6.1 Two-dimensional generalizations and Beatty sequences Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 44 (1998) Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: **25.04.2024** #### Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. #### Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch the form $I(w_1, \ldots, w_n)$ of length δ_n ; therefore, there exists a factor of u of length $l_n - 2 + n$ which does not contain the factor $w_1 \cdots w_n$. This shows that $\varphi(n) \ge n - 1 + l_n$. The lemma is thus proved. REMARK. Note that in the case of the Fibonacci sequence $(\alpha = \frac{\sqrt{5}-1}{2})$, the recurrence function satisfies, for $F_{k-1} < n \le F_k$, $$\varphi(n) = n - 1 + F_{k+1} \,,$$ where $(F_n)_{n\in\mathbb{N}}$ denotes the Fibonacci sequence $F_{n+1}=F_n+F_{n-1}$, with $F_0=1$ and $F_1=2$. This result is extended in [13] to the fixed point of the substitution σ introduced by Rauzy which generalizes the Fibonacci substitution and is defined by $\sigma(0) = 01$, $\sigma(1) = 02$, $\sigma(2) = 0$. THEOREM 12. Let T_n denote the so-called Tribonacci sequence defined as follows: $T_{k+3} = T_{k+2} + T_{k+1} + T_k$, with $T_0 = 0$, $T_1 = 0$, $T_1 = 1$. The recurrence function φ of the fixed point beginning with 0 of the Rauzy substitution satisfies for any positive integer n: $$\varphi(n) = n - 1 + T_{k+6}$$, where $\sum_{i=0}^{k+1} T_i < n \le \sum_{i=0}^{k+2} T_i$. ### 6. HIGHER-DIMENSIONAL GENERALIZATIONS # 6.1 Two-dimensional generalizations and Beatty sequences Let us consider now some two-dimensional versions of the three distance and three gap theorems. Such generalizations were introduced by Fraenkel and Holzman in [26] in order to give an upper bound for the number of gaps in the intersection of two Beatty sequences. They first reduce this problem to a two-dimensional version of the three distance theorem, conjectured by Simpson and Holzman and proved by Geelen and Simpson (see [29]). Then they deduce from this theorem a bound for the number of gaps in the intersection of two Beatty sequences, when at least one of the moduli is rational. Let us first give the two-dimensional version of the three gap theorem introduced by Fraenkel and Holzman. We will use the same notation as in [26]: for any pair of real numbers (x, y), $\{(x, y)\}$ means the equivalence class of (x, y) mod \mathbb{Z}^2 , i.e., $\{(x, y)\}$ belongs to the torus \mathbb{T}^2 . THEOREM 13. Let α_1 , α_2 , β_1 , β_2 , μ_1 and μ_2 be real numbers in [0,1[. The gaps between the successive values of the integers n such that the following points of the torus \mathbf{T}^2 $$\{(n\alpha_1, n\alpha_2)\}$$ belong to the rectangle $$\mathcal{R} = \{\{(x,y)\}; \ \mu_1 - \beta_1 < x \le \mu_1, \ \mu_2 - \beta_2 < y \le \mu_2\}$$ take a finite number of values which depend only on α_1 , α_2 , β_1 and β_2 . Furthermore, if at least one of the two angles α_1 and α_2 is rational, then the number of gaps is bounded by q+3, where q is the minimum of the denominators of α_1 and α_2 in lowest terms (the denominator of an irrational number is considered as $+\infty$). Let us state now the two-dimensional version of the three distance theorem proved in [29] by Geelen and Simpson. THEOREM 14. Assume we are given two real numbers α_1 , α_2 and two positive integers n_1 , n_2 . The set of points $$\{i\alpha_1 + j\alpha_2 + \rho, \ 0 \le i \le n_1 - 1, \ 0 \le j \le n_2 - 1\}$$ partitions the unit circle into intervals having at most $\min\{n_1, n_2\} + 3$ lengths. Note that the bound $\min\{n_1, n_2\} + 3$ is not the best possible when n_1 or $n_2 = 1$. Indeed, in this case, the statement reduces to the three distance theorem. For a discussion on the achievability of the bound, the reader is referred to [29]. Fraenkel and Holzman have proved in [26] that Theorems 13 and 14 together answer the question of the intersection of two Beatty sequences, when at least one modulus is rational. We define a *gap* in the intersection of two Beatty sequences to be a difference between two successive elements of the intersection, and an *index-gap* to be the difference between the two corresponding indices in the same Beatty sequence. THEOREM 15. Let $(\lfloor n\alpha_1 + \rho_1 \rfloor)_{n \in \mathbb{N}}$ and $(\lfloor n\alpha_2 + \rho_2 \rfloor)_{n \in \mathbb{N}}$ be two Beatty sequences, with at least one of the two moduli α_1 and α_2 rational. Let q denote the minimum of the denominators of α_1 and α_2 in lowest terms (the denominator of an irrational number is considered as $+\infty$). The number of gaps and index-gaps in the intersection is bounded by q+3, if $q \geq 2$, and bounded by 3 otherwise. Fraenkel and Holzman show furthermore that this bound is achievable and that the number of gaps can be made arbitrarily large, when at least one of the moduli is rational. ## 6.2 COMBINATORIAL APPLICATIONS Now let us review some applications of Theorems 13 and 14. For instance we can deduce the following result for the intersection of two Sturmian sequences. THEOREM 16. Let $s = (s_n)_{n \in \mathbb{N}}$ and $t = (t_n)_{n \in \mathbb{N}}$ be two Sturmian sequences. The number of gaps between the successive integers n such that $s_n = t_n$ is finite. *Proof.* Let $s = (s_n)_{n \in \mathbb{N}}$ and $t = (t_n)_{n \in \mathbb{N}}$ be two Sturmian sequences of angles α and β , with corresponding partitions $\{I_0, I_1\}$ and $\{J_0, J_1\}$. The gaps between the integers n such that the points $\{(n\alpha, n\beta)\}$ in \mathbf{T}^2 belong to the rectangle $I_0 \times J_0$ (respectively, $I_1 \times J_1$) take a finite number of values, hence so do the gaps between the successive integers n such that the points $\{(n\alpha, n\beta)\}$ in \mathbf{T}^2 belong to the set $I_0 \times J_0 \cup I_1 \times J_1$. We also deduce from Theorem 14 and Lemma 3 the following THEOREM 17. Let u be a coding of the irrational rotation by angle $0 < \alpha < 1$ with respect to a partition into d intervals of length 1/d. The frequencies of factors of u of length $n \ge \sup\{n^{(1)}, d\}$ take at most d+3 values, where $n^{(1)}$ denotes the connectedness index. *Proof.* This result is a direct application of Lemma 3 and Theorem 14. Indeed, the intervals $I(w_1, \ldots, w_n)$ (corresponding to the factors $w_1 \cdots w_n$ of length n) are bounded by the points $$\{i(1-\alpha)+j/d, \quad 0 \le i \le n-1, \quad 0 \le j \le d-1\}$$. Vuillon has introduced in [57] two-dimensional generalizations of Sturmian sequences obtained by considering the approximation of a plane of irrational normal by square faces oriented along the three coordinates planes. Theorem 14 can also be applied to give an upper bound for the number of frequencies of blocks of a given size for such double sequences (see [4]). We will give in Section 7 a direct combinatorial proof of Theorem 14 in the particular case min $\{n_1, n_2\} = 2$, and give an interpretation in terms of