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THREE REMARKS ON GEODESIC DYNAMICS

AND FUNDAMENTAL GROUP

by Mikhaïl Gromov

§1. Homotopic stability

For a Riemannian manifold V we denote by S S (V) the space of all

unit tangent vectors. We denote by G(V) the geodesic foliation on S : leaves

are orbits of the geodesic flow (i.e. liftings to S of geodesies from V).

Geodesic rigidity. If V, W are closed manifolds of negative curvature

with isomorphic fundamental groups, then the spaces S(V) and S(W)

are homeomorphic. Moreover the geodesic foliations G(V) and G(W) are

homeomorphic (i.e. there is a homeomorphism S(V) —> S(W) sending leaves

from G(V) into leaves from G(W)).
It is unknown whether V and W are homeomorphic, The last question

was discussed several times by Cheeger, Gromoll, Meyer and myself. In the

end Cheeger constructed (see below) a homeomorphism between the Stiefel
fiberings over V and W. Later Veech suggested to me that geodesic rigidity
would be a better geometric substitute for the Mostow rigidity theorem
than existence of a homeomorphism V —» W. Unfortunately the geodesic

rigidity theorem is too simple and superficial and it does not lead to deep
corollaries of the Mostow theorem. For example, finiteness of the group
Aut(7Ti(V))/ Conj(7ri(V)) can not be derived (at least directly) from geodesic
rigidity. ("Aut" means the group of automorphisms of the fundamental group,
"Conj" means the group of inner automorphisms. The case dimV 2 is
excluded.)
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The Cheeger homeomorphism. Denote by St2(V) the space of all

tangential orthonormal 2-frames in V. If V and W are as before, then

the spaces St2(V) and St2(W) are homeomorphic.
The Cheeger construction is more canonical than our geodesic homeomorphism.

In particular, St2(V) can be viewed as a functorial object over 7n(IN¬

STABLE HOMEOMORPHISM. As we have already mentioned, existence of
a homeomorphism V —» W is still a problem, but existence of a stable

homeomorphism (homeomorphism V x > W x with large N) follows
immediately from the topological equivalence between unit tangent bundles

of V and W (see below).

Constructions and proofs

Ideas and notions involved in the constructions below are well known and

due to M. Morse (see Appendix 2 for details).
For a complete simply connected manifold X of negative curvature we

denote by C1(X) its compactification (closure) and by d(X) the complement

C1(X)\X. The space dX is homeomorphic to the (n— 1)-sphere, n dimX,
and it can be viewed as the set of all asymptotic classes of geodesic rays
in X.

Consider a group T of isometries acting on X. Such an action can be

continuously extended to <9(X). When F is discrete and the factor X/T is

compact, the space d(X) and the action of T in d(X) depend (functorially)
only on T. When T — 7Ti(V) and X is the universal covering of V, then the

unit tangent bundle of V is topologically equivalent to the bundle associated to

the covering X — V with fiber d(X). This immediately yields the topological
equivalence of tangent bundles and so the stable homeomorphism theorem.

For a geodesic ray r c X we denote by d(r) G d(X) the asymptotic class

it represents. For an oriented geodesic g we denote by d+(g) G <9(X) and

d~(g) G d(X) the asymptotic classes of its positive and negative directions.

When X has strictly negative curvature (i.e. the upper limit of sectional

curvature is negative), the map g (d+{g), d~(gj) G <9(X) x <9(X) establishes

a homeomorphism between the set of all oriented geodesies in X and the

complement 92(X) - (<9(X) x 9(X)) \ A, where A is the diagonal.
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The Cheeger homeomorphism

Denote by d3(X) the set of triples (xj.x2.x3), Xj.X2,X3 G 9(X) with x; ^ xj

for i / j. If X has strictly negative curvature, then St2(X) is canonically

Proof Realize an 5 G St2(X) by a pair (p. r) where g C X is an oriented

geodesic and r C X is a geodesic ray starting from a point 1 G g and normal to

g. Set Chee(s) Chee(#. r) (<9+(s). d~(g). d(r)). This is a homeomorphism

because the normal projection P Pg\ X —> g can be continuously extended

to CI(X)\{0+(0).0-(s)}.

Remark. The original construction of Cheeger is more symmetric : he

realizes an s G St2(X) by a triple of rays (n. r2. r3) all starting from the same

point x G X with angles 120° between ever)' two of them.

Applying the above construction to the universal covering X of a compact

manifold V we get a homeomorphism between St2(Vr) and the factor of 9J(X)

by the diagonal action of T tti(V). This proves the Cheeger homeomorphism

theorem.

Realize points from S(X) by pairs (.ç.x). where g is an oriented

geodesic and x G g. When X and Y are the universal coverings of V

and W, an isomorphism I: TifV) xi (W) induces a homeomorphism
D: d2(X) 82{Y). View D as a homeomorphism between the sets of oriented

geodesies in X and Y. Take a smooth equivariant map /q: X —» 7 (i.e. the

lifting of a smooth homotopy equivalence V —» W corresponding to I)
and define a map Fo : S(X) —» S(7) as follows: Foig.x) — (h.y), h D(g),
y y(x) F/?o/o(x). (We use in Y the same representation of points from S(Y)
as in X and Ph means the normal projection Y —^ A.) The map Fo preserves
the foliations G(X) and G(Y) but it is not necessarily a homeomorphism:
it can identify points lying on the same geodesic. Choose natural parameters
(length) in all geodesies and average F0 along geodesies by the formula:

homeomorphic to <9J(X)

Geodesic rigidity
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where h D(g), t,x G g, y(0 G h, y(£) Ph°fo(t)• When c is large enough,
the map Fc is a homeomorphism and it is obviously equivariant. Returning
to V and W we get the geodesic homeomorphism S(V) —> S(W).

Generalizations

The hyperbolic ideas of Morse were successfully applied to discrete

type systems by Shub (expanding endomorphisms, see [Sh]) and Franks

(Ti\-dijfeomorphisms, see [Fr]). Their results are discussed (and slightly
generalized) in Appendix 3.

From a global geometric point of view generalizations of totally hyperbolic
systems must include manifolds of nonpositive curvature and correspondingly
semihyperbolic systems. (See Appendix 4.)

In differential dynamics most attention has always been paid to "local"
versions of hyperbolicity (stability, Anosov's systems, Axiom A diffeomor-

phisms of Smale). We do not touch here upon that more analytical line of
development of Morse's ideas.

§2. Entropy

Take a closed Riemannian manifold V, consider its universal covering X
and denote by VolX(R), x e X, the volume of the ball of radius R centered

at x. Set H(V) lim^oo log Volx(R). The limit obviously exists and does

not depend on x. Denote by h(V) the topological entropy of the geodesic

flow in S(V).

Entropy estimate. We have h(V) > H(V).

COROLLARY. If the fundamental group TrfV) can be presented by k

generators and one relation and Diam(V) < 1 (Diam means the diameter

of V), then h(V) > \og(k — 1).

The entropy estimate immediately follows from the Covering lemma.
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COVERING LEMMA. Take a compact manifold S and consider a regular

(normal) covering T —» S with the action of T it \(S) / it \(T). Fix a

fundamental domain D C T and denote by N(U), U C X, the number

of motions 7 G T such that the intersection 7(U)C\D is not empty. Consider

an action of the group R of reals in S and its lifting to T.

The entropy h of the action of R in S satisfies

h > liminf log A(r(D)),
r—00 I r I

where r(D) denotes the image of D under the lifted action of r G R in T.

Proof Use the definition of entropy involving coverings.

This lemma (and the proof) holds for discrete time systems and immediately
implies Manning's estimate of the topological entropy of an /: S —> S in terms

of the spectral radius of ft : HfS\ R) —ï H\(S\ R). See [Ma], [Pu]. In Appendix
5 we show how to make use of the whole group 77 (S).

§3. Periodic orbits

For maps f: S —> S there are several ways to estimate from below the

number card (Fix(fm)) of all points of period m. Denote by L(f) the Lefschetz
number Xw=o(~ 1 )' Trace(/*/), where i dim S and /*,- : HfS; R) —> HfS; R).

(L) If all periodic points are nondegenerate (say, f is smooth and
generic), then card(Fix(fm)) > \L(f)\ (Lefschetz).

(Sh-S) Iff is smooth and lim^^oo \L(fm)\ 00, then

lim card(Fix(/m)) 00
/??—*• 00

(Shub and Sullivan, see [Sh-S]).

(Nie) Generally there is no way to extend the (L)-estimate to all maps, but
in the presence of the fundamental group one can apply the Nielsen
theory of fixed-point classes (see [Nie] and Appendix 6). This theory
yields in many cases the estimate

card(Fix(F)) > const \L(f) \

and sometimes even card(Fix(/)) > \L{Fm)\, where f is an arbitrary
continuous map.
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Example. Let S be a compact cell complex with homotopy type of a torus
and let /: S — S be a continuous map such that /*i : HfS; R) —> HfS; R) is

hyperbolic (no eigenvalues with norm 1). Then

card (Fix(fm)) > \L(fm)\ > Cm - 1

for some C > 1, and the closure of the union U^Li Fix(/m) contains a Cantor
set.

Remark. This example allows one to detect periodic points in Smale's
horseshoe by homological means. A horseshoe is a space A with three

subspaces A,R,Z and a map /: X —» X with the properties:

(a) / sends A U B into A and Z into B ;

(b) Z separates A from B, i.e. there exists a function <2: A —> R which is

positive on A, negative on B and with a~l(0) C Z.

(Sm) If A, A aad 5 are closed balls, then card (Fix(fm)) < (Smale).

Proof Take another copy A7 of A and identify each point x G A U B

with the corresponding point x' G A7 U Z?7 C A7. Denote by Y the factor of
AUA7 with that identification and construct a map g: Y —>• Y as follows :

- if y G A C Y and a(y) > 0, then g(y) =f(y) ;

- if y G A and a(y) < 0, then g(y) (f(y)Y, where ()7 means the involution

permuting A and A7 in Y ;

- if y G A7, then g(y) {g(yf))'.

Since F has the homotopy type of the circle, \L(gm)\ 2m — 1, and thus

card(Fix(gm)) > 2m — 1. Projecting T —> A represents / as a factor of g that

gives Smale's estimate.

This representation of / explains also (via Manning's estimate) why
horseshoes have positive entropy.

Closed geodesics

Dealing with closed geodesics in a closed Riemannian manifold V we

replace the Lefschetz numbers by the Betti numbers b[ of the space of maps
from the circle Sl to V. We set Mm — Mm(V) The Morse

theory provides the following estimate for the number Nm Nm(V) of simple
closed geodesics of length < m :
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(Mo) If V is simply connected and all closed geodesies are nondegenerate

(generic case), then Nm > CMm — 1 for some C > 0 (see [Gr]).

(Probably, for most manifolds, Mm grows exponentially.)

In the degenerate case the situation is much more difficult, but still :

(G-M) limsup^^ bi oo implies limm_»oo iV oo (Gromoll and Meyer,

see [G-M]).

(About recent progress, see Klingenberg's lectures [Kl].)

The Nielsen theory collapses to a triviality in the geodesic case :

In each class offree homotopy of maps S1 —» V there is a closed geodesic ;

if it represents an indivisible element in 7i\(V), then every closed geodesic

from that class is simple.

The estimate for Nm contained in this statement is exact for manifolds of
negative curvature. For such manifolds Nm > Cm — 2 for some C > 1 (Sinai,

see Appendix 7). But even for manifolds homeomorphic to the 2-torus it is

unknown whether the estimate Nm > Cm2 — 1 is the best possible.

We give now three examples having no discrete time analogs and

demonstrating further connections between fundamental groups and closed

geodesies. Proofs are more or less obvious and so omitted.

1. Suppose that the group 7Ti(V) contains a (noncommutative) nilpotent
subgroup r without torsion. Take a 7 G [T, T], where [r, T] denotes the

commutator subgroup of T and 7 is not the identity element, and denote by
Z the (free cyclic) group generated by 7. Denote by Nfn the number of closed

geodesies of length < m representing elements from Z. Then Nfn> Cm — 1

and there are infinitely many divisible elements in Z represented by simple
closed geodesies ; these geodesies can be chosen shortest, each in its homotopy
class.

2. There is a non-empty class B of finitely presented groups such that
if 7T1 (V) G B, then there exists an infinite sequence gt of simple closed
contractible geodesies in V such that each gt provides local minimum to
the length functional and length^) -^00 as i —> 00. For example, B
contains all groups with unsolvable word problem. (See Appendix 8 for further
information.)
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3. In order to make use of tï\ in locating other (not locally minimal)
closed geodesies without non-degeneracy condition, one has to extend [Gr] to
the non simply connected situation. When V is homeomorphic to Vo x Sl and

Vo is simply connected, we can apply [Gr] directly and get Nm(V) > C log(m)
for some C > 0. (Probably this is true when HfV) is infinite or at least when

tti (V) — Z.) The last estimate can be sharpened and we show this here for
the simplest example when Vo is the sphere S3 and the proof is obvious [Gr].

Let V be homeomorphic to S3 x Sl. Then there exist closed geodesies

glj C V (not necessarily simple) such that

1. Each glj, ij 1,2,..., represents G 77 (V) where 7 is a generator
in 71"! (V).

2. For each i the geodesic g\ is the shortest in its homotopy class.

Denote by | glj | the length of glj.

3- 19\+k I + C > I Pi I + 1Pi I > I Pi+/: I

>
where C > 0 and iff — 1,2,...

4. \g'j\+ c>\d'j+\I- Wj\forsome 0 and ij
5- 9/ - k < C\i — kI for some C > 0 and ij, k— 1,2,...

6. \glj \ > 7 for some C > 0 and i.j 1,2,...

Corollary. If V is as above, then limsup,^^

All our estimates give a rather poor approximation to the (unknown) reality.

Probably, in most cases Nm grows exponentially. That is so, of course, for
"C°-generic" manifolds ("C°-generic" is used for C°-generic manifolds having

uncountably many closed geodesies).

REFERENCES

[Fr] FRANKS, J. Anosov diffeomorphisms. In : Global Analysis, Berkeley, 1968.
Proc. Symp. Pure Math. 14, Amer. Math. Soc. 1970, 61-93.

[G-M] Gromoll, D. and W. Meyer. Periodic geodesies on compact manifolds.
J. Differential Geom. 3 (1969), 493-510.

[Gr] GROMOV, M. Homotopical effects of dilatation. J. Differential Geom. 13

(1978), 303-310.

[Kl] KLINGENBERG, W. Lectures on Closed Geodesies. Third ed. Mathematisches
Institut der Universität Bonn, 1977.



THREE REMARKS ON GEODESIC DYNAMICS 399

[Ma] MANNING, A. Topological entropy and the first homology group. Springer
Lecture Notes in Math. 468 (1974), 185-191.

[Nie] Nielsen, J. Über topologische Abbildungen geschlossener Flächen. Abh.

Math. Sem. Univ. Hamburg 3 (1924), 246—260.

[Pu] PUGH, C. On the entropy conjecture. Springer Lecture Notes in Math. 468

(1974), 257-262.

[Sh] SHUB, M. Endomorphisms of compact manifolds. Amer. J. Math. 91 (1969),

185-199.

[Sh-S] SHUB, M. and D. SULLIVAN. A remark on the Lefschetz fixed point formula.

Topology 13 (1974), 189-191.

Why the Appendices were not written :

AUTHOR'S APOLOGIES TO THE READERS

Appendix 2. The stable homeomorphism suggests a geometric link
between the homotopy and topological invariance of Pontryagin classes, at least

for manifolds with negative curvature but I did not manage to forge this to

my satisfaction till 1996 (see [Groz]); also see [Fa-Jo] for a deeper analysis.

Appendix 3. One can define a notion of hyperbolicity for an automorphism

a of an arbitrary finitely generated group T, such that (T.a) functorially
defines a Bowen-Franks hyperbolic system (see [Groi]). Unfortunately, this

class of (T.a) is rather limited, e.g. is not closed under free products and

does not include hyperbolic automorphisms of surface groups. I still do not
know what the right setting is.

Appendix 4. An obvious example of semi-hyperbolicity is provided by
non-strictly expanding endomorphisms, where the geometric picture is rather
clear. However, I still do not see a functorial description, in the spirit of the

symbolic dynamics, of more general semi-hyperbolic systems, not even for
the geodesic (or Weil chamber) flows on locally symmetric spaces (compare
[B-G-S] and [Br-Ha]).

Appendix 5. The section on entropy was inspired by Manning's paper
[Ma}], but I was unaware of the prior paper by Dinaburg (see [Din]) that

essentially contained the entropy estimate for geodesic flows (also discussed in
[Ma2]). On the other hand, estimating the entropy of an endomorphism (or an
automorphism) / in terms of /* : ttj —> tit appears now much less clear than
it seemed to me back in 1976. It is not hard to bound the entropy from below
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via the "asymptotic stretch" of /* : 7Ti —* tti with respect to the word metric
in 7Ti (see [Bow]). But this is not sharp even for linear automorphisms of tori
Tn, where the entropy is expressed by the "k-dimensional stretch" on H\ for
some k < n that equals the spectral radius of /* on H^. Such &-stretch can
be defined, in general, in terms of /* : tt\(5) —» (S) and the classifying map
S —» K(tti, 1) (refining the spectral radius of /* on Hk coming from K(7Ti, 1)),
but my obvious "proof" of the lower bound on the entropy by this k-stretch
missed a hidden trap. This was also overlooked in [Ma3] (for /* : H\ H\,
where a proper identification of the 66 k-stretch" with the spectral radius needs

extra work), as was pointed out to me much later by David Fried. (The

difficulty already appears for closed subsets S in the torus Tn invariant under
linear automorphisms / of Tn, where one wishes to estimate the entropy of
f\ S in terms of /* acting on the spectral cohomology of S coming from Tn.
On the other hand, the case of Tn —> Tn is settled in [Mi-Pr].)

Appendix 6. Probably, the recent progress in Nielsen theory allows a

description of the cases, where card(Fixf) is well controlled from below by
some twisted Lefschetz number (see [Fel]).

Appendix 7. Nothing interesting to say.

Appendix 8. Minima of geometric functional related to the logical
complexity have been studied in depth by A. Nabutovski (see [Na] and

references therein). Yet I do not feel ready yet to write this Appendix. For

example, I do not see what is the actual influence of a suitable complexity
measure of tï\{V) on the Plateau problem in V.
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Note of the Editors

The above paper was written and circulated as a SUNY preprint in 1976.

It has been reproduced here without change, except for a very small number

of obvious misprints. The "apologies" were written in May 2000.

We list below, for the reader's convenience, a few later papers which either
refer to the paper above, or (re)prove statements from it, or are related to it
in some other way.

Ballmann, W., G. Thorbergsson and W. Ziller. Closed geodesies and the
fundamental group. Duke Math. J. 48 (1981), 585-588.
[This paper quotes "Three remarks...", but does not use it.]

Ballmann, W. Geschlossene Geodätische auf Mannifgaltigkeiten mit unendlicher
Fundamentalgruppe. Topology 25 (1986), 55-69.
[This gives proofs of some results in "Three remarks ...".]

BANGERT, V. Geodätische Linien auf Riemannschen Mannifgaltigkeiten. Jahresber.
Deutsch. Math.-Verein. 87 (1985), 39-66.
[This quotes "Three remarks...", three times in Item 3.18.]

BOWEN, R. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer.
Math. Soc. 153 (1971), 401-414; 181 (1973), 509-510.

FATHI, A. and L. FLAMINIO. Infinitesimal conjugacies and Weil-Petersson metric. Ann.
Inst. Fourier 43 (1993), 279-299.

GHYS, E. Flots d'Anosov sur les 3-variétés fibrées en cercles. Ergodic Theory
Dynamical Systems 4 (1984), 67-80.
[See the end of Part 4.]

GROMOV, M. Hyperbolic groups. In: Essays in Group Theory. Math. Sei. Res. Inst.
Publ. 8 (Springer 1987), 75-263.
["Three remarks..." is not quoted there, but is just below the surface, among
other places in the discussion on the geodesic flow; see e.g. Corollary 8.3.E.]

Asymptotic Invariants of Infinite Groups. Volume 2 of Geometry Group Theory,
Sussex 1991, G. A. Niblo and M. A. Roller editors, Cambridge Univ. Press (1993).
[This quotes "Three remarks...", on p. 136].

Kanai, M. Geodesic flows of negatively curved manifolds with smooth stable and
unstable foliations. Ergodic Theory Dynamical Systems 8 (1988), 215-239.

Matsumoto, S. and T. TSUBOI. Transverse intersections of foliations in three-manifolds.
Preprint, 1999.

[This quotes "Three remarks..." via the 1984 paper by E. Ghys.]

(Apologies' et 'Note' rédigées en mai 2000)
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