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RECENT DEVELOPMENTS

ON SERRE'S MULTIPLICITY CONJECTURES:

GABBER'S PROOF OF THE NONNEGATIVITY CONJECTURE

by Paul C. Roberts

These notes are based on talks given at the Encuentro de Geometria

Algebraica y Âlgebra Conmutativa in Guanajuato in August 1997. They
describe recent developments in the questions on intersection multiplicities,
particularly Gabber's recent proof of Serre's conjecture that intersection

multiplicities over regular local rings are non-negative. After an introductory
section on Serre's conjectures, we present an outline of this proof. In addition,

we discuss related questions on Hilbert polynomials of bi-graded rings.
An outline of Gabber's proof can be found in Berthelot [1], and a more

complete exposition of the proof is given in Höchster [5]. Both of these articles
had a strong influence on these notes.

1. The Serre multiplicity conjectures

In [7], Serre introduced a definition of intersection multiplicity for regular
local rings and showed that it satisfied many of the properties which should
hold for intersection multiplicities. The definition is as follows : let R be a

regular local ring of dimension d, and let X Spec(R). Let Y and Z be

closed subschemes of X defined by ideals p and q such that FHZ consists

only of the closed point of X, or, equivalently, that R/p ® R/q is a module
of finite length. (Despite the notation, it is not necessary that p and q be

prime; however, they will usually be assumed to be prime in later sections of
the paper.) Then the intersection multiplicity of Y and Z is defined to be

d

X(Y,Z) m x(R/p,R/q) lenêth(Torf(R/p,R/q)).
i=0
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More generally, if M and N are finitely generated R -modules such that M<g)N
is a module of finite length, we define

d

X(M, N)yy— 1)' length(Torf (M,
/=0

One of the motivations behind this definition is that it can be shown that

Bézout's theorem holds if multiplicities are defined in this way; that is, if Y

and Z are closed subschemes of projective space meeting in a finite number
of points, then the number of points of intersection counted with multiplicities
is the product of the degrees of Y and Z.

On the other hand, there were certain properties which are not obviously
satisfied and which were left as conjectures. In the form given by Serre [7],
the conjectures are as follows : let R be a regular local ring, and let M and

N be finitely generated R-modules such that M(&RN has finite length. Then:

• dim(M) T dim(Af) < dim(R).

• (Non-negativity) N) > 0.

• x(M. N) > 0 if and only if dim(M) -b dim(iV) dim(R).

Another version of these conjectures is the following :

• dim(M) T dim(A) < dim(R).

• (Vanishing) If dim(M) A dim(yV) < dim(R), x(M.N) 0.

• (Positivity) If dim(M) -f dim(V) dim(f^), x(M,N) > 0.

It is easy to see that the two sets of conjectures are equivalent. Serre

proved the first statement in general, and he proved the others for regular
rings containing a field by the method of reduction to the diagonal. We will
discuss part of this method below. The question was left open for rings of
mixed characteristic, and Serre also asked whether a proof existed which did

not use reduction to the diagonal.
The vanishing conjecture was proven about ten years ago "(Roberts [6],

Gillet-Soulé [3]) using K-theoretic methods. The proof in [6] uses the theory
of local Chern characters, while that in [3] uses the theory of Adams operations

on Grothendieck groups of complexes.
The main topic of these notes is the recent proof of Gabber of the non-

negativity conjecture, in the course of which he also gives a new proof of
the vanishing conjecture. In addition, we discuss some questions which arise

when attempting to extend these ideas to prove the positivity conjecture. First,

we recall a spectral sequence argument used by Serre in his proof and which

was extended by Gabber to reduce these questions on modules over regular
local rings to questions on locally free sheaves on projective space.



SERRE'S MULTIPLICITY CONJECTURES 307

2. The Serre spectral sequence

The main theorem of this section relates the Euler characteristic of a

Koszul complex on a module to the Samuel multiplicity of the module. Let

A be a local ring, and let M be a finitely generated A-module of dimension

at most k.Leta be an ideal of A such that has finite length. We

recall that the associated Hilbert-Samuel polynomial P^(n) is defined to be

the polynomial for which

Pfcn) length(M/ anM)

for large n. If the dimension of M is at most k, we define the Samuel

multiplicity ek(a,M)tobe kl times the coefficient of nk in (if the

dimension of M is less than k, efia.M) will be zero).

THEOREM 1. Withnotation as above, let x{, xk be a sequence of
elements of A, and let a be the ideal generated by Assume that

M/aMis a module offinite length. LetK.be the Koszul complex

and let
k

X(K.® M)y>l)' length(/f, (AT. ® M)).
!=0

Then

X(K. <g> M) ek(a, M).

We sketch the argument used to prove this theorem. The main idea is

to examine the spectral sequence defined by the filtration on Km induced

by powers of a. For each n > 0 and for each i we consider the quotient

anKi/an+lK{. For each r > 0 we then take the subquotient E^n of this module

defined by

{kj6anKj I dite) + an+xKj
'> ({di+fiki+ï)I kl+1n a"Kd + a

'

The E\n define a spectral sequence (the usual spectral sequence associated

to a filtered complex). While the precise definition is necessarily quite
complicated, the idea is that E\n is the subquotient of anKi/an+lKi consisting
of elements whose boundaries lie r steps further down in the filtration modulo
boundaries of elements which lie at most r — 1 steps further up in the filtration.
As r gets large, this subquotient approaches the submodule of elements whose
boundaries are zero modulo the submodule consisting of all of the boundaries.
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In fact, it can be shown using the Artin-Rees lemma (see Serre [7]) that
the spectral sequence does in fact converge to the a-adic filtration on the

homology of K%.

Part of the general theory of spectral sequences, which can be verified

directly in this case from the above definition, is that the boundary map dt

on K% induces a map dri n from Eri n to Eri_l n+r for each i,n and r, and

that we have

££1 =Ker(4„)/Im(^+1>„_r).

Thus the modules at stage r + 1 can be computed as the homology of those

at the rth stage under maps induced by the boundary maps of K%.

We next examine the complexes defined by EPin and E}n.

If we let r 0 in the above definition of Erin, the condition that

di(ki) G an+rKi-\ states that dt(kf) G anK/_ j, which is always true since

k[ is assumed to be in anKt and di is a module homomorphism. Similarly,
the condition that ki+\ G an+1Ki+i implies that di+i(ki+i) G an+1K;, so that
when r 0 the denominator in the above definition of E^n is just an+1K/.

Hence E?in is simply anKi/an+lKi. Furthermore, since K. is the Koszul

complex on the generators of a, the maps di are all zero modulo a, and the

maps induced by the boundary maps dt on Efn are zero. It then follows that

E]n is also equal to anK;/an+1K;.

We next consider the maps d] n induced by dt on ; we denote this map
di. Since K. is the Koszul complex on x\,..., Xt, the map dt is defined by a

matrix with ±xt in certain positions and zeros in the remaining positions. Thus

di is defined by the same matrix in which is considered as a map from
anKi/an+lKt to an+1Kj_i/an+2K;_i for each n. Let Kt denote the associated

graded module of Kt under the filtration by powers of a. Then d[ defines a

map of degree one from Ki to i, and the above description shows that

the resulting complex is the Koszul complex on x\,..., Xk, where xt denotes

the image of x; in the component of degree 1 of the associated graded ring

gra(A).

Thus we have shown that if for each i we let

Ki©„>o El- ©„>0

the maps d] n induced by di define a complex K% which is the Koszul complex

on xu..mfxk over gra(A).

Up to now we have considered the filtration on K. without mentioning
the module M. However, exactly the same argument holds for K.&M, and

we obtain a spectral sequence Erin(M) which converges to the homology of
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K.&M and such that the modules Ejn(M) form the Koszul complex induced

by 3ci,... ,xk on the associated graded module gra(M). This Koszul complex

can also be expressed as Km(&gra(M). Since we are assuming that M/aM has

finite length, the homology of the Koszul complex induced by xu ,xk on

gra(M) also has finite length. Thus, since stage r +1 of the spectral sequence

is obtained from the rth stage by taking homology, the Euler characteristic is

preserved from each stage of the spectral sequence to the next. Hence, since

the spectral sequence converges to the homology of K% 0 M, we have

X(K0 0a ^0 ®gra{A) graC^O) •

To complete the proof that this Euler characteristic is equal to the Samuel

multiplicity, we interpret the complex K. ®gra(A) gra(M) as a complex of

graded modules. Denote this complex Each module has a Hilbert

polynomial Pi such that

it—l

£ length^),->
7=0

where (Kf)j denotes the component of Kf of degree j. However, since

is a Koszul complex on the associated graded module of M, we also have

Pi(n)- 0

—M
for all i, where Ph is the Hilbert polynomial of M. The shift by i in K0
is necessary so that the boundary maps will be maps of graded modules of
degree zero. By the additivity of Hilbert polynomials, Ym=o(~l);^'(n) giyes

—M
the Hilbert polynomial defined by the homology of K9 which is constant

—M
with value x(Km But a direct computation (we prove a more general version

of this in a later section) shows that ~~ 0 is times the

coefficient of nk in PJ^(n), which proves the result.

The point of this computation is that it transforms questions about Euler
characteristics into questions about Hilbert polynomials, which are often easier

to deal with. We consider one particularly important case. Let R be a regular
local ring, and let p and q be ideals of R such that R/p <g> R/q has

finite length. Suppose q is generated by a regular sequence x\,..., xk. Then
dim(/?/q) dimOR) - k, so that we have dimCR/fi) < dim(R) dim(R/q) k,
and dim(R/p) + dim(R/q) dim(R) if and only if dim(R/p) k. Since

x\,.,., xk is a regular sequence, the Koszul complex K. on x\,.., 5 xk is a
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free resolution of R/q. Thus Torf (R/q, R/p) is the homology HfK. ®R/p).
Applying the above theorem with M R/p, we deduce that

X(R/q,R/p) - ek(q,R/p).

Since the Samuel multiplicity ek(q,R/p) is always non-negative and is positive
if and only if the dimension of R/p is equal to k, this proves the conjectures
in this case.

Serre's proof of the multiplicity conjectures in the equicharacteristic case

proceeded by reducing to the case of a regular sequence by reduction to
the diagonal. If R is a power series ring k[[X\,..., Xd]\ and M and N
are R -modules with M ®R N of finite length, he introduced a new set of
variables Y\,..., Yd and considered N as a module over k[[Y\,..., Yj]]. He
then defined a "complete" tensor product M <S>k N over k as a module over
the ring k[[Xi,..., Xj, Tj,..., Yfl] and showed that

Torf (M,N)S Torf^'^M ®kN,kYj\]/(Xi
Since X\ — Y\,..., Xd — Yd form a regular sequence, this proves the result
for power series rings, and the conjectures for general equicharacteristic rings
can be reduced to this case by completion and the Cohen structure theorems.

3. Gabber's reduction to regular embeddings

In this section we describe Gabber's use of de Jong's theorem on the

existence of "regular alterations" to reduce the intersection conjectures to

questions on regular embeddings in projective space over R.

As above, let R be a regular local ring and let p and q be prime ideals

of R such that R/p® R/q has finite length. Let d be the dimension of R,
let r be the dimension of R/p and let t be the dimension of R/q.

The following theorem of de Jong [2] makes the reduction to a question

on regular embeddings possible:

THEOREM 2. Let A be a local integral domain which is a localization

of a ring of finite type over a discrete valuation ring. Then there exists a

projective map <j>: X —> Spec(A) such that

• X is an integral regular scheme.

• If K is the quotient field of A, then the extension k(X) of K is finite (we

say that X is generically finite over Spec(A)).
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For the proof of this theorem we refer to [2]. We show below that this

reduces the questions on intersections over a regular local ring to corresponding

questions on intersections on projective schemes where one of the schemes is

regular. We note that the fact that </> is projective means that X is a closed

subscheme of Proj(A[Xo,... ,X„]) for some n. In our application, we apply
the theorem to A R/q. Suppose first that SpecCK/q) is already regular,

which means that R/q is a regular local ring. In that case, q is generated

by part of a regular system of parameters, so is in particular generated by a

regular sequence. Hence the conjectures follow immediately from the results

of the previous section on Koszul complexes.
We note that there is an extra assumption, that the ring be a localization

of a ring of finite type over a discrete valuation ring (and there are also

assumptions on the discrete valuation ring). However the general case can be

reduced to this case (see Berthelot [1] or Höchster [5]), and we assume that

our rings have this property.
Let X SpecCR), Z — Spec(R/q) and Y Spec(7?/p). We denote a

regular scheme which is projective and generically finite over Z (whose
existence follows from de Jong's theorem) by Z'. Then there exists an n
such that Z' is a closed subscheme of Proj(/?/q[X0,... ,X,J) and hence
also of Proj(Ä[X0,... ,Xa]). We let P denote Proj(7?[Z0,...,Xn]) and let
4> denote both the map from P to X and the induced map from Z'
to Z. Let I denote the graded ideal of R[X0,... ,Xn] which defines Z'.
Let Y' ProjCR/ptV, • • • ,*„]).

The generalization from rings to projective schemes involves a corresponding

generalization from modules to sheaves. The sheaves we consider will be
coherent (see for example Hartshorne [4] for the general theory of sheaves

on projective schemes). We recall that a coherent sheaf on can be
defined either by specifying its modules of sections over the open sets in an
affine open cover or, alternatively, by taking the sheaf defined by a finitely
generated graded A-module M. We will generally use the second definition,
as it is usually more convenient in computing examples.

We let Op, Oy,andOy denote the structure sheaves of P,
and Z' respectively; they are defined by the graded rings /J[X0,... ,X„],
tf/pK), • • ,Xn], and R[X(i,... ,Xn]/I.Wewill also sometimes denote R by
Ox and similarly for Oy and Oz.

If M andAfare sheaves on a projective scheme defined by graded
modules M and At, we define the sheaves by taking a
resolution of M (or Af)bylocally free sheaves Ty and letting Torfw(M,J\f)
be the ith homology of Usually we define T, by defining a complex



312 P. C. ROBERTS

of graded modules Ft which define locally free sheaves and which give a

resolution of M (or N). In the case where W P9 a bounded resolution
can be constructed using direct sums of copies of Op(n), so this process is

quite easy to carry out. We also define the complex Tor°w(M,N) to be the

complex T. 0 M. This complex is of course not well-defined as a complex,
but it is well-defined up to quasi-isomorphism.

The last ingredient in the generalization to projective space is the pushdown
of complexes from P to X by the map <p, which we denote </>*. In general
this functor is the derived functor of the global section functor on sheaves,

but in the case of projective space over R it is not difficult to give a direct
definition using Cech cohomology. Let A R[X0, • • • and let P Proj(A)
as above. Let C* be the complex

o -» YlAX LAx,Xj -* » o

where for any element Y G A, AY denotes the localization of A obtained

by inverting Y. If M. is a bounded complex of coherent sheaves over P

represented by a complex of graded modules Mm, we then define </>*(.AA#) to
be the graded part of degree zero of the complex C* ®AM.. Then (j)*{M.)
is a bounded complex of R-modules with finitely generated homology and is

well-defined up to quasi-isomorphism.

Now suppose that M and J\f are coherent sheaves on P such that

M ®oP N has support which lies over the closed point of R, which we
denote 5. Then Torfp(M.,J\f) has support lying over s for all /, so that the

homology of <j)*(Tor°p(M,N)) is supported at the maximal ideal and thus

has finite length. Hence we can define

X(MM) 53(-1)'length

The first part of the reduction is to show that it suffices to show

that the Euler characteristic xiPz^Oy) is non-negative and is zero if
dim(/?/p) + dim(7?/q) < dim(R). The point is that the assumptions on (j) imply
that this new Euler characteristic is closely related to the Euler characteristic

%(7?/p,/?/q) defined earlier. Let G# be a finite free resolution of R/p over
R. Let be a finite locally free resolution of GZ' as above, and let T.
be defined by a complex F% of graded modules. We then have the following
"projection formula" :

</>*(?•) ® 0*(G.)) •
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To prove this formula, we use the definition of 0* in terms of the complex

C• defined above. The associativity of the tensor product implies that we have

isomorphisms of complexes:

{C F.) ®R G. ^ C <g)A (F. G.) ^ C- 0A (F. ®A CA ®R G.)).

Since A G. defines a locally free resolution of Oy, it is clear that

the complex C# 0A (F. 0A (A ®r G#)) represents 0*07-",• <S> 4>*(Gm)). Since

(C* 0.A F.)®rG. represents ^(T)0G#, this proves the above isomorphism.

To complete the proof of the fact that it suffices to prove non-negativity

and vanishing for x(GzuGy/), we use induction on the dimension of R/q

together with the assumption that the map induced by (j) from Z' to Z is

generically finite. Let J-m be a locally free resolution of Oz' on P. If we

localize at q, the generic finiteness of 0 implies that the resulting map from

Proj((A//)q) to Spec(0R/q\) is defined by a finite field extension of a given

degree which we denote n. Thus localized at q is isomorphic to

((R/q)q)n, so the complex is isomorphic to the module (R/q)n up

to a complex with homology of dimension strictly less than the dimension

of R/q.
By the projection formula, we have that

0*CZ.) G. 0 cjf{G.)),

where G# is a free resolution of R/p. Since Z. is a locally free
resolution of Ozj and 0*(G.) is a locally free resolution of Oy/, the complex

0 $*(G.)) is quasi-isomorphic to (j)*(Tor°p(OzyOy)). Hence,

taking Euler characteristics and using the above isomorphism, we have

— x(Gzu Gy/). Applying the induction hypothesis, we have

that x(M,R/p) is zero whenever the dimension of M is less than the dimension

of R/q. Thus, since 0*(OzO is isomorphic to (R/q)n up to something
of dimension strictly less than the dimension of R/q, we have that

X(Oz', Oy,) x(0R/pf\R/p) n(x(R/q,R/p)) •

Thus the vanishing, non-negativity, and positivity of x(Pzr •> Oy) are equivalent
to the corresponding properties of x(F/q^R/p).

Thus we have reduced the multiplicity conjectures to corresponding
conjectures on Euler characteristics defined by subschemes Y' and Z' of
projective space over R, where Z' is regular and Y' is the pullback of
a subscheme of Spec(^). In particular, the ideal I defining Z' is locally
generated by a regular sequence, and this fact makes it possible to use the
Serre spectral sequence to reduce to the case of associated graded rings.
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Let grpA) A/I ® I/I2 ® be the associated graded ring of I. Let B
denote A/pA, and let grj(B) denote the associated graded ring of the image
of I in B. We note that both 377(A) and gn(B) are bigraded rings, with
one grading induced by the grading on A and the other corresponding to

powers of I. The ring grj(B) is also a bigraded module over 377(A). We

make the convention that the ij component of gr^A) is the component of
p/p+l of degree i. We let E denote the scheme Proj(377(A)), where grj(A)
is considered to be a graded module by the grading in the first component
(the grading induced from that on A). Then E can be defined locally as

follows: if U is an affine open set in Z' and Ov is the ring such that
U Spec(CV), then the fiber of E over U is defined to be Spec(C), where
C is the associated graded ring of Ou by the restriction of I to U. Since

I is locally generated by a regular sequence, C is locally a polynomial ring
over Ou. We note that Oz> is a quotient of both A and 377(A). Let M
denote the sheaf on E defined by the graded module grj(B).

We next show that the Serre spectral sequence implies that we have an

equality :

Xe(Oz' M)) Xp(Pz'-> Oy) •

Let
0 —* J~k —> • • • —> J~ \ —» T0 —» 0

be a locally free resolution of Oz> over Op. We apply the argument of
section 2 to the filtration of T. induced by the powers of I. Since I is

locally generated by a regular sequence, the same argument goes through.
However, there are two points which are different from the case of the Koszul

complex. First of all, T% will in general not be a minimal complex locally, so

that it is locally a direct sum of a Koszul complex and a trivial (split exact)

complex. However, in the local computation, the split exact part is eliminated
in the step from £° to El, so from that point the argument goes through as

before. The second point is that in taking the homology at El, the homology
is no longer of finite length, but only supported at the maximal ideal of R.

However, it is still zero except for finitely many i and n and we can conclude

that the Euler characteristic is the same using the additivity of 0* and the

Euler characteristic on Spec(R). Thus the argument goes through, and we
have the above equality.

There is one more reduction, which reduces to the fibers over Spec(/?/m) - s.

Let M be the sheaf on E with associated graded ring gn(B) considered as a

module over jgrpA). Then, since for the original ideals p and q we had that

R/p ® R/q had finite length, M is annihilated by a power of the maximal
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ideal m of R. Hence it has a finite filtration with quotients Mi which are

annihilated by m. It then suffices to show that Xe(Oz> -, Mj) is non-negative

for each i. We can compute this Euler characteristic by taking a locally
free resolution for öz> and tensoring with Mi, and, since Mi is annihilated

by m, we can tensor first with R/m. Let s denote the closed point
of Spec(7?) as above, let Es Proj(gr/(A) ®R k), where k R/m, and let

Z's Proj (A/I<g>Rk). The above argument shows that for each i we have

Xe(0Z' Mi) Xes(Qz's Mi). Hence

XE(OZ> °Z''Mi)Ç V/-;«.'1/;,
i i

We recall that the dimension of M is equal to dim(/?/p) + n (where
P Proj(/?[X0,... ,Xn])). Thus to prove the vanishing and non-negativity
conjectures it suffices to show that whenever M is a coherent sheaf on Es

and dim(M) + dim(Z7) < dim(7?) + n we have Xes(®z^M) > 0, and that we
have equality when dim(AA) + dim(Z/) < dim(R) + n.

To prove the positivity conjecture it would of course suffice to show that if
dim(A/0 + dim(Z/) dim(R) + n, the Euler characteristic is positive. However,
this is not true in general (we give an example below). However, assuming
the non-negativity conjecture for a moment, we show that there is a simple
criterion for positivity.

PROPOSITION 1. Let notation be as above, and let Mo be the sheaf
defined by grj{B)®Rk considered as a module over grj(A)®Rk. Assume that
dim(i?/p) + dim(i?/q) dim(/?). Then the positivity conjecture holds for the
ideals p and q if and only if Xes(Oz>, Mo) > 0.

Proof Since Mo is a quotient of the sheaf M defined by grfiB)
and Euler characteristics are non-negative, if Xes(Oz>,Mo) > 0, then

Xe(Pz',M) > 0. Conversely, suppose that Xes(Oz^M0) 0. Since grfiB)
is annihilated by a power of m, it has a filtration with quotients which are
homomorphic images of direct sums of copies of grfiB)®Rk. Again using
non-negativity, we can deduce that if Mt is the sheaf defined by any of these
quotients, then Mt is a quotient of a direct sum of copies of Ad0, so we
have XEs{Oz's,Mi) 0. Thus the additivity of the Euler characteristic implies
that Xe(0Z',M) 0.
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4. Some examples

We give here three simple examples of the type of bigraded ring which

might result from this construction. Each of these examples is obtained by
taking a birational map from a regular scheme to Spec(K/q), and the last two
are simple resolutions of singularities.

We first summarize the construction up to this point. We began with a

regular local ring R and prime ideals p and q. We then took a regular
subscheme Z' of Proj(7?[Xo,... ,X„]) which was generically finite over
Spec(7?/q). The next step was to replace /?[Xo,... ,Xn] with the associated

graded ring of 7 tensored with Rfm k. The sheaf Oy defined by
B R/p[Xo,... ,X„] was then replaced with the sheaf A4 defined by grj(B),
again tensored with k. The assumption of regularity implies that 7/72 is locally
free over A/7; denote its rank r. Then the dimension of A4 is at most r,
and it is equal to r if and only if we had dim(7?/p) + dim(7?/q) dim(7£).

We note that the fiber Z's of Z' over the maximal ideal of R has dimension

at most dim(i?/q) — 1, but apart from that we do not know much about it. It
is the projective scheme defined by the graded ring (A/I)®Rk, which is the

part of degree zero in the grading in the second component of the bigraded

ring we are considering.

For the first example, let R have dimension four, let t^u,v,w be a regular

system of parameters, and define the prime ideals p and q by letting p — (7, u)

and q (v,w). In this case, Spec(7?/q) is already regular, and we can simply
take the projective scheme Proj(7?[X]) Spec(7?).

For a slightly more complicated example, consider the subscheme of the

projective space Proj(7?[X Y]) defined by the ideal 7 generated by v, w, and

Xu — Yt. Then Z' is the blow up of Rj q at the point defined by the maximal

ideal, and the fiber over s is projective space of dimension 1. One could

define similar examples in higher dimension.

For a third example, let R have dimension 2, and let 7 be generated by
Xu — Yt,Zu — Xt,X2 — YZ. The projective space P has dimension 2, and the

fiber over the maximal ideal has codimension one in Proj(k[X, 7, Z]) and thus

has dimension one. The sheaf defined by 7/72 has rank 2, but 7 is minimally
generated by three elements.

In the above examples it was not really necessary to reduce to projective

space since the original quotients R/q were regular. We next consider an

example where the original scheme is not regular. Let m be minimally
generated by t. u, and let q be the principal ideal generated by t2 — u3.
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We can resolve the singularity by letting Z' be defined by the ideal in

R[X, Y] generated by t2-w3,uX-tY,X2- The fiber Z's in this case

is Proj(k[X,T]/(X2)).
Finally, we consider the case where q is the determinantal ideal in R of

dimension 4 generated by wu — t2, wv — tu, and tv — u2. In this case the

resolution can be found by taking the ideal I in R[X, F, Z, W] generated by

the following elements:

Z2 - YW,YZ-XW,Y2- XZ,uW - vZ, uZ - vY, uY - vX,
2 -

tW — vY, tZ — vX, tY — uX, tu — wv, t2 — wu, wW — vX, wZ — uX, wY — tX.

The fiber over the maximal ideal is a determinantal subvariety of dimension

1,

In a later section we will return to these examples and consider the question

of computing the Euler characteristics Xes(Pz's,M) for sheaves M defined

as above by certain prime ideals p of R.

5. Hilbert polynomials of bigraded modules

In section 2 we showed how the Serre spectral sequence can be used to

express the Euler characteristic defined by a Koszul complex in terms of the

Samuel multiplicity. In this section we show that similar results hold in the

present situation. We now let C denote the bigraded ring which we previously
denoted grj(A) ®Rk, where C/j consists of the elements of (F/P+l) ® k of
degree i. Thus in our present notation, Es — Proj(C), where the grading on
C is that in the first coordinate. Let Co denote the subring ®/(C/;o). Let r
be the rank of I/I2, and let M be a bigraded module defining a sheaf A4

on Es of dimension at most r ; we define the dimension of M to be the

dimension of the associated sheaf. We consider the question of computing the
Euler characteristic Xes(Pz's,A4), which we also denote x(Co,M).

Let
0 - Fk ^ Fx - Fo - C0 -* 0

be a complex of bigraded modules which defines a locally free resolution of
C0 over C. For any finitely generated bigraded module N, we let PN(m,ri)
by the Hilbert polynomial of N\ more precisely, we define PN to be the

polynomial in two variables such that

n-1
PN(m, n)^2lengthi=0
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for large m and n. The degree of Pn is equal to the dimension of N (that
is, the dimension of the sheaf defined by N on Es). Let M be a bigraded
module of dimension at most r as above. Then M 0 Ft has dimension at

most r, and we have that the alternating sum of Pm^Fi is constant with value

equal to x(Cb,M).
We will prove this in a special case below (and reduce the non-negativity

conjecture to this special case in the next section). We first briefly consider
the question of constructing a resolution Fm of Q. One method is to take

the E1 term of the Serre spectral sequence as defined in the previous section,

starting from a locally free resolution of A/7 over A. However, even though

A/1 has a nice resolution by sums of shifts of A, the resulting locally free
sheaves in the resolution over the associated graded ring will not be so simple.
An alternative approach is to take a global Kozsul complex

• • • A2(I/I2)®gn(A) -v A1 (I/I2) ® —> —> 0

The resolution over C can then be obtained in either of these constructions by
tensoring with k. This resolution gives an expression for the Euler characteristic
in terms of the Chern classes of 7/72, but again it is not easy to see how to

use this information to compute Euler characteristics.

For the remainder of this section we assume that 7/120/?fc is a sum of copies
of Oz's(—ki) for various &/, so that C is a polynomial ring Cq[T\, Tr\ over
Co, where 7) has degree (k-n 1) in the bigrading on C. As mentioned above,

the non-negativity conjecture will be reduced to this situation in the next
section. In this case the resolution is the usual Koszul complex on 7),..., Tr,
and the Hilbert polynomial of M 0 7q is a sum of Hilbert polynomials of
M with shifts in the degrees. Furthermore, the Koszul complex on T\,..,, Tr

is a tensor product of Koszul complexes on the individual 7), and we can

compute the Hilbert polynomial of the tensor product Km{T\,..., Tr) 0M by
tensoring by each factor K.(7)) in turn and keeping track of the result. As

above, assume that the dimension of M is at most r, and let QrM(m,ri) be the

component of PM(m,ri) of degree r. Let 7) have degree (k, 1), and consider

the Hilbert polynomial obtained by tensoring with the complex

0 - C[(-k,-l)]0.

The Hilbert polynomial of the resulting complex K.{Ti) 0 M will be given

by the polynomial whose value at (m, n) is PM(m, n) — PM(m — k^n— 1). We

compute this difference for a monomial mlnj and obtain

mlni — (m — k)\n — 1); mlnj — (ml — ikml~l + )(nj —jn^~l +

mlnj — mlni + ikml~lnj + jmln^~l +••. ikm!~lnj + jmlnj~l +
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where the remaining terms have lower degree. Since we are concerned with

the component of highest degree, this suffices for our computation. We note

that we can express this result by the formula

_sa_+ki>KfJK.nxu - Sn 9m

Iterating this process, where we let 7) have degree (&;, 1) for each i, we

have

x<a,«)=n
i= 1 v 7

In this formula Q'M could be replaced with PM.

THEOREM 3. Let C C0[Ti,..., Tr\, where 7} has degree (kfl) as

above, and let M be a bigraded C -module of dimension at most r.

(i) If dim(M) < r, then x(Qb^0 0.

(ii) If k( > 0 for all i, then x(Ql^0 > 0.

(iii) If hi =: 0 for all i, then x(C0,M) > 0 if and only if the coefficient of nr

in Pm is non-zero.

(iv) If hi > 0 for all i and dim(M) r, then x(Q), M) > ^ •

Proof If the dimension of M is less than r, its Hilbert polynomial has

degree less that r, so the result of taking r partial derivatives is zero. Thus

(i) holds.

We prove (ii) and (iv) by induction on r. By taking a filtration of M, we

may assume that M is of the form (C/p)[(iJ)], where p is a bigraded prime
ideal of C and [(zj)] denotes a shift in degrees. Suppose some 7) is not
in p. Then 7) is a non-zero divisor on M, and we can tensor with the Koszul

complex on 7/, replacing M with M/TiM and reducing r by one. Thus the

result follows by induction. If all Tt are in p, then its Hilbert polynomial is

constant with respect to n, so we have Qr(m,ri) — am1' for some a > 0.
Hence the above formula states that

X(C0,M) kikt-'.kr(r\)a.
If all the hi are greater than or equal to zero, we thus have x(Ql^0 > 0.
If all the kf are greater than zero and M has dimension r, then a > 0 and

X(Co,M) > 0. This proves (ii) and (iv).
If all the kj are zero, then x(Cb,Af) is simply the rth derivative of PM, so

it is positive if and only if the coefficient of nr is positive. On the other hand,
this coefficient gives the length of the module ©•=/ MmJ for sufficiently large
n up to terms of lower degree in n, so it cannot be negative.
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The graded ring obtained from the original situation will be of the form
considered here when 7 is globally defined by a regular sequence, and the

ki will then be the degrees of the generators. We give an example to show
that the condition that M has dimension r does not suffice for %(Co,M) to
be positive. Let R have dimension 3 and let t,u,v be a regular system of
parameters. Let q be the ideal generated by v, and let 7 be the ideal of 7?[X, Y]

generated by v and uX — tY. Then the fiber over the closed point is projective
space of dimension one, Co k[X, Y], and C C0IX1, T2] with k\ 0 and

k2 1. Then if M — CjT\, M has dimension 2 and x(Co,M) 0.

Exercise. Prove (without using the Serre positivity conjecture) that the

module M in the previous paragraph could not arise from a prime ideal p
such that R/p <g> R/q has finite length and dim(i?/p) + dim(7?/q) dim(R).

6. Gabber's proof of non-negativity

In this section we complete Gabber's proof of the non-negativity of
intersection multiplicities. We have seen in the last section that if grj(A) 0# k

is a polynomial ring over (A/7) 0# k generated by elements of non-
negative degree, then non-negativity follows. We show here that we can
embed (777(A) 0# k into a polynomial ring of this type. Let Ao denote

A/I®Rk. Actually, we show instead that we can embed the symmetric algebra

SymA ((7//2) 0/? k) into a polynomial ring by a locally flat map. Since I/I2
is locally free, the map from the symmetric algebra to the associated graded

algebra defines an isomorphism of schemes, so this suffices to prove the result.

Let 5 SymAo((I/I2) ®R k).

Let Es denote Proj((/r/(A) ®R k) Proj(SymAo((///2) ®R as above.

Let W Proj(Ao[7"i,..., 7>]) for 7) of degree (ki, 1) for some integer r'.
Suppose that/ is a map from S into the polynomial ring A$[T\,... ,Trt] such

that the map <fi induced by / from W to Es is flat of relative dimension

r' — r, where r is the rank of I/I2. Then we have a commutative diagram

5 A0 [TU

\ /
Ao
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which induces a commutative diagram of schemes

Es ^ W

\ /
A

Let M be a sheaf on Es defined by a bigraded module M. Since we are

assuming that </> is flat, we have an isomorphism

TorfEs(Oz>,M)*T,<p*(M))

for all i. Thus we have an equality of Euler characteristics

Xe,(Oz<,M) xw(Oz;,F(M)).

Thus if we can find such a map / such that all the k/ are non-negative, the

conjecture will follow. We now show that such an embedding exists. Gabber's

proof uses the fact that the dual of I/I2 over s is generated by global sections;

we define this map directly without dualizing. At this point we assume that R

is ramified. Although this is an unusual assumption, it is possible to reduce

to the ramified case by a finite flat extension of R, for example by adjoining
a square root of p, where R has mixed characteristic p. Let t\,..., td be a

minimal set of generators of the maximal ideal m of R. Since R is ramified,
R/m2 is isomorphic to a polynomial ring in t[,... ,td modulo the square
of the ideal generated by tu...,td. Thus for each z, the partial derivative

— defines a map from R/m2[X0,... ,Xn] to R/m[X0,... ,Xn]. By taking

the composition with the map from 7 to R/m2[Z0,... ,X„] induced by the
inclusion of 7 into A and with the map from j?/m[Xo,... ,Xn] — A <S)r k to
(A/7) <&R k A0, we obtain a map from 7 to A0. Since for all a in A and i
in A the partial derivatives satisfy

d(ai)
_

di da

dti
ü

dti ^ dti

dand Aq is annihilated by I, we can deduce that the map induced by —
dti

vanishes on /2 and defines a homomorphism of -modules from I/I2
to A0.

d
Similarly, for each i«0,..., nwehave a map induced by from I/I2

dXi
to Aof-1], where the shift in degree arises from the fact that these partial
derivatives lower the degree by 1.
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Putting these together, we have a map from I/I2 to Aq®Ao[— l]n+1, which
define a map / from S to Aq[T\,..., 7j, So, • • •, Sn] where the 7) have degree
0 and the St have degree 1.

THEOREM 4. The map f is locally an inclusion of polynomial rings. In
particular, it is locally flat of relative dimension d + n+ 1 — r.

Proof This is one of the main points of the proof, and it is the only
place where the full strength of the assumption that Z' is regular is used. It
suffices to show that for every closed point p of Z's, the map from l/l2 to

Aq®Ao[— 1]w+1 defines a split inclusion locally at the point p. We assume that

the residue field is algebraically closed (which we can do by a flat extension)
and look at the maximal ideal mp corresponding to p. The local ring at p
in P, which we denote Ap, is isomorphic to R[u\,..., un]mp, where, after a

change of coordinates, we may assume that u\^..., un together with a set of
generators of m# generate m^. Since Z' is regular, 7 is generated locally by
part of a regular system of parameters i\,.. « # ir. Furthermore, the quotient
7/72 is locally generated by the images of i\,..., ir. Since i\y..., ir form

part of a regular system of parameters, the images of their partial derivatives

in (Ap/mp)d ® (Ap/mp)n+l are linearly independent. Hence the map from

(I/I2)®k to Aq®Ao[— l]n+1 locally defines a split inclusion at p as was to
be shown.

This completes the proof of the Serre nonnegativity conjecture. Since

certain of the indeterminates in the polynomial ring used in the proof have

degree zero, it does not show that the Euler characteristics must be positive.
In fact, as we showed at the end of the previous section, the locally free

sheaf defined by 7//2 is not itself positive enough to ensure positivity. Thus

the positivity conjecture requires studying the sheaf M coming from the

associated graded ring of 7 on R/p[Xo> • • •

We note that we can embed A[— 1] into An+1 by a locally split embedding
which sends 1 to (Xo,...,X„) and thus embed S into a polynomial ring
D generated by d + (n + l)2 elements all of which have degree zero.

Thus one criterion for the positivity conjecture to hold is that if we
take the quotient of D by the image in D of the kernel of the map
from grt{A) to grj(R/p[Xo, then (under the usual assumptions) the

coefficient of [n the Hilbert polynomial of this quotient is not

zero.
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We remark that the construction we have presented is quite computational

in the sense that it is possible to compute the embedding ç
explicitly in special cases. We give two simple examples. First, let R have

dimension 2 with maximal ideal generated by t. w, let A X[X, 7],
and let I be generated by uX — tY. Then Aq k[X,Y]. The map /
to Ao[Si.S2,T0.Ti] induced by the partial derivatives sends uX — tY to

— YS\ + XS2 + uTo — tT\, which, after dividing by m, is — 7Si + XS2. Let

p (t. u). Then uX - tY is zero modulo p, so the kernel on the map of
graded rings is generated by the image of uX — tY in I/I2. Hence M is

mapped to the sheaf associated to AofSi, S2. To, T\\/{—TSi + XS2). It can

be verified that this quotient satisfies the condition on Hilbert polynomials;
the positivity condition also follows from the fact that —YS 1 + XS2 has

degree (1,1).

Finally, we consider the example from section 3 in which I is generated

by t2 - u3,uX — tY.X2 — uY2. Then I/I2 has rank 2. Taking derivatives,

we see that the map ç (after dividing by m) satisfies cp(t2 — u3) — 0,
o(uX - tY) XS{ - TS2, and Ô(X2 - uY2) -Y2S2 + 2XT0. To compute
the result of intersecting with Y', where Y' is generated by an ideal p,
it suffices to compute the kernel of the map from the symmetric algebra

on I/I2 to the associated graded ring of I on R/p[X,Y] tensored
with k, and then find the image of this kernel in Aq[Si,S2,Tq,Ti]. On
the other hand, in this case Proj(A0) Proj(k[X, Y]/(X2)) has dimension
zero, so that the locally free sheaf defined by (I/I2) k is actually positive.

Similar examples can be computed from the other examples in section 3.
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