculations can be done by multiplication of
generating matrices for continued fractions just using the parity algebra. For

example, in Case A of Figure 36 we add two new odd parity terms to Tn

in order to obtain Tn+2- Thus we multiply the parity matrix for Tn by the

product

0 1

1 0

0 1

1 0

e o

o 1

in order to obtain the parity matrix for Tn+2-

In particular, if Tn is in case 3 of Figure 35, then it has fraction parities

o/o and oje and hence parity matrix e). Multiplying this by ^ ^ j
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we obtain

Thus the new u for Tn+2 is even. Since the connectivity diagram for Tn+2 in
this case, as shown in Figure 36, has compatible standard and palindrome cuts,
this result for the parity of u is one step in the verification of the induction

hypothesis. Each of the six cases is handled in this same way. We omit the

remaining details and assert that the values of u obtained in each case are

correct with respect to the connection structure. This completes the proof of
Case 2.

Since Cases 1 and 2 encompass all the different possibilities for the

standard and palindrome cuts, this completes the proof of the Oriented Schubert
Theorem.

7. Strongly invertible links

An oriented knot or link is invertible if it is oriented isotopic to the
link obtained from it by reversing the orientation of each component. We
have seen (Lemma 2) that rational knots and links are invertible. A link
L of two components is said to be strongly invertible if L is ambient
isotopic to itself with the orientation of only one component reversed. In
Figure 37 we illustrate the link L 7V([[2], [1], [2]]). This is a strongly
invertible link as is apparent by a 180° vertical rotation. This link is well-
known as the Whitehead link, a link with linking number zero. Note that
since [[2], [1], [2]] has fraction equal to 2 + 1/(1 + 1/2) 8/3 this link is
non-trivial via the classification of rational knots and links. Note also that
3-3 1 + 1-8.

N([[2], [1], [2]]) W
the Whitehead Link
F(W) 2+1/(1+1/2) 8/3
3-3 1 +1-8

Figure 37

The Whitehead link is strongly invertible
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In general we have the following

THEOREM 7. Let L N(T) be an oriented rational link with associated

tangle fraction F(T) p/q of parity e/o, with p and q relatively prime
and \pI > \q\. Then L is strongly invertible if and only if q2 — 1 + up with
u an ocld integer. It follows that strongly invertible links are all numerators

of rational tangles of the form [\a\\, \a2], * *, 8 [ak], [a], [ak],..., \a2], [a{\] for
any integers a\..... ak, a.

Proof In T the upper two end arcs close to form one component of L
and the lower two end arcs close to form the other component of L. Let
T' denote the tangle obtained from the oriented tangle T by reversing the

orientation of the component containing the lower two arcs and let N(T) — l!.
(If T" denotes the tangle obtained from the oriented tangle T by reversing
the orientation of the component containing the upper two arcs we have seen

that by a vertical 180° rotation the link N(Tf) is isotopic to the link N{T").
So, for proving Theorem 7 it suffices to consider only the case above.)

Note that T and T' are incompatible. Thus to apply Theorem 3 we need

to perform a bottom twist on T'. Since T and T' have the same fraction

p/q, after applying the twist we need to compare the fractions p/q and

p/(p + q). Since q is not congruent to (p -f q) modulo 2p, we need to
determine when q(p + q) is congruent to 1 modulo 2p. This will happen

exactly when qp + q2 1 +2Kp for some integer K. The last equation is the

same as saying that q2 l+up with u 2K — q odd, since q is odd. Now it
follows from the Palindrome Theorem for continued fractions that cp 1 + up
with u odd and p even if and only if the fraction p/q with \p\ > \q\ has a

palindromic continued fraction expansion with an odd number of terms (the

proof is the same in form as the corresponding argument given in the proof
of Theorem 5). That is, it has a continued fraction in the form

[a\, a2...., an. ot. an. an— %..... a2, af\.

It is then easy to see that the corresponding rational link is ambient isotopic
to itself through a vertical 180° rotation. Hence it is strongly invertible. It
follows from this that all strongly invertible rational links are ambient isotopic
to themselves through a 180° rotation just as in the example of the Whitehead

link given above. This completes the proof of the Theorem.

Remark 7. Excluding the possibility T — [oo], as F(T) =1/0 does not
have the parity e/o, we may assume q / 0. And since q is odd (in order
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that the rational tangle has two components), the integer u 2K - q in the

equation q2 1 + up cannot be zero. It follows then that the links of the

type N([2n]), for n G Z, 0, with tangle fraction 2n/l are not invertible

(recall the example in Figure 30). Note that, for n 0 we have T [0] and

F(T) 0/1, and in this case Theorem 7 is confirmed, since l2 1 + wO,

for any u odd. See Figure 38 for another example of a strongly invertible

link. In this case the link is L — V([[3], [1], [1], [1], [3]]) with F(L) 40/11.
Note that ll2 1 + 3-40, fitting the conclusion of Theorem 7.

L N([[3], [1], [1], [1], [3]])

ij Figure 38

;| An example of a strongly invertible link

j
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