
FINITE GROUP ACTIONS ON THE 7-SPHERE

Autor(en): Geiges, Hansjörg / THOMAS, Charles B.

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 46 (2000)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Persistenter Link: https://doi.org/10.5169/seals-64810

PDF erstellt am: 26.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-64810


L'Enseignement Mathématique, t. 46 (2000), p. 403-410

FINITE GROUP ACTIONS ON THE 7-SPHERE

by Hansjörg Geiges and Charles B. Thomas

The aim of this note is to prove the following theorem.

THEOREM, (i) Let tt be a finite group acting freely and topologically

on S1. Then tt can also act freely and linearly on S7.

(ii) For odd natural numbers 2s — 1 different from 1, 3 or 1, one can

always find a free smooth action on S2s~l by a finite group which cannot act

freely and linearly.

A weaker version of this theorem was announced in [3]. The proof of
the theorem uses only classical results about finite group actions on spheres,

mostly from [15], and it is a little surprising that this theorem has not been

observed before. The interest of this result in the context of more recent

investigations on geometric structures on spherical space forms is explained
in [3] and [4].

The (as yet unproven) analogue of part (i) of our theorem in dimension 3

forms an essential step in Thurston's géométrisation programme [13]. According

to Thurston's conjecture, any 3-manifold covered by S3 is actually a

quotient of S3 under a free linear action of some finite group tt. This splits
into proving the said analogue of our theorem, and then showing that the

only possible actions of tt are indeed linear, i.e. given by fixed-point free

representations of n in SO(4). A proof of the former was announced in [10],
but at present it is not clear whether all details of the argument can be filled
in. For some groups acting on S3 it is known that they can only act linearly,
cf. [4]. See [5, Problems 3.37 and 3.45] for further references on this issue.
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The only finite groups acting freely and topologically on Sl are the cyclic
groups, and any such action is conjugate to a linear one.

Notice that part (i) of our theorem does not make any statement about
the possible actions of the groups tt on S7. As is well-known, and contrary
to what one hopes to be true in dimension 3, there are many exotic smooth
actions (i.e. actions not conjugate to a linear one) on spheres of dimension
> 5, even by cyclic groups, see [14, Chapter 14].

The proof of part (i) of the theorem is case by case and exploits the
discussion of groups with periodic cohomology (or periodic groups, for short)
in [15]. First we collect some fundamental and well-known facts. Recall that a

finite group tt is said to satisfy the pq -condition (p^q prime) if all subgroups
of 7r of order pq are cyclic.

Since the group tt acts freely on S7, it has periodic cohomology, and the

(minimal) cohomological period divides 8. As a periodic group, 7r satisfies

all p2-conditions, cf. [1, Thm. VI.9.5]. By [8] the fact that tt acts freely on

some sphere implies that all 2p-conditions are satisfied; there are no free
actions by a dihedral group on S2*-1.

A group of order pq with p and q distinct odd primes must be either the

cyclic group Cpq or the metacyclic group DPtq given as a nontrivial extension

of Cp by Cq. But DPtq has cohomological period equal to 2q, cf. [2, p. 229],
so a group tt as in part (i) of our theorem also satisfies all pq -conditions.
Recall from [15, Thm. 5.3.1] that the pq -conditions are necessary for the

existence of a free linear action on some sphere.

We now distinguish between the solvable and non-solvable cases.

A. If 7T is solvable, then Theorem 6.1.11 of Wolf's monograph [15]
applies. This theorem gives a complete list of the finite solvable groups with
periodic cohomology, separated into four classes, and states that such a group
satisfies all pq -conditions if and only if tt can act freely and linearly on

some sphere. As it stands, however, it is not strong enough to guarantee the

existence of a free linear action on S7, so we need to take a closer look at

the four classes in Wolf's classification theorem.

I. The first class consists of the metacyclic groups of order mn with
presentation

{A,B\Am Bn1, BAB~l=Ar},
where m > 1, n > 1, gcd(n(r — 1),m) 1, and rn 1 mod m. Furthermore,
the fact that n satisfies all pq-conditions is equivalent to the following: if d
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is the smallest natural number such that / 1 mod m, then njd is divisible

by every prime divisor of d. This numerical condition will be satisfied in all

solvable cases II to IV below.

The cohomological period of ir is 2d (cf. [2, p. 229]), so we must have

d e {1,2,4}. Furthermore, Wolf [15, Thm. 5.5.1] gives explicit fixed-point free

linear representations of (real) degree 2d. Recall that a linear representation

p : 7T —> GL(2d) is called fixed-point free if p{g) does not have 1 for an

eigenvalue for 1 g G tt Furthermore, a real linear representation is always

equivalent to an orthogonal representation, so fixed-point free representations
of degree 2d induce a free linear action on S2d~l (and of course also on
S2dk~\ for any p0Sitive integer k). In fact, one can always obtain unitary
representations, cf. [16].

Notice that if tt is a metacyclic group of odd order, then the only possibility
for d is that it equal 1, which means that tt is actually a cyclic group.

II. The second class of solvable groups ir admit a presentation with
generators A,5,R, relations as in I, and additional relations

R2B"!2 RAR~lA1, RBR~l Bk

subject to the numerical conditions as in I and the further conditions

I2 1 mod m,,v odd,

k-1 mod 2", 1 mod n.

The order of this group is 2mn. With d defined as in I, again we must have
d e {1,2,4}, since the subgroup generated by and B is of type I with
cohomological period 2d. According to [15, p. 180], the group tt admits a

fixed-point free representation of real dimension 4 So we only need to show
that the case d4cannotarise.

Indeed, on the one hand the numerical conditions stipulate | + 1, so
4 I k + 1. On the other hand, since r*"1 1 mod we also know that
d I k — 1, Clearly this is impossible for

We now want to identify such a group tt of type II with one of the
groups C„„ x Q(2"+1m2,»i3,m4) described by Milnor [8], with the ni; odd
and pairwise coprime. We only summarise the observations necessary to make
this identification.
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The subgroup of tt generated by R and Bv is isomorphic to the quaternion

group Q(2M+1). The normal subgroup of tt generated by A and B2" is cyclic
of odd order mv, and we have a split extension

Cmv >-» tt -» Q(2W+1).

The generators R and Bv of Q(2M+1) act on Cmv as a pair of commuting
involutions, so we get a splitting

Cmv Cm\ ^ Cm2 X Cm?> X Cm4

with the mi pairwise coprime and such that

• R and Bv act trivially on Cmi,

• Bv inverts elements in Cm and Cm,

• R inverts elements in Cm and Cm4.

This identifies tt as a Milnor group as described above, cf. [2, p. 229].

Fixed-point free representations of the groups Q(2w+1ra2, m^) in SU(4)
are described in [2, p. 255]. Taking the product with a group of coprime order

never constitutes a problem: if p is a fixed-point free unitary representation
of some group ir, then p{t,g) exp(2?

defines a fixed-point free representation of x 7r if m is coprime to 17r |.

III. The third class of solvable groups described by Wolf has a presentation
with generators A,#,P, Q, relations and numerical conditions as in I, and

further relations

P41, P2 Q2= (PQ)2,AP

BPB~l=Q,

Furthermore, n has to be odd and divisible by 3.

As in the previous cases we have d G {1,2,4}, and from d | n we
conclude d 1. This implies the relation BAB~l — A. Write n in the form

n 3uv with u > 1 and v not divisible by 3. Then the subgroup of tt
generated by P, Q and Bv is the generalised binary tetrahedral group T* of
order 8 • 3U. With Cmv denoting the cyclic group of order mv generated by
AB3' we have the split extension

Cmv ^ T T*
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and one easily verifies that AB3 commutes with the generators of T*. So tt
is actually a direct product

r v t*^ 1

u •

Notice that m must be odd (and also coprime to 3 by the conditions from I),
otherwise tt would contain a subgroup (N x C2 and would not be periodic.

The group T* is well known to act freely and linearly on S3, and hence also

on S7, and the same is true for Cmv x T*.

IV. For the fourth class of solvable groups we only need to observe from
Wolf's explicit presentation that they contain a normal subgroup of type III of
index 2. Thus one may take a 4-dimensional fixed-point free representation of
this normal subgroup, and then the induced 8-dimensional representation of the

full group will also be fixed-point free (see [15, Lemma 5.5.3]), since the order

of the normal subgroup is divisible by every prime divisor of the order of the

full group. The groups in this class can be identified as extensions of a cyclic

group (of order coprime to 6) by a generalised binary octahedral group O* As
observed by Milnor [8], the latter have cohomological period 4 and fixed-point
free representation in dimension 8, but none in dimension 4 unless u — 1.

This concludes the discussion of the solvable cases.

B. We now turn to the case that tt is non-solvable. Notice that in this
case the order of tt must be even; otherwise, 7r being a periodic group, all
Sylow subgroups are cyclic, and this would imply that tt is solvable of type I
by an old result of Burnside, cf. [15, Thm. 5.4.1].

By Suzuki's classification of periodic non-solvable groups [11, Thm. C],
our tt contains a subgroup isomorphic to SL2(r) with r > 5 prime, the

multiplicative group of (2 x 2)-matrices of determinant 1 with coefficients
in the field of r elements (recall that SL2(3) Tf is solvable). The
cohomological period of SL2(r) equals lcm(4. r - 1), cf. [6, Lemma 1.3].
Since for a group tt in our theorem this has to divide 8, the only possibility
is r 5. According to Suzuki, there are two types to consider.

V. The group tt is the direct product of SL2(5) (which has order 120)
and a metacyclic group of order coprime to 30. By our comment at the end
of I, this metacyclic group has to be cyclic, that is, tt Cm x SL2(5) with
gcd(m, 30) 1. The group SL2(5) is isomorphic to the binary icosahedral
group I* and has fixed-point free representations of real degree 4, and so the
same holds for tt.
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VI. The final possibility is that n is an extension of a group of type V
by a cyclic group of order 2. So we can argue as in IV to get a fixed-point
free representation of real degree 8.

This concludes the proof of part (i) of the theorem.

Much of this discussion extends to free actions by finite groups ir on
S2 -1, in which case ir must have period dividing 2F The result for solvable

groups holds unchanged. To be more precise, in case I we obtain metacyclic

groups of period 2d admitting fixed-point free representations of degree 2d,
with de {1,2,4,..., 2^_1}. In the cases II, III and IV, we get exactly the

same groups as before (i.e. no higher values of d occur).

For non-solvable groups the restriction that the cohomological period divide
2l implies that we only get groups SL2(r) with r a prime of the form

r 2W +1 with 2 < w < t, as well as extensions of these groups as described

in V and VI. According to [12] these groups admit a free topological action

on S2'W~1 (and hence on S2'"1 by the join construction) which is conjugate to

a free linear action when restricted to any proper subgroup ; cf. the discussion

in [4].

We now turn to the proof of part (ii). First suppose that 2s is divisible by
some odd prime q and write 2s — 2kq. Choose an odd prime p that divides
2q — 1. By the Fermat-Euler theorem we know that 2p~l — 1 is also divisible

by p, so q has to be a divisor of p — 1, and in particular p and q will be

coprime.

We can therefore define a metacyclic (but not cyclic) group DP)q as in I
with m p, n — q, and r 2. By [9] this group acts freely and smoothly
on S2q~l, and hence also on S25-1, the join of k copies of S2q~1.

Finally, if 2s 2k, k > 4, we appeal to the result of [7] that SL2(r) acts

freely and smoothly on S2*-1 with 2s lcm(4, r — 1), that is, on a sphere of
the dimension predicted by the cohomological period. In the particular case at

hand, we can choose r 17. The group SL2(17) admits a free smooth action

on S16-1 and hence on the join S2*-1 of 2k~A copies of S15. But the only

groups SL2(r) that can act freely and linearly on some sphere are SL2(3) and

SL2(5), see [15, Thm. 6.3.1] - even though the non-solvable groups SL2(r),

r > 5 prime, satisfy all pq -conditions for primes r of the form r 2l + 1

(and only for these), cf. [15, p. 197].

This concludes the proof of part (ii).
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The last comment in the proof above and our earlier remarks about actions

on S2'~l also imply the following : If tt acts freely and topologically on S2

then 7r satisfies all pq-conditions. On S25-1 with 2s ^ 2t there are always

free smooth actions by metacyclic groups violating the pq-conditions.

Acknowledgement. Part (ii) of the theorem was prompted by a question

of Raymond Lickorish.
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