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1. Three definitions of the first order Euler characteristic

Recall three definitions of the Euler characteristic, %(X), of a finite

complex X.

Definition A0. %(X) E^0(- 1)^ (number of &-cells in X).

Definition B0. %(X;R) l)*rankRHk(X;R) where R is a

principal ideal domain. (This integer is independent of R.)
When X is an oriented manifold, M, we also have:

Definition C0. %(M) intersection number of the graph of the identity

map of M with itself.

We will introduce a higher analog called "the first order Euler
characteristic" of X. There will be three analogous definitions, labelled A1} Bx,
and Cj corresponding to the above definitions of the classical Euler

characteristic. We prove in § 10 that under appropriate hypotheses these new

definitions are equivalent.
First, we establish some notation. Let X be a finite connected CW complex

with base vertex v. Write G %i(X,v) and T 7ii (Xx, id) where Xx is

the function space of all continuous maps X - X. Each y e T can be

represented by a cellular homotopy Fy : X x I -> X such that Fy0 F\ id*.
Orient the cells of X, thus establishing a preferred basis for the integral
cellular chains (C*(X), 8). Choose a lift, ê, in the universal cover, X,
for each cell e of X, and orient ë compatibly with e. Regard the cellular
chain complex (C* (X), 0) as a free right ZG-module chain complex with
preferred basis {ë}. Let Dy*: C*(X) C* + i(X) be the chain homotopy
induced by Fy.

Sign Convention. If e is an oriented A:-cell of X then Dk(e) is the

(k + l)-chain (- 1 )k+lF*(e x I) e Ck+ \(X), where e x I is given the

product orientation.
Let R be a commutative ring. Regard ^0^ 6^ 0 id: Ck(X) (x) R

-+ (X) (x) R and rD\ ^ D\® id: Ck(X) ®R-^Ck+l(X)®R as

matrices over RG and R respectively using the preferred bases. The
abelianization homomorphism A : G Gab Hx (X) extends to a homo-
morphism of R-modules A : RG -> Hx (X; R) HfX) ® R.

We can now state the first definition of our first order Euler characteristic

with coefficients in a commutative ring R. It is a homomorphism
Xi (X; R) : T Hx (X; R). When R Z we write, in abbreviated form,
XiGQ: T HfX). Note that T is abelian, and when X is aspherical,
T Z(G), the center of G; see Proposition 1.3.
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Definition Ax. Let R be a commutative ring of coefficients.

Xl(X;R)(y)£ (-l)*+U(trace(*9,+ i *£>!)) •

k^O

Here, we are multiplying i?G-matrices by R-matrices to obtain
i?G-matrices. Note that %i(X; R)(y) Xi (W)(y) ® L We will show

(Corollary 2.10) that this formula is independent of the various choices that
have been made. Note that in order to know the right hand side, we must have

information at the chain level, namely the matrices /?6yt+i and RDyk.

Definition Ai is the "reduction" of a trace in 1-dimensional Hochschild
homology; the corresponding trace (of the identity map) in 0-dimensional
Hochschild homology "reduces" in the same way to Definition A0; see §2
for more on this.

Our second definition requires the assumption that H* (X; R) be a free
R-module where R is a principal ideal domain. This will be true, for
example, if R is a field. For each k ^ 0, choose a basis {b\,
for Hk(X\R). Let {bkj} be the corresponding dual basis for Hk(X\R).
Let be the obvious quotient obtained from Fy, above.

By means of the Künneth formula, <E>Y induces : Hk(X; R) (x) Hx (S1 ; R)
Hk+ i (X; R). Let u e Hx (S1 ; R) be the generator which defines the usual

orientation on 51.

Definition Bx. Let R be a principal ideal domain. Suppose that

H*(X\R) is a free i?-module.

Xi(X-R)(y)£ (~1)*+1 £ bfnüUblQu)
0 j

where n is the cap product in the sense of [D2].

It is straightforward to show that the formula in Definition is

independent of the choice of basis for X*(X;R).

Remark. Throughout this paper we use Dold's conventions [D2]

for cap and cup products. These conventions are the same as those

of [MS] but differ from those of [Sp]. Writing n ' and u ' for the cap

and cup products of [Sp], we have x n y (- 1)~M)* n'y and

u kj v (- l)\uWv\u v'u where "||" denote the degree of a homology

or cohomology class.

The above expression for %i(^;^)(y) can also be written:

xdX-,R)(y)=£ £(-i)*+1<N u b],<bl(b5®u)>b]
i= 1 kj
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where < •, • > denotes the Kronecker pairing. A trace formula of this kind,

for parametrized maps X x Y X was introduced by R.J. Knill in [Kn].

In order to know the right hand side in Definition B i, we only need

homological information about <DY and cup product information about

H* (X;R). The theory of [Kn] when applied to the identity map of X yields

Definition B0; hence the analogy with Definition Bi (also see §10).

Our third definition, Definition Ci below, is an analog of the

geometric Definition C0 of %{X). Let M be a compact oriented smooth

(or PL) manifold with boundary. The fixed point set of Fy is Fix(FY)
{(xf t)\Fy(x, t) x}, i.e. the coincidence set of Fy and the projection

p: M x I M. As before, we form Oy : M x S1 -> M. We may
perturb Oy to a smooth (or PL) map *PY whose image misses 0M and

whose graph meets the graph of the projection p transversely. Then

Fix(TY) {(x, t) I TY(x, t) x} is a closed 1-manifold which naturally
carries the "intersection orientation", using the order (graph of p, graph
of TY), as explained, for example, in [DG, §8 and §11] and [GNi, §6(A)].
This oriented 1-manifold defines an integral 1-cycle, U(y), in X x Sl. The

integral homology class determined by this cycle will be called the intersection
class. If R is a commutative coefficient ring, let My) e HX(M;R) be the
image of the homology class represented by the cycle U(y) <x) 1 under
p% : Hi (.M x S1 ; R) H{ (M; R). When R Z we write ôz(y) 0 (y).

Definition Ci. Let R be a commutative ring of coefficients.

Xi R) (y) - My)
Definitions A1? B{ and Ci define homomorphisms T ^ HfX; R) which

are related as follows:

Theorem 1.1 (Equivalence).

(i) When R is a principal ideal domain and H* (X; R) is a free
R-module, Definitions Ai and Bx agree;

(ii) when X is an oriented manifold and R is any commutative coefficient
ring, Definitions A x and Cx agree.

The proof of Theorem 1.1 is deferred until § 10 so as not to interrupt the
development of the %x-invariant. It is a technical proof, more or less
independent of everything else in the paper.

Suppose that h : X -* Y is homotopy equivalence where F is a finite
CW complex. Let h~l:Y~^X be a homotopy inverse for h. Then the
map h# : Xx -> YY given by f^hfh~1 is a homotopy equivalence. In
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particular, h# induces an isomorphism (h#)*:T T'= nfY7, id). The
assertion that %i(X;R) is a "homotopy invariant" means that the diagram:

r ;

O #)* J, j,

T' Xx{^R) H\{Y\R)

is commutative. Note that the vertical arrows are isomorphisms.

Theorem 1.2. %i (X\R) is a homotopy invariant.

For the proof, see Corollary 2.10. Theorem 1.2 allows us to extend the
definition of Xi (X\R) to any topological space X which is homotopy
equivalent to a finite complex.

Let ^(X) C Xx be the subset of self homotopy equivalences of X
and cß(X,v) C ^(X) consist of those homotopy equivalences which fix u.

There is an evaluation fibration X, v) ^ &(X) X, where rj (/) f(v).
The homotopy exact sequence of this fibration yields the exact sequence:

TT^t^^id) G-+ n0(W(X,v)) n0(^(X))

where r 7ii (A*, id) 7ii (^(2Q, id) and G n1(X,u). The group
f(X) r|#(T) is called the Gottlieb subgroup of G.

Gottlieb showed ([Got, Theorem 1.4]) that &(X) lies in the subgroup
consisting of those elements of G which act trivially on n„(X,u), for all
n ^ 1; in particular, f?(X) C Z(G), the center of G. Indeed by elementary
obstruction theory one obtains (see [Got]):

Proposition 1.3. If X is aspherical then W(X) Z(G) and

r|# : T -» Z(G) is an isomorphism.

In view of this, we will often identify T with Z(G) when X is aspherical.

(The example of X S2 shows that the kernel of t]# : T -> &(X) may be

nontrivial when X not aspherical.)

A group G is of type IF if there exists a K(G, 1) which is a finite
complex. By Theorem 1.2, the first order Euler characteristic is a homotopy
invariant. In particular, applying these definitions to any finite K{G, 1)

complex we obtain the first order Euler characteristic of the group G

of type F. For any commutative ring G of coefficients, it is a homo-

morphism %i (G;R) : Z(G) Gab (x) R.
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Proposition 1.4. Let G be of type JL If %(G) =£ 0 /to
Xi(G;i?) A trivial for any coefficient ring R.

Proof. The center, Z(G), is trivial, by [Got, Theorem IV. 1]. Indeed,

a short proof of this fact is included below as Proposition 2.4. O
We end this section with the promised fourth definition of %\{X, R) in terms

of the transfer maps of [BG], [D3]. For y e T, consider <b^.X x S1 -> X
as above. This defines Öy : X x S1 ^ X x Sl by ÖY(x, z) (Oy(x,z),z)
which is a fiber map with respect to the trivial fibration X - X x S1 — S1.

There is an associated S-map (the transfer) t(Öy): Z00 5+ - Z°° (X x Sl)+
Here, the subscript " + " indicates union with a disjoint basepoint and

'T°°" denotes the suspension spectrum of a space. The S-map x(F) induces

a homomorphism in homology T(Öy)* : H* (»S1 ; R) -> H* (X X S1 ; R).

Theorem 1.5. Let R be a field. Then %fX;R) -p*T(®y)*([S1]).
This is proved in § 10.

2. Discussion of Definition Ai

To explain where Definition Ai comes from, we must review some basic
facts about Hochschild homology. Then we show that the formula in
Definition Aj is well-defined and homotopy invariant.

Let R be a commutative ground ring and let S be an associative R-algebra
with unit. If Mis an S - S bimodule (i.e. a left and right S-module satisfying
(Slm)s2 sl(ms2) for all m e M, and s{,s2eS), the Hochschild chain
complex {C* (5, M), d) consists of Cn(S, M) S®n (g) M where S®n is the
tensor product of n copies of S and

d(sx ® ® sn (x) m) s2 ® ® sn (x) ms{
n - 1

+ E (" 1)^1 ® ® SiSi+i ® • ' • ® sn ® m
i= 1

+ (- 1)".?! ® ® ® snm

The tensor products are taken over R. The n-th homology of this complex
is the «-th Hochschild homology of S with coefficient bimodule M. It is
denoted by HHn(S,M). If M Swith the standard S - S bimodule
structure then we write HHn(S) for HHn(S,M).
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