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exactly as above and may be omitted. The only change in our work consists
of the insertion of a factor x in the integral on the right in (87) and in each
of the integrals deriving therefrom, and one arrives at the analogue of (97)
for J'(r,xk*) without further ado.

In treating d/dr of the second right-hand integral in (42) it is better,
when [ = 0, to replace the path I" used there by I, shown in figure 8. The
formulas (43) and (44) can be used in the resulting integral, and show it to
be an analytic function of xk?> when r > 0.

Proof of the theorem is now complete. Before going further, and coming
to the end of this paper, it is worthwhile to point out that the development

(97), the same as
2/x rx

Z 2]/ 22 — Ri(1/x) dx,

is what we would obtain formally if we substituted (90) into the expansion of
e’® in powers of #(x), grouped together all the terms involving each power
k% and, finally, plugged the resulting series into the (meaningless) formal

expression
1 e—2/x69(x)erx P
X .
) K2l+2

We now recall the conclusions of the discussion pursued at the beginning
of this §. According to them, the last theorem has the

COROLLARY. The asymptotic development (86) holds for each of the
functions A;(n).

This immediately implies the corresponding development (85) for the quantities
6;(n) appearing in (77). |

ADDENDUM

At the beginning of §9 and again in §12 it was said that the functions
wo(r, k?) and vy (r, k%) = r~tw,(r,x%) — the first given by (40) — are not
analytic in x* at the point « = 0. This can be seen by referring to a
(complicated) explicit representation of wvy(r, k%) in terms of known special
functions; one may, for instance, consult pp.181-184 of [4] and especially
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formula (2.35) on p. 181 therein. Although the non-analyticity is not actually
used in the preceding development, it seems worthwhile to see how it can be
verified directly, without resorting to special technical material. Let us do that.

It is enough, in light of the observation at the beginning of the proof of
Theorem 6 (§12), to show that the function J(r, k%) given by (87), viz.,

1 — 1/ rx
U X —K 4
J(r’”)—/m (x—!—/i) (2 — K2)H1 x,

is not even analytic in k at the point kK = 0. For 0 < kx < min(1,1/]) this
function has an expansion in powers of r with coefficients depending on K,
and it suffices to show that the latter are not all analytic at « = 0. In fact,
the first 21 + 1 of them are (they can be easily computed), and we have to
go out to the coefficient of r**! in order to observe failure of analyticity.
Here we only consider the case where [ = 0 so as to keep things simple. The
treatment for larger values of [ is very similar, but a bit more involved.
Taking, then, [ = 0, we look at the value of

8J(r,f£2)_KJ(r l{z):/l<x—/§)1/ﬂ e™ .

Or X+ K x+ kK
for r = 0, that is, at

1 . 1/k
A(n):/ (x m) dx '
k X+EK X+ K
With (x — x)/(x + k) = s, this becomes

11—k

= Sl//{
98) A(K) = / ds ,
0

11—

and we wish to show that the function A(k), so far only defined for 0 < x < 1,
cannot thence be extended into any neighbourhood of 0 so as to be analytic
therein.

For 0 <k <1 we have 0 < (1 —k)/(1+ k) <1 and the expansion of
1/(1~s) in powers of s can be substituted into the right side of (98), yielding

(L= m\E (= B/ + Ry
25) A(””)‘( ) Z A/ +n

Here,

(1 __./Q)l//ﬁ ” 2/412 2!%4
= @XP|=—a == — — —
1+ kK ( )
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(cf. in §4), a function obviously analytic (in %) for || < 1 (with £ complex).
Hence A(k) can be extended from (0,1) so as to be analytic near O if and
only if

(o o]

1 - 1 4
(100 B =3 (1%( L+1)

n=1

can be so extended.
The series in (100) converges uniformly on any compact set of (complex)
K in the open right half plane, since |(1 — x)/(1 + k)| < 1 precisely in that
region. The function B(k), initially specified only for 0 < x < 1, thus has
an analytic extension to the half plane Re x > 0. To ensure analyticity of
a corresponding extension of A(k), we should further require |x| < 1 (see

above); we can thus be sure that A(x) has, at any rate, an analytic extension
from (0, 1) to the half-disk

D, ={k; Rex>0 and || <1},

and continues to be given by (99) therein.
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The transformation x — (1 — k)/(1 + k) takes D, conformally onto
itself so, for k € Dy, we have paths 7, lying in Dy (save for their initial
endpoints) and running from 0 out to (1—k) / (1+/§) (see figure 10). Referring
to (99) we see that a version of (98) holds for K € D, ; we have, namely,

— S

sl/n
(101) A(FL)Z/ 7 ds,
Y=

where ~y, is any of the paths just described. (In integrals like the one on the
right, s*/* is understood to be obtained from the principal branch of logs.)

Take now any integer m > 1; then (101) can be rewritten

S(l/n)+m

m—1
— (1//€)+nd d
A(K) nzzzo/ns .H—/W s s,

that 1s,

l=—m\Yr KA = R)/A+R) sA/mtm
(102) A(m)~(1+n) Z: o +/% ——ds.

And this formula, valid for x € D, , enables us to continue A(x) analytically
across the segment (0,1), from D, into the intersection of the open unit disk
with the second quadrant (excluding the negative real axis).

Let, indeed, C be any compact set passing, across (0,i), from D, into
the second region; then |1/x| will be bounded for k € C and hence Re (1/k)
bounded below there, so, if the integer m in (102) is large enough, Re (1/k)+m
will be > —1 on C. For such «, on (0,i) or beyond it, (1 — k)/(1 + k) will
lie in the open fourth quadrant, and there will be paths . like the dotted
one shown in figure 10, lying in the fourth quadrant and going from O out
to (1 — k)/(1 4+ k) while avoiding the point 1. The integral in (102) will
thus make sense with such paths v, for Kk € C, and obviously continue to
represent an analytic function of k there. At the same time, the sum in (102)

will remain analytic for K in the second quadrant, not on the real axis, and
with |k| < 1.

It is now claimed that when K, in the open second quadrant, tends to
any point —1/p, p = 2,3,..., the function A(k), specified in the way
just described, tends to oo. Fixing any such p, we can choose an integer
m > p such that (102) will be valid for the k in question, with indeed

S s
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Re(1/k) +m > —1 and bounded away from —1 as k — —1/p. For the
we can take circular arcs lying in the fourth quadrant, orthogonal to the real
axis and running from 0 to (1 —k)/(1 4 k) ; these v, will stay away from 1
while (1 —-k)/(1+K) — (@+1)/(p—1), ie., while K — —1/p. Then |1 — s|
will be uniformly bounded away from O for s on these <, , and the integral
in (102) thus remain bounded as k — —1/p. At the same time, however, the
sum in (102) will tend to oo like 1/((1/k)+ p). Hence A(k) will tend to oo
as k — —1/p in the manner described.

This being so for each of the points —1/p, p=2,3,..., A(k) can have
no analytic continuation from D, into any neighbourhood of 0, since any
such continuation would have to coincide with the one just constructed on the
intersection of the open second quadrant with the neighbourhood in question.
That is what we needed to prove.

Before concluding, I must again thank my friend Victor Havin for having,
during a conversation, expressed a thought which, indirectly, got me onto a
path leading to the above argument.
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