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Define m(p) as the minimal positive integer m such that pm > m2p. We

have m(p) ~ plog2/logp. In §3.3, we shall show in a simple way that

d{p) < 2m(p) (perhaps an essentially optimal bound). Proving good lower

bounds for dip) is more difficult. With the help of (1) it is easy to show

that dip) > yfp. This is essentially the best that we can extract from (1). In

fact, we have already remarked that (1) does not provide any information for
d > 3 + yfp. Here we give a short elementary proof of the following

THEOREM. We have d2ip) + 3dip) >2p + 2, hence dip) > x/2p —

An immediate corollary is that the number of solutions in F2 of y2 fix)
with y 0, is at least y/2p — f — d, provided / G Fp [X] has degree d and

at least one simple root. In fact, let

S := {u G Fp : f(u) is a nonzero square in Fp }

and put g(X) := ELes^- u)- Then observe that if a is a quadratic non-
residue mod p, the polynomial giXfafiX) assumes only square values on F/;,
without being a square. The theorem implies 2 deg g + d > \J2p — \ On the

other hand, 2 deg g is precisely the number of solutions we are considering.
We shall outline in §3.2 how to improve on this bound.

§2. Main arguments

We start with a simple example to outline the origin of the method. We give
a self-contained nine-line proof of the following claim : Let ^ 2r H- 1 >3
he an odd prime power and let f G ¥q[X] be a cubic polynomial Then the

equation y2 fix) has at least one solution (x0,yo) G F2.

(Mordell [Mo, p. 41] had to invoke fairly complicated arguments even to
deal with the special case /(X) X3 + k.)

Assume the assertion false. Then f{u)r -1 for all u G Ff. Hence every
element of F^ is a root of /(X)r + 1 and so, identically,

(2) fixy +1 (xq - X)S(X),

where S G F^[X] has degree 3r—q r—l. Differentiating the equation we get

(3) rf'(X)f(Xy-1 (X"--
Multiply (2) by rf'(X), (3) by f(X) and subtract to obtain
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(4) rf'(X) « {X* - X)(rf'{X)S(X) -/(Z)S'(Z)) +/(Z)S(Z).

Observe now that rf'(X)—f(X)S(X) has degree 3+deg A r+2 and is divisible

by Xq—X, in view of (4). Hence r+2 > q — 2r+l, i.e. r < 1 and q < 3.

We now prove the theorem. Suppose that / G F^fZ] (p > 3) has degree
d < p — 3, is not a square in F^fZ] but assumes on Fp only values

which are squares in ¥p. Write f(X) where a G F*, the

fi G F^[Z] are distinct monic irreducible polynomials and the m, are positive
integers. Factoring out suitable even powers of the /)•, we may assume2) that
1 < < 2. Since d < p, there exists u e ¥p with f(u) 0, so f(u) is a

nonzero square in ¥p. If all the mz- were even, then a would be a nonzero

square in ¥p and / would be a square in FP[Z], contrary to assumptions.
Therefore at least one of the m* is equal to 1, proving that / has at least a

simple root a (in some finite field).
Let now u G ¥p. Then, writing p 2r + 1, either /(m) 0 or /(w)r 1.

Therefore f(X)(f(X)r — 1) is divisible by Xp — X. We write

(5) f(xy+l-f(X){xp - x)S{X),

where S G ¥p[X] has degree (r+ 1 )d—p. Differentiate (5) to obtain

(6) (r + 1)f'(X)f(X) —f(X) (Xp - Z)S'(Z) - 5(Z).

Similarly to the above example, multiply (5) by (r+ 1 )/7(Z), (6) by /(Z) and

subtract. The result is

(7) /(Z)A(Z) (Xp - X)(f(X)S'(X) - (r + 1 )f'(X)S(X)) - rf(X)f(X).

This equation is the first step in a recursion that we are going to construct.

Define the differential operators Am on ¥P[X] by setting, for </> G FP[Z],

Am(0)(Z) :=f(X)</>'(X) - (r + m + 1)/'(Z)<#X),

and put, for m > 0,

r So(X) := £(*),

I := -r/(Z)/'(Z),
Then (7) reads

(9) /(Z)S0(Z) (X* - X)Si (Z) + Z0(Z).

2) Note that when m, is even we cannot factor out fi(X)m< without danger of destroying
the properties of f(X). In fact we could have a priori f(u) —.//(") 0 for some n G F;> while

(/•//+)(+ could be a non-square in F/;. It is however safe to factor out _ 2.

Sm+i(X) := Am(Sm)(X),

Zm-|-1 (Z) —



POLYNOMIALS MODULO p WHOSE VALUES ARE SQUARES 99

We shall prove by induction that for all m > 0 we have

(10) (m + l)f(X)Sm(X) (Xp- +

For m 0 this is just (9). Assume (10) true and apply to both sides the

operator A,„. Note that Am(<fnp) <MmW + 7/V We obtain

(m + 1)/Am(5m) + (m + 1)/'/Sm(Xp - X)A,„(5',„+i) + Am(Rm).

Now use (10) to substitute for m+1 )fSm in the second term of the left side.

We get

(m+ l)fSm+i +f'((X»-X)Sm+l+Rm))-fSm+l + A

whence

(m + 2)fSmjr{ (Xp — X) (Àm(kS';72-j-i) — f ^m+i "h Am (Rm — / •

Now, to conclude the inductive argument we have only to note that Am((j))—ff(j)

equals just Am+i (0).

Recall that / has a simple root a. We continue by proving the following

CLAIM. Let m < r. r/i^n a cannot be a double root of Sm. In particular,
Sm(X) 7^ 0 for m <r.

For m — 0 this follows at once from (5). Suppose the claim true

for a certain m and assume by contradiction that a is a double root of
SOT+i(X) =f(X)Sm,(X)- (r + m+l)f'(X)Sm(X), where m+ 1 < r. Then, first
of all we would have (r +m+= 0. This implies that Sm(a) 0,
since f\a) f 0 and since r + m+1 <2r p — 1. Next, we compute

W(X) =f'(X)Sm\X) +f(X)Sm"(X)

- (r + m + iy,x(X)5m(X) - (r + /n + 1 )f'(X)Sm\X).

Since /(a) 5m(a) 0, we obtain that -(r+mj/^aj^/Ca) 0.
As before, this implies that 5„/(a) 0. Hence a would be a double root of
Sin(X), a contradiction to the inductive assumption.

As in the example, we shall conclude by comparison of degrees. Define

pm := deg Rm, deg5m

where we may agree that the zero polynomial has degree -oc. We have

po 2d - 1 and we derive directly from the recursion formulae (8) that
Pm+1 ^ Ah + d — 1, whence
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(12)

(11) pm<d + (rn+l)(d-l).
Also, from (5), (10) and (11) we get (recalling our definition of degO),

a0 — (r+ l)d-p
o-m+\ < max(crm + d,pm)-p< max(crm, (m + 1 )(d - 1)) + d - p

Observe that we have oq (r + \)d — p (r + V)d — (2r 4- 1)

(d — 2)r + (d — l)> d — 1. Suppose that the inequality

(13) am > (m + l)(d - 1)

is true for m 0,... ,M — 1, but not for m M (possibly M — oo). Then

M > 1. Moreover, by (12) we have crm+i < crm + d — p for m < M — 1,

whence

(14) crm < (Jo + m(d — p) rd — (m+ l)(p — J), for m < M.

Applying (13) and (14) with any m < M — 1, we get rd — (m+ \){p — d) >
(m + l)(<i — 1), i.e. 2r(m + 1) < rd. Therefore we have

(15) M~\-
Finally, apply (12) for m M and observe that M < d/2 < r — 1, hence

Sm+i 0 by the Claim. We obtain 0 < <rM+1 < (M + l)(d — 1) + d — p,
whence, comparing with (15),

f d2 + 3d — 2 if J is even
2P< 1 oJ + 2<i — 1 if J is odd.

This proves the theorem and more.

§3. Remarks

(1) The method gives some information also in the case of a general
finite field F^. The same arguments as above work everywhere, on replacing

p by q, except that in the Claim we must now suppose that m < ro, where

p 2r0 + 1. The final conclusion will be that d > min(ro, y/2q — (3/2)). This

is still sufficient to prove that equations y2 =f(x) in have some solution,

provided p is sufficiently large compared to deg/.

(2) The same method of proof produces a lower bound for the number

N' of solutions of y2 fix) such that y / 0. This bound is better than the

one which has been stated above, as a corollary of the theorem itself. To
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