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THE THEOREM OF KERÉKJÂRTO

ON PERIODIC HOMEOMORPHISMS OF THE DISC

AND THE SPHERE

by Adrian Constantin and Boris Kolev

Abstract. We give a modem exposition and an elementary proof of the

topological equivalence between periodic homeomorphisms of the disc and the

sphere and euclidean isometries.

1. Introduction

In 1919, Kerékjârto published the first proof of the topological equivalence

between periodic homeomorphisms of the disc and the sphere and euclidean

isometries [3]. In the same journal just following Kerékjârto's article,
Brouwer [1] gave his own argument for these theorems, explaining that these

results had been known to him for a long time and that they were consequences
of some earlier and slightly different theorems of his on periodic
homeomorphisms of compact surfaces. However, Brouwer's proof is not easy to
follow and the proof of Kerékjârto was just sketched and contained a gap.

It was only in 1934 that a complete proof of this important theorem was

presented by Eilenberg [6]. More recently Epstein [7] has reconsidered the

question for pointwise periodic homeomorphisms (each point is periodic
under / but the period n(x) depends on x and may not be bounded). Because

of the importance of these results and since no modern exposition of them
seems to be found in the littérature, the authors have thought that it would
be useful to present a modern and elementary proof. The essential arguments,
however, remain those of [1, 3, 6].
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2. Background and Definitions

Let X be a topological space and / a homeomorphism of X. We say

that / is periodic if there is an integer n > 0 such that fn Id. The period

of / is the smallest positive integer n with this property.
As we will use them without further justifications, let us first recall some

basic properties of one-dimensional maps.
Let /:/-*/ be a periodic homeomorphism of the unit interval. If /

preserves the endpoints then / is the identity map. If / exchanges the

endpoints then /2 Id and / is conjugate to the reflection map a 1 - x.

Similarly, a periodic homeomorphism of the real line R is the identity map

or is a conjugate of the involution x - x according to whether it is an

increasing or a decreasing function.

Let f:Sl S1 be a periodic homeomorphism of period n of the unit
circle. If / is order-preserving then the rotation number of /, p (/) k/n,
where k and n are coprime (see [5] for an excellent exposition on rotation
numbers) and / is conjugate to a rotation of angle 2kn/n. If / is order-

reversing then / has exactly two fixed points, /2 is the identity map and the

two arcs delimited on S1 by the fixed points of / are permuted by /.
A metric space X is path connected if there exists a continuous map from

the unit interval [0, 1] into X which joins any two given points. It is arcwise

connected if there is a topological embedding of [0, 1] into X which joins any
two given distinct points. In fact, it can be shown that the two notions are

equivalent (see [14, Theorem 4.1] or [11, Lemma 16.3]).

Lemma 2.1. A metric space X is path connected if and only if it is

arcwise connected.

A useful characterisation of path connected spaces is given in term of local
connectivity. A metric space X is locally connected if each point of X possesses

arbitrary small connected neighbourhoods. The following can be shown

(see [8, Theorem 3.15] or [11, Lemma 16.4]):

Lemma 2.2. A compact, connected and locally connected metric space is

pathwise connected.

Another important ingredient used in this article, and in fact the ultimate
result we will need, is the famous Jordan-Schoenflies theorem on simple closed

curves in the plane (see [2,9] or [12, Theorem 17.1]).

Theorem 2.3 (Jordan-Schoenflies). Every simple closed curve J
divides the plane into exactly two components of each of which it is the
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complete boundary and the closure of the bounded component can be mapped

topologically onto the closed unit disc.

In what follows, a closed topological disc (or just a topological disc) D is

the image under a topological embedding of the closed unit disc and we

write D° for its interior and 9D for its boundary. However, the closure of a

bounded open set which is homeomorphic to the open unit disc is not
necessarily a closed topological disc [11, Chapter 15].

Proposition 2.4. Let Dx, D2i Dn be a finite number of closed

topological discs in the plane and J° be any connected component
of n"=1Z)JL Then 9 J is a simple closed curve and J the closure

of J° is a topological disc.

Proof of 2.4. We will use induction on n, the number of discs. If n 1

this is just the Jordan-Schoenflies theorem, so let us suppose that the result
holds for some n(n ^ 1) and let be any component of the complement
of n + 1 topological discs Dx, D2, Dn+1 in the plane. Let K° be the

component of n"=lDf that contains J°. By induction, its closure K is a

topological disc. Since J° is a component of K° n D°n + x, it suffices to show
that the result holds for two discs Dx and D2 (see Figure 1). Set C/ 9Z),
for / 1, 2 and let J be the closure of a component of D ° n D °2. We have
that 9/^0 and 9/ C C} u C2. If 9/ is entirely contained in one of the two
curves, say Cx, then J Dx and the lemma is proved. We can thus suppose
that 9/ <jt Ci and 9 J <jt C2.

Let x e 9 J, x C2. Then D°2, and we can find an arc y in Cx

such that:

x e y y C 9/ y\9y C D°2, 9y C C2

C2
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The endpoints of y determine on C2 an arc ô disjoint from J° and such

that ô n J 05. We note that there is an at most countable family of such

arcs y, noted (yi)ieN and that diam(yi) -> 0 as / oo. The boundary of / is

the simple closed curve obtained from C2 when substituting the arcs yt for the

arcs 5/ and / is a topological disc by the Jordan-Schoenflies theorem.

The following remarkable property of periodic homeomorphisms which is

a direct consequence of 2.4 is true in a more general setting than the plane
R2, namely in topological manifolds of dimension 2 because of its local
nature. We will give it in that context since we will use it for the disc and the

sphere, repeatedly in this article.

Lemma 2.5. Let f : S -* S be a periodic homeomorphism of an

arbitrary 2-dimensional topological manifold S and let x e Fix{f), afixed
point of f. Then for any neighbourhood N of x, there exists a

topological disc Ax such that:

1. Ax C N,

2. Ax is a neighbourhood of x,

3. /(Ax) Ax.

Proof of 2.5. We can first assume that N and its image under /, f(N),
are contained in some local chart U homeomorphic with R2 and will continue

to call x and //the corresponding point and set in R2. Let Dx be an euclidean

disc of centre x and radius rj where rj > 0 is chosen such that fk(Dx) C N
for k - 0,J, n - 1 and let Cx be its boundary. Let Ax be the closure

of the component of the invariant set C\nkZlfk(D°x) which contains x.
By 2.4, Ax is a topological disc which is invariant under / (components are

sent to components by a homeomorphism) and satisfies the three assertions

of the lemma.

Remark. The boundary yx of Ax, which is an invariant simple closed

curve, is contained in \JnkZ]Qfk(Cx).

3. Periodic Homeomorphisms of the Disc

Theorem 3.1. Let f :D2-+D2 be a periodic homeomorphism. Then

there exists r e 0(2) and a homeomorphism h :D2^>D2 such that

f hrh~l.
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Before attacking the proof of the result above, let us first look at a special

case of Theorem 3.1, namely:

Proposition 3.2. Let f:D2-+ D2 be a periodic homeomorphism such

that f /qD2 Id. Then f Id.

Proof of 3.2. Let d be an arbitrary diameter of D2 with endpoints A
and B and let A be one of the two connected components of D2 - d.

The set:

n

e=n /'(a»)
i 1

is invariant under / and the closure of each of its components is a

topological disc.

A

Figure 2

Let AB be the arc of circle joining A to B in the boundary of A.
Since fl(AB) AB for all /, there exists a component of E, say /°, whose

closure J contains AB (see Figure 2). By 2.4, J is a topological disc which is
invariant under /.

We can write dJ AB u 8 where 8 is an /-invariant, simple arc with
endpoints A and B such that:

n

5 C U /< (G?)

i I

Since f{A) A and /(B) B,f/8Id.Letï be a point of the arc 8.
There exists ie72}such that xef'(d) and f"~'(x) e so
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that ô d and f /d Id. Since the diameter d was chosen arbitrarily, we
have shown that / Id on D2.

From now on, / will denote a periodic homeomorphism of the disc of
period n with n > 1. In the sequel of this section, we prove Theorem 3.1, first
investigating the structure of the fixed point set of /.

Proposition 3.3. Suppose f : D2 d2 is a periodic homeomorphism
of period n (n> 1); then:

L if f is orientation-preserving, Fix(f) is reduced to a single point
which is not on the boundary of D2 and for 1 ^ ^ n - 1,

Fix{p) Fix(f);
2. if f is orientation-reversing, f2 Id and Fix(f) is a simple arc

which divides D2 into two topological discs which are permuted by f.
Proof of 3.3. Suppose first that / is orientation-preserving. By

Brouwer fixed point theorem, / has at least one fixed point. Since f /qDi
is orientation-preserving and periodic, / has no fixed point on 9D2.
Otherwise / would be the the identity map on 9D2 and using 3.2, / would
be the identity map on the whole disc which is excluded by hypothesis.
Therefore, / has at least one fixed point in D2\dD2 which we can assume

to be, up to conjugacy, O, the center of the disc.

Let A D2\{0}. A is a half open annulus which is invariant under /.
Suppose now that an iterate /' of / has a fixed point x0 e A. Let x0 be a lift
of Xq to the universal covering space Ä of A and G be the lift of /' such

that G(x0) Xq. Gn is a lift of Id which fixes one point, thus Gn Id. In
particular, G/qà is a periodic and orientation preserving homeomorphism of
the line, thus G Id on 9^4. Therefore, /' Id on 9D2 and, according
to 3.2, /' Id on the whole disc, so that / is a multiple of n according to
the definition of n.

Suppose now that / is orientation-reversing. In that case, / has exactly two
fixed points on 9D2 which we denote by A and B and f2 is the identity map
on 9D2, therefore, by 3.2, f2 Id on D2

We assert that Fix(f) is connected. For if not, we can find two nonempty
compact sets Kx and K2 such that

Fix(f) K{ uK2, K! o K2 — 0

If A e Ki and B e K2) it is then possible to construct a simple arc y in

D2\{Kx\jK2) which intersect 9D2 only on its endpoints and which
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separates A from B. Using the same argument as the one used in the proof
of 3.2, we can show the existence of an /-invariant simple arc:

n - 1

S C U /'(y) C D2\Fix(f)
i o

which separates A from B. But / must then have a fixed point on 5 which

gives a contradiction. Therefore we can suppose that one of the two compact
sets, say Kx is contained in D2\dD2. In that case, it is possible to construct
a simple closed curve c C D2\dD2 which does not meet K{ u K2 and such

that the topological disc it bounds contains at least one point of K]. Using
similar arguments as those of the proof of 2.5, we can find an /-invariant
topological disc in D2\dD2 whose boundary contains no fixed point. This
gives again a contradiction, since any simple closed curve which bounds an
invariant disc has exactly two fixed points of /.

The previous arguments applied to an arbitrarily small invariant
topological disc around a fixed point given by 2.5 shows that Fix(f) is also

locally connected and by 2.2, Fix(f) is therefore pathwise connected. In view
of 2.1, there exists a simple arc y in Fix(f) which joins A and B. This arc
divides D2 into two topological discs Ai and A2 by the Jordan-Schoenflies
theorem. D2\y is obviously invariant under / and the two arcs on 6D2
delimited by A and B are permuted by /, therefore f(A{) A2, /(A2) A}
and Fix(f) is reduced to y.

Proof of 3.1. Suppose first that / is orientation-preserving. By 3.3,
we can suppose that Fix(f) {O}, the center of the disc. Since f/QD2
is a periodic homeomorphism of period n, the rotation number of
//a£>2, p(//9£>2) k/n, where k and n are coprime. We are going to
prove that / is conjugate to a rotation by angle 2kn/n around the origin.
Without loss of generality, we can assume that k 1. Indeed, suppose
the result holds if p(//8D2) \/n. Then, if k > 1 we replace / by fJ where

je N is such that jk=\(modn). Then p(fj/dD2) l/n, thus p is
conjugate to a rotation by angle 2n/n around the origin and since (p)k /,
it follows that / is conjugate to a rotation by angle 2kn/n.

Let us consider the quotient space D2/f where two points are identified if
they belong to the same orbit under /. D2/f is endowed with the quotient
topology. It is a compact and pathwise connected metric space, the metric
being defined by:

d(n(x),7i(jO) inf
0 ^ h, k ^ n - 1

where k : D2 D2/f is the canonical projection.
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By 2.1, we can find a simple arc y from n(0) to an arbitrary point
on n(dD2). Since the group of homeomorphisms generated by / acts

freely on D2 except at O it follows that n : D2 - D2/f is a regular branched

covering (see [10] page 49). Therefore, 7u_1(y) is the union of n disjoint
simple arcs (with the exception of their common endpoint Ö)

Yo > Yi > y« _ i, which divide D2 into n disjoint sectors, A0, Aj, An_ i.
The hypothesis p(//W) 1 /n implies that yz- /'(y0).

Figure 3

Let h be a homeomorphism between A0 and the fundamental region
in D2 of the rotation by angle 2n/n around the origin, and such that

h\y rh\yQ. We can extend h to a homeomorphism of D2 by defining /z/^.
as rlhf~l, r being the rotation of centre O and angle 2n/n. It is easy to
verify that h is an homeomorphism of D2 and that / h~lrh.

Suppose now that / is orientation-reversing. By 3.3, Fix(f) is a simple

arc y which divides D2 into two topological discs Ai and A2 which are

permuted by /. Let h be a homeomorphism between A! and the upper half
disc D\. We define h on A2 in the following way:

h(y) Sh/&lf(y), y e A2

where S is the reflection about the x-axis. It is then easy to verify that h is

a homeomorphism of D2 and this gives a conjugacy between / and S.

Remark. Using 3.1, it can also be shown that any periodic
homeomorphism of the annulus is topologically equivalent to an euclidean isometry

(modulo a flip of the boundary if it is not boundary-preserving).
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4. Periodic homeomorphisms of the sphere

The main result of this section is

Theorem 4.1. Let f:S2-^S2 be a periodic homeomorphism. Then

there exists r e 0{3) and a homeomorphism h:S2^S2 such that

f= hrh-K

Proof of 4.1. We will divide the proof of Theorem 4.1 into two cases

according to whether or not / has at least one fixed point.
Suppose first that / has a fixed point. Using 2.5, we deduce the existence

of an invariant simple closed curve c which divides S2 into two invariant
discs D i and D2.

If / is orientation preserving and f 4= Id, then / has no fixed point on c

(cf. 3.2). Therefore, by Brouwer's fixed point theorem we know then that /
has at least two fixed points; after a conjugacy, we can suppose that / fixes

the two poles TV and S of S2. Using the results of last section, we are able to
find n arcs joining N and S such that their union is an invariant set under /.
As in Section 3, we can then construct a conjugacy between / and a rotation
by angle 2kn/n around the South-North axis.

If / is orientation-reversing, then / has two fixed points on c. In each of
the invariant disc Dl and D2, the fixed point set of / consists of a simple arc
which joins the two fixed points of / on c. The union of these two arcs is a

simple closed curve which coincides with the fixed point set of / on S2. It is

then easy to construct a conjugacy between / and the reflection about the

equator.
Let now suppose that / has no fixed point on S2. Up to conjugacy, we

can assume that the second iterate of /, f2 is a periodic rotation around the
North-South axis. In particular the points N and S are exchanged by /.
For t (- 1, 1), let Ct be the circle obtained by cutting the sphere by the
plane z t, Dt the disc bordered by Ct on S2 which contains N and:

/0 inf{T e - 1, 1) ; Dt n f(Dt) 0}

We write D Dto and C CtQ for convenience. Then D meets f(D) on its
boundary and only on its boundary (see Figure 4). Let P0 e C n /(C) and
Pi,P2, Pn-i, the orbit of P0 under /. The points P0,P2,...iPn and
Pl5JP3, ...,Pn_! are distinct because f2 is a rotation of period n/2.

Suppose that there exists / e {1,3,..., n - 1} such that P0 and Pt /''(P0)
coincide. Then P0, S and N are fixed by f2i so f2i Id. Therefore 2i n.
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Let bo be the arc of great circle that joins N to P0 in D and bn/2 its image
under fn/2. Then b Z?0 u bn/2 is a simple arc joining TV and S and not
meeting its first(«/2) - 1 iterates under / away from N and S. These arcs
divide the sphere into n/2 sectors and we can build a conjugacy between /
and the composition of a rotation of period n/2 around the North-South axis

with a reflexion about the equator.
Suppose now that the points P0l Pj, j are distinct. Let b0 an arc

of great circle joining N and PQ in D and b'Q an arc joining S to PQ in /(D)
disjoint from /(Z?0) and from its first n — 1 iterates (which is possible
since f2 is a rotation). The union of these two arcs is again a simple arc

joining N and S which does not meet its first n — 1 iterates under / away
from N and S. The union of this arc and its iterates divides the sphere S2

into n disjoint sectors. In that case, / is topologically equivalent to the

composition of a rotation of period n around the North-South axis with a

reflexion about the equator.

Corollary 4.2. Let /:R2->R2 be a periodic homeomorphism.
Then f is topologically conjugate to a finite order rotation around the origin
or to the reflexion about the x-axis.

Proof of 4.2. We can extend / to a homeomorphism of the Sphere S2

by identifying the plane R2 with the complement of the North pole using the

stereographic projection. Looking at the proof of 4.1, / is either equivalent
to a rotation around the North-South pole or to a reflexion about a great circle
which we can assume to pass through the north pole N. It is not difficult to

N

S

Figure 4
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show that the conjugacy can be chosen to fix also the North pole N. This

equivalence induces, therefore, a topological equivalence between / and a

rotation or a reflexion about the x-axis.

Remark. The investigation of periodic homeomorphisms on surfaces of

positive genus has been studied extensively. We cannot give here a complete

bibliography on the subject. We would just like to cite original works of

Kerékjârto [4] and Nielsen [13] which lead to the conclusion that a periodic

homeomorphism of a Riemannian surface of positive genus is conjugate to a

conformai isometry.
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