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20 S. TABACHNIKOV

Remark. The following result is also known (see the literature cited) : if
a convex closed curve intersects a curve, homothetic to /, at 2n points then

it has at least 2n Minkowski vertices.

In this section we discuss the following problem: given a smooth strictly
convex closed plane curve 7 and a smooth transverse line field I along it,
when does a parameterization 7it) exist such that the line l(t) at point 7(0
is generated by the acceleration vector 7"(t) for all t

Definition. A transverse line field along a closed plane curve, generated

by the acceleration vectors for some parameterization of the curve, is called

conservative.

Clearly, not every line field is conservative : consider, for example, a field
of lines that everywhere make an acute angle with the curve. Theorem 0.1

provides a necessary condition : the envelope of the lines from a conservative

line field has at least 4 cusps. Lemma 3.2 gives another one: there exist at

least 2 tangent lines to this envelope through every point in the plane.

We start with the following situation. Let M3 be a contact manifold and

let 7 C M be a closed smooth Legendrian curve. Recall that the characteristic

line field 77 of a contact form À is the field Ker dX. Assume that the contact

distribution along 7 is coorientable ; then it can be determined by a contact

form. Let 77 be a line field along 7, transverse to the contact distribution.

Question. When does a contact form exist in a vicinity of -7 for which

77 is the characteristic field?
When this is the case we call the field 77 characteristic.

Let A be some contact form near 7 and let v be a vector field along 7
that generates the line field 77. Consider the 1-form (iv dX)/X(v) and set

THEOREM 5.1. The number 77) does not depend on the choice of the

contact form À nor the vector field v. This number vanishes if and only if
the field 77 is characteristic.

5. Conservative transverse line fields
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Proof. Clearly, (iv dX)/X(v) does not change if v is multiplied by a

nonvanishing function. Let Ai fX with / ^ 0 be another contact form.

Then dX\ df A À +fdX. One has

f iv dX\ f f iv dX + df(v) X — X(v) df
Jj Ai(u) J~ f X(v)

_ f iv dX [ df{v) f df_

J7 A(v) Jzjf X(v) J~ /
The second integral on the right hand side vanishes because 7 is a Legendrian

curve, tangent to the kernel of df(v)X/fX(v), and so does the third because

Z/// is an exact 1-form. Thus ß(y, 77) does not depend on the choices involved.

If 77 is characteristic for a contact form A then iv dX 0, so /?(7,77) 0.

Conversely, let ^(7, rj) 0. A neighbourhood of 7 in M is contactomorphic
to a neighbourhood of the zero section in the space of 1-jets Z1^1 (see [A 3]).
That is, there exist coordinates 1 G 51, y,z G R1 in which the

contact structure is given by the 1-form Xq dz — ydx, and 7 is the curve

y z 0. Since rj is transverse to the contact structure one may assume it
to be generated by the vector field

v a(x) d/dx + b(x) d/dy + d/dz,

where a(x) and b(x) are functions on the circle.
Then

/3(T> r xyy~ /dx
If /3(7, rj) vanishes then there exists a function g(x) such that b(x) g'{x).

Next, a direct computation shows that the characteristic line field of the contact
form js generated by the vector field

fy d/dx ~(fx + yfz) d/dy + (1 + yfy) d/dz

which equals, along 7,

u=fy d/dx~fx d/dy + d/dz.

Therefore, setting f(x,y,z) a(x)y - g(x), one has: v u, and the field 77

is characteristic.

Thus the characteristic line fields constitute a codimension 1 subspace in
the (infinite dimensional) space of line fields along 7, transverse to the contact
structure.

Return to the situation at the beginning of the section. Let 7 be a smooth
strictly convex closed curve, cooriented inwards, and let / be a smooth
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transverse line field along 7. As before, 7 is the Legendrian curve in the

space of cooriented contact elements ST*R2, corresponding to 7. For every
point x G 7 consider the family of cooriented contact elements along the line
/(x), parallel to the contact element of 7 at x. This gives a line field 77 along

7, a lift of the field /. The field 77 is transverse to the contact structure.

Choose a parameterization 7(r), 0 <t<T, and a vector field u(t) along

7 that generates the line field l(t).

LEMMA 5.2. One has:

Proof. Let v be the lift of u to ST*R2 that generates the field

77. In Theorem 2.1 a Hamiltonian function H in ST*R2 is constructed,
associated with the parameterization 7(0 (one does not need the assumption

[7/,(0j7///(0] 7^ 0 here). The space ST*R2 is identified with R2 x5, where the

star-shaped curve S C (R2)*, the level curve of H, consists of the covectors

W(t\ ]. The corresponding contact form À is the restriction of the Liouville
form pdq to R2 x S. The curve 7 is given by the formula :

7(0 (7(0, [7(0, ])•

It follows that À [V(0, u(t)]. Likewise,

'(f)) (iV(t)dp f\d

Therefore

The lemma is proved.

In particular, the value of the integral

does not depend on the parameterization 7(t) nor on the choice of the vector

field u(t). Denote this integral by
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LEMMA 5.3. The line field I along 7 is conservative if and only if the

line field 7 along 7 is characteristic.

Proof If I is generated by the vectors 7n(t) then rj consists of the

characteristic directions of the contact form in ST*R2, associated with the

parameterization 7(f) in Theorem 2.1 (cf. the proof of the preceding lemma).

Conversely, a contact form A along 7, whose characteristics are the lines

77, is a field of covectors p along 7 which vanish on the tangent lines to 7
at the respective points. Define the parameterization 7(t) by the condition:

[j'(t)t ] s= p (7(0) for all t. Then the contact form in 57*R2, associated

with this parameterization according to Theorem 2.1, coincides with A along

7. Therefore the lines l(t) are generated by the vectors 7/,(t).
Combining Theorem 5.1, Lemma 5.2 and 5.3, one arrives at the following

result (discovered in [T 2] and proved therein by a direct computation).

THEOREM 5.4. A transverse line field I along a smooth strictly convex
closed plane curve 7 is conservative if and only if afiy A) 0.

Thus conservative line fields constitute a codimension one subspace in the

space of transverse line fields along a closed curve.

Example. L. Guieu and V. Ovsienko studied the following situation
in [G-O]. Given a smooth convex closed plane curve consider the field of
lines connecting each point of the curve with a focus of its osculating conic
at this point (see Example 2 in Section 3). This line field is conservative,
and its envelope, called the gravitational caustic in [G-O], has at least 6

cusps.
Consider a curve 7 with a transverse line field I. A (partial) diffeomorphism

of the plane F takes 7 to a new curve F(7) with the transverse line field
dF{l). The field dFfl) does not have to be conservative even if I is.

Example. Let 7 be the unit circle, I consists of its normals, and F
is given near 7 in polar coordinates by the formula: (a, r) (a 4- r, r).
Then F(7) 7, and the lines dF(f) make a constant acute angle with the
circle.

However the following result holds (to answer a question by V. Arnold).

Theorem 5.5. Every projective transformation of the plane takes the
conservative line fields to the conservative ones.
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Proof. Consider R2 as the plane {z 1} in Euclidean 3-space, and let

TT : (x,y,z) -+ C*/z,y/z)

be the projection of the half-space R:j_ {z > 0} on R2. Consider a

parametrized curve T(t) C R+, and let 7(t) 7•
Claim: the field (d7r){Tn(t)) is conservative along the curve 7(t).

Indeed, a direct computation (which is left to the reader) shows that

(dir)(T"(t))=7"(f) + 2 ^ Of)

Therefore

a(7,(d7T)(r"(/))) - J2^ dt -2log =0.

The claim follows from Theorem 5.4.

Let A be a linear transformation of space. Then F 7tA : R2 —> R2 is a

projective transformation, and all projective transformations are obtained this

way. Consider a curve 7(t) C R2, and let l{t) be generated by the acceleration

vectors 7"(t). Let T(t) A (7(0) ; assume, without loss of generality, that

T(0 C R^_ One has: r7/(0 A(j"(tj), and it follows from the above claim
that the field (dTT)(Tn(tf) is conservative along the curve 7t(F(0) Thus the

line field dF(l) is conservative along the curve F(7).

Remark. Theorem 5.5 shows that the notion of the conservative line
fields along closed curves is a projective, and not an affine, one. Thus one

hopes that the theory of this paper can be extended to spherical curves in the

spirit of [A 5].
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Added in proof. A higher dimensional analog of conservative transverse

line fields is studied in the author's paper "Exact transverse line fields

and projective billiards in a ball", to appear in "Geometric and Functional

Analysis".
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