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Introduction

The concept of absolute continuity for functions of one real variable

(defined on an open set Q ç R) arises very naturally in connection with the

problem of characterizing the largest class of functions u: Q -> R for which
there exists f eLl(Q, loc) such that the Leibnitz-Newton formula

(0.1) u(b) - u(a) j f(x)dx

holds for any interval [a, b] c Q. Lebesgue's solution to this problem,
i.e. that (0.1) holds if and only if u is (locally) absolutely continuous,
establishes the most general (and natural) framework within which the
Fundamental Theorem of Calculus works.
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Over the years, the subject has continuously received a great deal of
attention. In particular, considerable effort in the literature was devoted to
generalizing this result in various respects; see for instance the monographs
[Wh], [Fe3], [Sa], [BM], [La], [Jul], [Zi], and the references therein.

One of the early recognized directions was to try to allow less regular
integrands by generalizing the Lebesgue integral. For instance, the existence

of derivatives which are not Lebesgue integrable was regarded as a

shortcoming of Lebesgue's integral and not as a pathology of the functions
under discussion. This point of view eventually led to the design of the

Denjoy-Perron integral in the 1910's (cf. e.g. [Sa], Chapters VI, VII).
For more recent developments along these lines we refer to the work
of Harrison [Ha], Henstock [H], Kurzweil [Ku], Pfeffer [PI, 2,3,4],
Mawhin [Ml, 2].

Nonetheless, there are other natural ways to extend Lebesgue's theorem to
higher dimensions and to extend its validity to more general integrands and

domains while still using the usual Lebesgue integral. See, for instance,

Whitney [Wh], Bochner [Bo], Shapiro [Shi, 2, 3] among others. Another very
important and influential work but having somewhat different aims is that
of Federer [Fel, 2, 3].

There are two major aspects of the corresponding problem in the pluri-
dimensional setting.

(i) The local problem (i.e. the validity aspect). Describe the class

of (n - l)-forms u on a domain Ü ç R" for which there exists a «-form

/ e Ll (Q, loc) such that the following local Stokes formula holds:

(0.2) I «=11 f, for any rectangle Q c Q
J dQ JJq

(ii) The global problem (i.e. the invariant aspect). Find some minimal
but also natural hypotheses on u so that the global Stokes formula

holds for a broad class of domains on C1 manifolds.
The main goal of this work is to identify the essential analytical and

geometrical assumptions needed to deal with (i) and (ii). To treat the local

problem we introduce the concept of absolute continuity for (n - l)-forms
in RL Being absolutely continuous turns out to be basically equivalent to the

fact that the local Stokes formula holds true. It is important to point out that
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our definition is quite natural for it is homogeneous in n and reduces to the

Lebesgue one when n 1. Moreover, several alternative characterizations

of this pluridimensional absolute continuity, much in the spirit of the

one-dimensional results, can also be established.

Turning our attention to the global problem, let us first note that, due

to the particular nature of the concept of rectifiability in the plane, the

2-dimensional case plays a special role in the literature. More concretely,

many theorems initially stated in Rn can be further improved if n 2

(see e.g. [P], [Lo], [JN]). However, since we shall try to formulate our main

results with no artificial hypotheses and in as general a context as possible,

we shall not attempt to single out this case in any way. Except for this

particularity, our solution to the global problem is considerably more general

than all the previously known forms of the Stokes theorem which go along
the same coordinates. Moreover, both the validity context and its proof
naturally reflect the scope of the theorem.

In addition to some necessary integrability assumptions, the differential
form u satisfying (0.3) is assumed to be absolutely continuous and the

singular set S (Q\Q) n supp u is supposed to have (n - l)-dimensional
Hausdorff measure zero, i.e. [in-i (S) 0. This should be compared, for
instance, with Whitney's solution to the global problem in which the

differential form u is assumed to be continuous and bounded outside of a

singular set S satisfying certain geometric and measure theoretic conditions

[Wh]. While these conditions do imply that i (S) 0, the converse
is, in general, false.

The key ingredient of the approach we present here is a localization method
enabling us to pass from local, and even from infinitesimal, to global which
we formalize and present in an axiomatic way. This is a synthesis as well as

a significant extension of several basic procedures utilizing subdivision
techniques. We refer to (the proofs of) Cousin's principle, Goursat's lemma,
Pompeiu's removability theorem, etc.

The layout of the paper is as follows. The class of absolutely continuous
differential forms is introduced and studied in § 1 and §2. Among other things,
here we show that for such forms the local Stokes formula is valid for arbitrary
compact Lipschitz domains in place of rectangles. The localization technique
alluded to earlier is devised in §3. Global forms of the Stokes formula are
obtained in §4 for Lipschitz domains in R" and, in invariant form, in §5.

The last two sections are devoted to applications. The main results of §6
give sufficient conditions under which the equalities du f and du f on
Q\A (where A is a certain null set with a special structure) taken in
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the pointwise or in the distribution sense are actually valid on the entire

domain Q. In particular, for / 0 and u function, we obtain very general

removability criteria for holomorphic functions of several variables.

Finally, in §7, we record the Clifford algebra version of the results

discussed in the previous sections: absolute continuity and the Leibnitz-
Newton formula for Clifford-valued functions, removability criteria for
monogenic functions, and the Pompeiu integral representation formula.

Before we begin the major part of this work, let us introduce some

notation and definitions commonly used in the sequel. A rectangle in R"
will be any simplex Q of the form Q : Y["k= l [aki bk], where

ak,bk e R, ak < bk for all k. The eccentricity of Q is given by

bi - at
p(Q):= sup

i ^ i, j ^ n bj aj

Note that p(Q) ^ 1 and that Q is a cube precisely for p(Q) 1. The

lower left-most corner of Q, (a\, an) eR", will be called the origin of Q,
whereas the upper right-most corner of Q, (bi, ...,bn) e R", the end-point
of Q. The traces of the hyper-planes {x;xk ak} and {x;xk bk} on Q
will be called the faces of Q. The collections of all rectangles contained in a

subset Q of R" will be denoted by &(Q).
A subdivision of a rectangle Q is a finite collection of rectangles (Qz)/ e/

having mutually disjoint interiors and such that u,- e / Q, Q. A subdivision

of Q will be called elementary if its elements can be obtained as the Cartesian

product of some fixed subdivisions of the factor intervals of Q.

More generally, the union P uieiQt of finitely many rectangles

(Qi)iei with mutually disjoint interiors is called a (compact) paved set,

and (Qi)iei is said to be a subdivision of the paved set P.
The Euclidean space R" is equipped with the usual metric ||x||2
<x, x) if x (xi, xn) e RL For S CR", we set

diam(S) : sup{ || x - y || ; x, y e £} and dS:=S\S. Also, comp(S)
will stand for the collection of all compact subsets of S. For 0 ^ r < n, p,.

will denote the r-dimensional Hausdorff measure in R", while Xn will stand

for the usual Lebesgue measure in R*. Finally, the (n - 1)-dimensional
and the «-dimensional Lebesgue integrals will be denoted by j and JJ,

respectively.
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