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(b) If G Horn (M) and G has finite index in H and if the action

of G on M is chaotic, then the action of H on M is chaotic.

(c) If M is locally compact and if Horn (M) is given the compact-open
topology, then the action of G on M is chaotic if and only if the
action on M of the closure G of G in Horn (M) is chaotic.

Proof. In Part (a), notice that if a point x e M has finite orbit under K,
then x obviously has finite orbit under H. So if the action of K has finite orbits
dense, then the action of H has finite orbits dense. On the other hand, if the
action of G is topologically transitive, then clearly the action of H is also

topologically transitive. So Part (a) holds. Part (b) is similar to Part (a).
In Part (c), again if the action of G has finite orbits dense, then the

action of G has finite orbits dense. Now suppose that the action of G is

topologically transitive. Let U and V be two non-empty open subsets of M.
Then there exists g e G such that g(U) n V is non-empty. Let x be an
element of U n g~l(V) and let 0 be the open subset of G composed of
elements that send x into V. Then g e 0 and since G is dense in G, there
exists h g G n 0. So h(U) n K is non-empty and hence the action of G is

topologically transitive.
Conversely, if Mis locally compact, then the natural map Horn (M) x M~>M

is continuous. So, if a point x e M has finite orbit under G, then since G is

dense in G, one has that G(x) is dense in G(x). Hence G(x) is finite. So if
the action of G has finite orbits dense, then the action of G has finite orbits
dense. Finally, if the action of G is topologically transitive, then obviously so

too is the action of G.

4. Manifolds That Admit Chaotic Group Actions

Chaotic homeomorphisms of the 2-dimensional disc can be constructed as

follows. Starting with any Anosov diffeomorphism of the torus T2, one can

quotient by the map o : x - x, to obtain a chaotic homeomorphism on
the sphere S2. (This map was used in [Wa], p. 140 to show that expansiveness

is not preserved under semi-conjugation.) Then, by blowing up the origin
to a circle, one obtains a chaotic homeomorphism on the closed disc.

Unfortunately this latter homeomorphism is not the identity on the boundary.
This can be rectified by making a slight modification of the above

construction. Instead of starting with an Anosov diffeomorphism of T2, one

starts with linked twist map [Dl] of the torus T2. A linked twist map is an
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appropriately chosen composition of Dehn twists. Consider the particular
linked twist map / defined as follows: by representing T2 as the square with

vertices (± 1/2, ± 1/2), and edges identified in the usual manner, consider the

maps g: T2 -> T2 and h \ T2 T2 defined by

g(x, y)

h(xt•"-ir\(x,.

[ (x, y+ 2x+ 1 /2) it' .Vi ^ 1 / 4

|(x, y) otherwise,

: + 2y + 1 /2, y) if | y \ ^ 1 /4
y) otherwise.

Then set / g Q h. By [Dl], the map f is chaotic on the set

M= {(x,y): \x\ ^ 1/4 or \ y |< 1/4}

Moreover, / is the identity on the boundary of M. Now, quotienting by the

map o:(x, - y), one obtains a chaotic homeomorphism / on
the disc D2 and by construction / is also the identity on the boundary.

Figure 1

Using the above map f, one can clearly obtain chaotic homeomorphisms
on all closed surfaces (orientable or not); one simple constructs the surface by
identifying boundary arcs on the disc in the standard manner and then obtains
the required homeomorphism from /, by semi-conjugacy.
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Theorem 3. Every compact surface (with or without boundary) admits
a chaotic Z-action (that is, a chaotic homeomorphism).

Now it is folkloric that the circle admits no invertible chaotic dynamical
system. Indeed, we prove that no group acts chaotically on the circle. In fact,
one has:

Theorem 4. No infinite group acts faithfully with finite orbits dense on
the circle S1.

Proof. It is well known and easy to prove that S1 admits no chaotic

homeomorphism (see for example [Si]). In fact, one has the following
elementary Lemma, which we give without proof:

Lemma. Suppose that 0 is a orientation preserving homeomorphism
of the circle S1 having dense periodic points. If 0 has a fixed point,
then ()> is the identity.

Now, returning to Theorem 4, suppose that a group G acts faithfully with
finite orbits dense on S1. Then the elements of G all have dense periodic
points. Let x e S1 be a point with finite orbit under the action of G. Now let
G * be the subgroup of G comprised of the orientation preserving elements

that fix x. By the above Lemma, G* consists only of the identity map.
Hence, since G^ is a subgroup of finite index in G, we have that G

is finite.

By the classical theory of S. Cairns and J. Whitehead (see [KiSi]), every
smooth compact manifold is triangulable and consequently can be constructed

from the closed ball by identification of simplices in its boundary. Given the

proof of Theorem 3 above, the obvious question is:

Question 1. Is there a chaotic homeomorphism of the closed 3-ball B3

which is the identity on the boundary?

The method used in dimension 2 doesn't seem to generalize to dimension

3. The 3-ball can be obtained by considering the action of Z2 X Z2

on T3, by rotations through n about the x, y and z axes. However, the linked

twist maps on T3 are not respected by this action. The ideas in [BFK]

may be useful here; this paper shows that every compact manifold of
dimension greater than one admits a Bernoulli diffeomorphism. (Bernoulli

diffeomorphisms are ergodic and hence transitive, but they do not all have

dense periodic points.)
Finally, as promised in the introduction, we give the:
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Example. The group G Z x Z2 x Z2 acts faithfully and chaotically

on T2 in such a way that none of the elements of G act chaotically on T2

in R. Devaney's sense.

Proof. First, as described above, there exist chaotic homeomorphisms of
the closed disc (and hence of the closed square) which are the identity on the

boundary. Let / be such a homeomorphism. Now consider T2 as the unit

square with vertices (/, j) with i, j e {0, 1} and with edges identified in the usual

manner; that is T2 R2/Z2. Now use the x and y axes to subdivide T2

into 4 isometric subsquares. Let F be the homeomorphism of T2 obtained

by applying / in each of the 4 subsquares. Let g: T2 -* T2 be the translation

g(x, y) (x + 1/2, y). Similarly, define h by h(x, y) (x,y+ 1/2). Then the

group G ZxZ2xZ2 generated by F, g and h acts chaotically on T2. But

clearly G contains no element which acts chaotically on T2.

5. Other Questions

In this section we present some open questions which we have been unable

to resolve. The main question is the following:

Question 2. Is there a faithful chaotic action ofZxZ on the torus
T2 or the sphere S2?

This question is of interest since in order to further the study of chaotic

actions, one would naturally look to actions, on low dimensional manifolds,
of groups which are simple generalizations of Z. Because of Theorem 4, the
obvious place to start is in dimension 2. Now the group Z x Z(=Z2)
acts chaotically on T4. But it is not clear whether Z2 acts chaotically and

faithfully on T2. Notice that SL(2, Z) has no subgroup isomorphic to Z2.

Indeed, PSL(2, Z) is a free product Z2*Z3 (see [MKS]) and hence by
Kurosh's theorem (see [LS]), it cannot have Z2 as a subgroup. But PSL(2, Z)
is the quotient of SL(2, Z) by the group { ± Id} Z2. So SL(2, Z) cannot
have Z2 as a subgroup either.

It follows from the above discussion that if G Z2 acts chaotically and
faithfully on T2, then G cannot contain a linear hyperbolic toral
automorphism. Indeed, according to [AdPa], if / is a linear hyperbolic toral
automorphism and if g is a homeomorphism of T" which commutes with f,
then g is also a linear toral automorphism. (For more on commuting
diffeomorphisms of tori, see [KaSp].)
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