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L'Enseignement Mathématique,t.41 (J103-110

CONCERNING A REAL-VALUED CONTINUOUS FUNCTION

ON THE INTERVAL WITH GRAPH OF HAUSDORFF DIMENSION 2

by Peter Wingren

Abstract. A real-valued continuous nowhere-differentiable function

on [0, 1] is constructed. Its graph Fis proved to have the following property.

If B is a Borel subset of F and if the projection of B on [0, 1] has positive

Lebesgue measure, then the Hausdorff dimension of B is two.

0. Introduction

In 1903 Takagi [TAK, p. 176] gave an extremely simple construction of
a nowhere differentiable real-valued continuous function on [0, 1]. Takagi's

construction is
00

(1) T(X) £ 2-Pdist(2"x,Z)
p 0

where each term is a scaled version of the sawtooth function

(2) dist (x, Z) : inf {| x - y | : y e Z}

Later, in 1930, van der Waerden [WAE] gave a similar example, which
de Rham [RHA], in 1957, improved to an example identical with Takagi's.

It follows from a proof of Mauldin and Williams [M-W, pp. 795-797] that
the graph of the Takagi function has a o-finite linear Hausdorff measure
and hence is of Hausdorff dimension 1.

In 1937 Besicovitch and Ursell [B-U, p. 29] constructed for an
arbitrary a, 1 < a < 2, a real-valued nowhere-differentiable function in C[0, 1]

with graph of Hausdorff dimension a. They too used the sawtooth function
dist(x, Z) as a building block in their construction.

In this paper we construct a real valued continuous function /(x), x e [0,1],
whose graph has an optimal property with respect to Hausdorff dimension
and measure.
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We prove that for an arbitrary a, 1 < a < 2, /(x) has the property

^(a): Every Borel subset B C graph (/), with projection on the x-axis
of positive Lebesgue measure m(J?ro]{B)) > 0, has infinite a-dimensional
Hausdorff measure

(3) Ha(B) + oo

It is easy to see that

.^(a)Va < 2 * &
where

& : Every Borel set B C graph (/) with m (Proj (B)) > 0 has Hausdorff
dimension equal to two.

Rather than establish a general theorem valid for a class of functions we

shall construct a single function with the desired property. The rationale
is to provide a simple construction accompanied by a short, clear and

instructive proof.
Our function is

oo

(4) f(x)£ 2 ~pdist(22Px,Z)
p 0

Even though 2P is established for only a single function /, the proof
contains general methods extracted as Lemma 1 and Lemma 2. It appears
that Lemma 1 is well known in more general cases than ours; compare
[P-U, p. 159, the beginning of the proof of their Lemma 1]. However the

proof is included here for completeness and because in the present case it is

particularly simple.
The author is grateful to Professor V.P. Havin [HAV] for suggesting the

investigation of fractal graphs with respect to .^(a), a 1.

Problem. We believe that the following problem is unsolved.

Part 1: Construct a real valued function in C[0, 1] with graph of
Hausdorff dimension 1 and with property £P{a) for a 1.

Part 2: Determine the optimal smoothness in terms of the second

difference of such a function.

Notation. The diameter of U is denoted by | U\ and the Z^-norm
of g eL(R) by || g ||. If / is a real valued function in C[0, 1], we write

f(x) for (x, /(x)). The notation Ha(F) stands for a-dimensional Hausdorff
measure of a set F C R2 and Ma(F) is the a-dimensional net measure of F
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constructed by closed dyadic cubes. The graph of a real valued function

/ e C[0, 1] is denoted by graph (/). By a dyadic cube we mean a cube which
is the Cartesian product of dyadic intervals. If Q is an arbitrary dyadic closed

cube, then the band of type {(x,y): (x, z) e Q for some zeR) is called a

dyadic band. In our construction the dyadic bands of width 2~2/7 play a

special role. They are called bands of generation p,p 0, 1, 2,

Acknowledgement. We would like to thank the referee for helpful
suggestions.

1. A Lemma about mass distribution

By a mass distribution on a subset A of R2 we mean a measure p on A
such that 0 < p(A) < oo.

Lemma 1. Let f be a real valued measurable function defined
on [0,1]. Then there is a mass distribution p on F: graph (/)
such that

1) for any two subintervals I and I' of [0,1], with m(I) m(I')9

p(/x R) p(/' x R)
and

2) iffor two Borel sets Bx and B2 in [0, 1] x R there exists (x0,y0)eR2
such that

Bi n F + (x0, yo) B2 n F
then

p(Bx) p(B2)

Proof Let B be an arbitrary Borel set in R2. Define

(5) HB) m(f~'(S))
Then it is obvious that p is a mass distribution on graph (/) and 1) and 2)

follow from the translation invariance of the Lebesgue measure.

2. A Lemma about mass distribution
AND SUCCESSIVE TRANSLATIONS

Lemma 2. Let g(y) ^ 0 and g(y) e L1 (R)- If / is a finite interval
and d is a positive real number then

(6) E S(y ~ nd)dy < (l + int
J -00 \ d
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Proof. It suffices to assume that I - [0, m (/)]. The general case will then
iL
d

(m + 1 )d

follow by a change of variables. If we use the notation M int^p we get

Î+
00 M I* + 00

£ g(y-nd)dy<£ I £
n - oo m 0 J «=-oo

I m • d

(m+\)d (m-n+l)d
M + oo P M + oo I*

E Z I sty - ü ü I

m 0 n - oo J m o n — co J
tn • d (m - n)d

' J,ll8l|-(1 + in,(^))lkl

3. Hausdorff measure, net measure
and Hausdorff dimension

This section presents standard results and definitions; see for example

[FAL1].
The a-dimensional Hausdorff measure of a subset A of R" is defined by

oo

(8) H " (A lim inf £ | U, ]"
6^0 {U;\ /= 1

where { Ui} is a covering of A with | If | < ô, i 1, 2, and the infimum
is taken over all such coverings. The unique number a0 such that a < a0

implies Ha(A) + oo and a0 < a implies Ha(A) 0 is by definition the

Hausdorff dimension of A.
The net measure Ma(A) of A is defined similarly except that the

coverings {£/;} consist of closed dyadic cubes. It follows that there exists a

constant cx > 0 such that

(9) CiMa(A) ^ Ha(A) ^ Ma(A)

Since Ma(A) and Ha(A) must therefore yield identical dimensions

for A it will suffice to work with dyadic cubes.

4. Mass distribution and Hausdorff dimension

The following well known (see e.g. [FAL2, p. 232]) mass distribution

principle will be used in Section 5.
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Mass Distribution Principle. Let \x be a mass distribution on A C R".

If there exist constants c > 0 and 8 > 0 such that, for all dyadic cubes

Q C R" with I Q I ^ 8,

(10)

then

(11) a ^ d\mH(Ä)

Proof. Let {Q/}°°=i be a covering of A with dyadic cubes of diameter

not exceeding 8. Then

(oo
\ oo oo

U Q, J ^ Ç n(ö,)<c - I I 0/1°

and hence the discontinuity in the Ma(A)-graph from + oo to 0 occurs at a

value not less than a. Thus

(13) a ^ dim^ (^4)

5. The main result

The notation used in the following theorem and in its proof can be

found in Section 0.

Theorem. Let
oo

(14) f(x)£ 2-'dist(2"*,Z), x e [0, 1]
p 0

Then for every Borel subset B of graph (/) with m(Pro)(B)) > 0,

(15) dirigeS) 2

Proo/. Assume that Bisa Borel set as above. From graph(/) C R2
there follows

(16) dim//(B) ^ 2

It will suffice to prove that

(17) a < dimH(f?)

for an arbitrary positive a < 2. Distribute the unit mass as in Lemma 1.
Let Qbea dyadic cube with side length less than Then the side length



108 P. WINGREN

of Q is 2 " for some positive integer n and there is a positive integer p
such that

(18) 2~2p + 1 ^ 2~n < 2~2P

Let D0 be the smallest vertical band which inscribes Q, and so it has band
width 2~n. From the second inequality in (18) we conclude that D0 is

contained in a band from generation p. In the discussion and in the estimations
which follow, just those bands which are of generations p,p + 1 and p + 2

play a role. We let D and DL denote an arbitrary band from generation

p + 1 and its left half, respectively. On DL we study f(x) as a sum of
two terms,

p + 1 oo

(19) f(x)£ 2"/cdist(22tx,Z) + £ 2-*dist(22*x, Z)
0 /? + 2

The first term is linear and the second periodic (one cycle on each subband

from generation p + 2). This implies that the distribution of mass via (5)

on each (p + 2)-subband (of DL) is the same but translated a fixed
distance dD in y-direction. Now let D' be a (p + 2)-subband of DL
and define

(20) GD'(y) : n({(*i ,x2)eD* and x2 O}) •

Then its derivative g(y) exists a.e. and

(21) II £ li 2~2p + 2

If D' and D" are neighbouring (p + 2)-generation subbands of DL,
then GD"{y) is a translation of GD>(y) by dD. Hence, we may use just
one function G and its translates. The fixed translation dD of mass in

y-direction from one band to the next may be estimated by the derivative of
the first sum of (19),

d ip+l
dD 2~2P + 1 x

(22)

d /P + 1 \
— % 2-*dist(22*x,Z)
dx \p=o /

^ 2-2p + 2Ç2~(/?+I) + 2/> + 1

_ 2~p + 2p — — 2) > 2~2P+l ~(p + 2>)

The last inequality holds for p > 1, because the rapid decrease of the

successive terms in the parenthesis implies that its value is larger than half
the first term. (It is easy to check that this estimation also works for

(p + 2)-generation bands in the right band half DR of a {p + l)-generation
band).
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Now consider the restrictions of f(x) to all (p -f- 2)-generation bands

in Dl and DR, and use the translation properties for G and its derivative g.

Then by applying Lemma 2 with || g || 2~1P+2, d > 2 2P (p + 2\

m (I) 2~n we obtain

(23) + |l + int 2_2P!1,(p
+

2)) ' 2"2' + 2
•

The number of bands from the p+ 1) generation contained in D0 are

2~n/2~2P + ',and, since 2" < n by (18), we have, for a < 2,

H(ö) h(50ng) < • |l + int2_2p+1_(p +
2)J

(24) < 2"" • 2"2" + 1

+ 2-2" + " + 2 < (2"")2 • (1 + 2^ + 2)

^ (2-")2(l +4«) ^ (2'")a \Q\a

if 1 + An< 2"(2_a).

The Mass Distribution Principle now gives (17) and the proof is complete.

Remark. The nowhere-differentiability of the constructed function / is

omitted in the statement of the Theorem. However this property can

be established by minor changes to the proof in [RHA] or the proof of
Theorem 2-9 in [D-W], The continuity of fix) follows from uniform

convergence of the series (4).
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