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the form I(wy,...,w,) of length ¢, ; therefore, there exists a factor of u of
length [, — 2 + n which does not contain the factor w;j---w,. This shows
that ¢(n) > n—1+41,. The lemma is thus proved.

REMARK. Note that in the case of the Fibonacci sequence (o = */52_1 )s
the recurrence function satisfies, for Fy_; < n < F},

pomn)y=n—14 Fiy1,

where (F,),en denotes the Fibonacci sequence F,iy = F,+F,—1, with Fy =1
and F; = 2.

This result is extended in [13] to the fixed point of the substitution o
introduced by Rauzy which generalizes the Fibonacci substitution and is
defined by ¢(0) =01, (1) =02, ¢(2) = 0.

THEOREM 12. Let T, denote the so-called Tribonacci sequence defined
as follows: Tyy3 = Tpao + Tpay + Ty, with To = 0, Ty =0, T} = 1.
The recurrence function @ of the fixed point beginning with 0 of the Rauzy
substitution satisfies for any positive integer n:
k+1 k42

omn)=n—1+Trrg, where ZTi<n§ZTi.
0 0

6. HIGHER-DIMENSIONAL GENERALIZATIONS

6.1 TWO-DIMENSIONAL GENERALIZATIONS AND BEATTY SEQUENCES

Let us consider now some two-dimensional versions of the three distance
and three gap theorems. Such generalizations were introduced by Fraenkel and
Holzman in [26] in order to give an upper bound for the number of gaps in the
intersection of two Beatty sequences. They first reduce this problem to a two-
dimensional version of the three distance theorem, conjectured by Simpson
and Holzman and proved by Geelen and Simpson (see [29]). Then they deduce
from this theorem a bound for the number of gaps in the intersection of two
Beatty sequences, when at least one of the moduli is rational.

Let us first give the two-dimensional version of the three gap theorem
introduced by Fraenkel and Holzman. We will use the same notation as in
[26]: for any pair of real numbers (x,y), {(x,y)} means the equivalence class
of (x,y) mod Z?,ie., {(x,y)} belongs to the torus T?.
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THEOREM 13. Let «y, oo, B1, P2, i1 and pp be real numbers in
[0, 1[. The gaps between the successive values of the integers n such that the
following points of the torus T?

{(nay, nan)}

belong to the rectangle

R={{N}: 1 — B <x<p, po—Poa<y<pa}

take a finite number of values which depend only on oy, aa, B, and [3.

Furthermore, if at least one of the two angles «; and c is rational, then
the number of gaps is bounded by q + 3, where q is the minimum of the
denominators of o and oy in lowest terms (the denominator of an irrational
number is considered as +o0 ).

Let us state now the two-dimensional version of the three distance theorem
proved in [29] by Geelen and Simpson.

THEOREM 14. Assume we are given two real numbers «;, oy and two
positive integers ny, ny. The set of points

lioy +jay+p, 0<i<n —1,0<j<n—1}

partitions the unit circle into intervals having at most min{ny,ny} +3 lengths.

Note that the bound min{n;,n,} + 3 is not the best possible when n,
or n, = 1. Indeed, in this case, the statement reduces to the three distance
theorem. For a discussion on the achievability of the bound, the reader is
referred to [29].

Fraenkel and Holzman have proved in [26] that Theorems 13 and 14
together answer the question of the intersection of two Beatty sequences,
when at least one modulus is rational. We define a gap in the intersection
of two Beatty sequences to be a difference between two successive elements
of the intersection, and an index-gap to be the difference between the two
corresponding indices in the same Beatty sequence.

THEOREM 15. Let (|nay + p1nen and (|nag + pa|)nen be two Beatty
sequences, with at least one of the two moduli o, and o, rational. Let g
denote the minimum of the denominators of «; and oy in lowest terms (the
denominator of an irrational number is considered as +o00). The number of

gaps and index-gaps in the intersection is bounded by q+ 3, if ¢ > 2, and
bounded by 3 otherwise.
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Fraenkel and Holzman show furthermore that this bound is achievable and
that the number of gaps can be made arbitrarily large, when at least one of
the moduli is rational.

6.2 COMBINATORIAL APPLICATIONS

Now let us review some applications of Theorems 13 and 14. For instance
we can deduce the following result for the intersection of two Sturmian
sequences.

THEOREM 16. Let s = (Sy)nenN and t = (t,)neN be two Sturmian sequences.
The number of gaps between the successive integers n such that s, = t, is
finite.

Proof. Let s = (Sp)uen and t = (f,),en be two Sturmian sequences of
angles o and (3, with corresponding partitions {ly,I;} and {Jy,J;}. The
gaps between the integers n such that the points {(na,nf3)} in T? belong '
to the rectangle Iy x Jy (respectively, I; x Ji) take a finite number of values,
hence so do the gaps between the successive integers n such that the points
{(na, nB)} in T? belong to the set Iy X Jo U I x Jy.

We also deduce from Theorem 14 and Lemma 3 the following

THEOREM 17. Let u be a coding of the irrational rotation by angle
0 < a < 1 with respect to a partition into d intervals of length 1/d. The
frequencies of factors of u of length n > sup {n(” ,d} take at most d + 3
values, where 'V denotes the connectedness index.

Proof. This result is a direct application of Lemma 3 and Theorem 14.
Indeed, the intervals I(wj,...,w,) (corresponding to the factors w - --w, of
length n) are bounded by the points

{il-w+j/d, 0<i<n-—1, 0<j<d—1}.

Vuillon has introduced in [57] two-dimensional generalizations of Sturmian
sequences obtained by considering the approximation of a plane of irrational
normal by square faces oriented along the three coordinates planes. Theorem
14 can also be applied to give an upper bound for the number of frequencies
of blocks of a given size for such double sequences (see [4]).

We will give in Section 7 a direct combinatorial proof of Theorem 14 in
the particular case min{n;,n,} = 2, and give an interpretation in terms of
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