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ISOCLINIC n-PLANES IN Rln AND THE HOPF-STEENROD
SPHERE BUNDLES S2"-1 -> 5", n 2, 4, 8

by Yung-Chow Wong and Kam-Ping Mok

0. Introduction

The construction of the sphere bundles 52n~1 -> 5", n — 2,4,8, by

N. Steenrod was accomplished in an ingenious but rather roundabout way,

using the famous Hopf maps and the systems of complex numbers, quaternions
and Cayley numbers (cf. Hopf [2], Steenrod [5, pp. 105-110] and Hilton
[1, pp. 51-55]). In this paper, we show how the theory of mutually isoclinic

n-planes in a real Euclidean 2n-space R2n as developed by Wong in [8, 9]
enables us to reconstruct these sphere bundles in a more natural manner

by working strictly within the field of real numbers and giving the three

cases n 2,4, 8 a more unified treatment. In addition, we prove that
the bundle group 0(8) of the Hopf-Steenrod sphere bundle 515 58 can
be replaced by 50(8) but not by any subgroup of 50(8).

In § 1, we recall certain results on maximal sets of mutually isoclinic

n-planes in Rln that motivated our investigation. In § 2, we confine ourselves

to the cases n 2, 4, 8, and prove some results that will be used later.
In § 3, we construct three sphere bundles by using maximal sets of mutually
isoclinic n-planes in R2n. In § 4, we give a unified and explicit formulation
of the three Hopf-Steenrod sphere bundles, using as Steenrod did the Hopf
maps and systems of complex numbers, quaternions and Cayley numbers. In
§ 5, we prove that the Hopf maps and maximal sets of mutually isoclinic
n-planes in R2", n 2, 4, 8, are equivalent concepts, and that the reformulated
Hopf-Steenrod sphere bundles described in § 4 are topologically essentially
the same as the sphere bundles constructed in § 3. The paper ends with two
appendices in which we explain the operations of Cayley numbers, and give
a direct proof that for n 2, 4, or 8, the n-planes in R2n containing the
Hopf fibers of 52"-1 are mutually isoclinic n-planes.

In a continuation of this paper being prepared, we shall show that
the image of the Hopf fibers of 52""1, n 2,4, or 8, under an inversion
in R2n has some very interesting properties which include those recently
found by J. B. Wilker [7] for the case n 2.
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We wish to thank Prof. Wilker for letting us have a preprint of his

paper, and Prof. Kee-Yuen Lam for some helpful discussions.

1. Some results on isoclinic h-planes in R2n

By a Euclidean (vector) m-space Rm, where m is a positive integer,
we mean an m-dimensional vector space provided with a positive definite
inner product. An r-plane (l^r^m— 1) in Rm is an r-dimensional vector
subspace of Rm provided with the induced inner product. In Rm, length of
a vector, angle between two vectors, orthogonality between a /c-plane and

an r-plane, (orthogonal) projection of a vector on an r-plane, orthonormal
bases and rectangular coordinates are defined in the usual way.

In an R2n, let A, B be any two n-planes. Then we say that A is

isoclinic with B at angle 0 if the angle between every nonzero vector in A
and its projection on B is always equal to 0. It turns out that if A is

isoclinic with B at angle 0, then B is isoclinic with A at the same angle 0.

Therefore, in this case, we shall say that A and B are isoclinic at angle 0,

or simply, A and B are isoclinic.
A set <I> of n-planes in R2n is said to be a maximal set of mutually

isoclinic n-planes if every pair of n-planes in ® are isoclinic and O is not
contained in a larger set of mutually isoclinic n-planes. It is easy to see from
definition that if A is isoclinic with B at angle 0, then its orthogonal

K
complement A1 is isoclinic with B at angle — — 0. Consequently, if <D is

any maximal set of mutually isoclinic n-planes in R2n and A e <P, then
A1e<D.

In his memoir [8] Wong determined, for each n, the dimensions of the

maximal sets of mutually isoclinic n-planes in R2n, the number of non-
congruent maximal sets of a given dimension, and explicit equations of the

n-planes in any maximal set of mutually isoclinic n-planes containing a

given n-plane.

In the following, we summarize some of his results related to the problem
studied in this paper.

Theorem 1.1. (Wong [8, pp. 25-26]). In R2n provided with a rectangular
coordinate system (x, y) ([xx x„], [xn + 1 x2n% any maximal set $
of mutually isoclinic n-planes containing the n-plane O : y 0 (and
consequently, also the n-plane OL:x 0) is congruent to the set of n-planes

with equations
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(1.1) x 0, or y x(X0 + X1B1 + + Xp-1Bp-1),

where (k0 Xx g..., \p- f} arp p real parameters and {B1,..., £r-i) is a

maximal set of n x n matrices satisfying the Hurwitz matrix equations

(1.2) + ß,T 0, B\ -i BhBk + BkBh 0 {h, k l,... ;h^k).

Here, by (Bx,Bp_x) being a maximal set of matrices satisfying equations

(1.2), we mean that (Bt,Bp„x) is not a subset of another set

containing more matrices satisfying equations (1.2).

Remark. It is of some historical interest that equations (1.2) first appeared
in the literature in 1923 in connection with the famous problem of
A. Hurwitz [4] on composition of quadratic forms, and then reappeared
in 1961 in a very different type of problem. For more information about
these equations, we refer the reader to Wong's memoir [8] and J. A. Tyrrell-
J. G. Semple's book [6].

A maximal set of mutually isoclinic n-planes in R2n is said to be

p-dimensional (or, of dimension p), if it contains p parameters X0,Xl%..., Xp_x

as in Theorem 1.1. It can be proved (cf. [8, p. 54]) that the dimension
of a maximal set of mutually isoclinic n-planes in R2n is always ^ n,

and that there exist maximal sets of dimension n in Rln if and only if
n 2, 4, or 8. Moreover, we have

Theorem 1.2. (Wong [8, p. 57]). Let <P he a p-dimensional maximal
set of mutually isoclinic n-planes in R2n. Then, through any point in
R2n\0, there passes at most one n-plane of ®. In order that through any
point in R2n\0, there passes exactly one n-plane of <D, it is necessary
and sufficient that n p — 2, 4, or 8.

Theorem 1.3. (Wong [8, pp. 62-64]). Any p-dimensional maximal set of
mutually isoclinic n-planes in R2n, if regarded as a submanifold of the
Grassmann manifold of n-planes in R2n, is diffeomorphic with the p-sphere Sp.

Since the unit sphere S2n~1 in R2n is intersected by an n-plane in a great
(n-l)-sphere, a consequence of Theorems 1.2 and 1.3 is

Theorem 1.4. (Wong [8, pp. 65-66]). In R2n, n 2, 4, or 8, the
intersection of the unit sphere S2n_1 by any n-dimensional maximal set of
mutually isoclinic n-planes furnishes a fibering of S2"-1 by S"_1 over Sn.

The above three theorems direct our attention to the three special cases
n 2, 4, 8, for which we now prove :
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Theorem 1.5.

(i) For n — 2, every maximal real solution of the Hurwitz matrix
equations (1.2) is orthogonally similar to the maximal solution {B^} where

(1.3) Bl
1

(ii) For n 4, every maximal real solution of the Hurwitz matrix
equations (1.2) is orthogonally similar to the maximal solution {B1, B2, B3}
where

(1.4)

-1

B2

1

B,

L-l

(iii) For n 8, every maximal real solution of the Hurwitz matrix
equations (1.2) contains either 3 or 7 matrices. In the latter case, it is

orthogonally similar to the maximal solution {B1,B7}, where

(1.5)

Bi

-1 -1
-1

B2 —

— 1

— 1

-1

Bi >
BA

— 1

— 1

-1
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Bs

-1

-1

-1

B6
-1

-°6
— 1

— 1

-1

Bn
1

1

Proof. This theorem is a reformulation of Theorem 8.1 in [8, pp. 107-109].

In fact, if we denote by Q the matrices used in Theorem 7.2 in [8, pp. 54-56]
and by U the diagonal matrix (1, —1,..., —1) of order n, then we can

easily verify that Bt — XJCfJ'1.
An immediate consequence of Theorem 1.1 and 1.5 is the following

Theorem 1.6.

(i) In R4, every maximal set of mutually isoclinic 2-planes is of
dimension 2 and is congruent to the set <D2 consisting of the 2-plane
x 0 and the 2-planes y xB(k), where

(1.6) B(X) Xq + B\ —

7-0 7,i

—
— 7,i T-o

_

(ii) In R8, every maximal set of mutually isoclinic 4-planes is of
dimension 4 and is congruent to the set >4 consisting of the 4-plane
x — 0 and the 4-planes y xB(k), where

(1.7) B(X) 7,o + + X2B2 + 7,3^3

7,o 7,i 7,2 7,3

— 7,i 7,o 7,3 ~ ^2

— ^2 -^3 7-o h
~ 7-3 7,2 — ^1 7,o —
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(iii) In R16, every maximal set of mutually isoclinic %-planes is of
dimension 4 or 8. Every maximal set of dimension 8 is congruent to the

set ®8 consisting of the 8-plane x 0 and the 8-planes y xB(k),
where

B(X) A,o + X[B\ + + X-jBi

A,o A,!

— ^
— 7,2 — 7,3

— 7,3 7,2

— 7,4 — 7,5

— X»5 7,4

— 7,6 7,7

_ — 7,7 — 7,6

7-2

7-3

7,o

- 7,i

7-3

" 7.2

T-i

T-o

— 7,6 —7,7

— 7,7 7,6

7,4 — 7,5

7-5 7,4

7,4

7-5

7-6

7-7

T-o

-T-i
— 7,2

7,5 7,6 7,

7,4 — 7,7 7,

7,7 — 7,4 — 7,

- 7,6 7,5 — 7,

7,j 7,2 7,

7,o — 7,3 7,

7-3 7,Q — 7,

— 7,3 — 7,2 T-i

In (1.6), (1.7) and (1.8) above, the 7,0 in + X1B1 + stands for the

scalar matrix 7,0J.

Remark. The maximal set <3>„ of mutually isoclinic rc-planes in R2n in
Theorem 1.6 is congruent to that in Theorem 7.2 in [8, pp. 54-56] under
the orthogonal transformation

/ : C*1 x2, xn, xn+1 Xn + 2, x2n)

(xl5 x2, ~Xn,Xn + 1, XnJr2 -x2„),
which obviously leaves invariant the n-planes O : y 0 and O1 : x 0.

To see this, let us denote by T/„ the maximal set of mutually isoclinic

n-planes in Theorem 7.2 in [8, pp. 54-56] and write the equations of these

n-planes as x 0 and

y x(7,0 + 7,1C1-}-... + 7„^1C„_1).

Then / sends VF„ to the set fÇ¥n) of mutually isoclinic n-planes with
equations x 0 and

i.e.,

yU — xU(E0 + X1C1 + + Xn-1Cn-1),

y xU(Xq + 7^Ci +... + 7,n_ iCn-i)U

where U is the diagonal matrix (1, — 1,..., — 1) of order n. But, as we have

seen in the proof of Theorem 1.5, these equations are the same as x 0 and

y x(7,0 + 7,1J51 + + 7,n_1JB„_1).
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Therefore, fÇ¥n) is the set <&n of mutually isoclinic n-planes in our
Theorem 1.6.

2. Some further results

From now on we shall confine our attention to n-dimensional maximal
sets of mutually isoclinic n-planes in R2n, and therefore, n has always the

values 2, 4, or 8 unless stated otherwise.

In this section, we prove a few more theorems for use in § 3. In these

theorems, the indices a, b have the range of values (0, 1,..., n— 1); B0 I
is the identity matrix of order n; B±,..., Brl_1 are the n x n matrices listed
in Theorems 1.5 and 1.6; X (ka) is an ordered set of n real parameters;
and

m-'m
Moreover, for any matrix M, we denote its transpose by MT.

Theorem 2.1.

(i) B(k)B{X)T N(X)I.

(ii) If 1^0, then

B(X)"1 B(X)T/N(X)

so that if 1^0, the equation y xB(X) is equivalent to the equation
x yB{\x)T, where p X/N(k) # 0.

(hi) det B(k) + (N(X))n/2

(iv) If N(X) 1, then B(k) g SO(n\ where SO(n) is the set of all
orthogonal matrices of order n and determinant + 1.

pwof. mmT z.jxboBÏ
Ij-lBßl + ïa<bKUBaBl + BbBÏ),

which, on account of the Hurwitz matrix equations (1.2), is equal to
N(X)I.Thisproves (i), and also (ii). To prove (iii), we first note

that since B(X) is a square matrix of order n, det B(k) is a homogeneous
polynomial of degree ninthe XJs,andit follows from (i) that

(det ß(X))2 det (B(X)B(X)t) (N(X))".
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Therefore,

(2.1) det B(X) ± (N(X))n/2 ± (X20 + X21 + + X2n_i)nt2

± (Xo + other product terms in Xa).

On the other hand, since B0 /, and B1,„,Bn-1 are all skew-symmetric
matrices, the diagonal elements of B(X) are all equal to X0, and none
of the other elements of B(X) is equal to X0. Therefore,

det B(X) Xn0 + other product terms in Xa.

Comparison of this with (2.1) gives (iii). Finally, (iv) follows immediately
from (i) and (iii).

Returning to Theorems 1.2 and 1.6, we now prove

Theorem 2.2. Let ®n be the maximal set of mutually isoclinic n-planes
in R2n described in Theorem 1.6, and let (u, v) be any vector in R2n.

If u / 0, then the unique n-plane in containing (u, v) is

(2.2) y x[vuT — (vB1uT)B1 —... — (vBn„ 1uT)Bn_ f]/{uu)T

If v / 0, then the unique n-plane in <!>„ containing (u, v) is

(2.3) a y[uvT — {uBT1vT)B\ — — (uBl_1vT)Bl_1~\l(vv)T.

Here, Bl7..., are the matrices in (1.3), (1.4), or (1.5) according as

n — 2,4, or 8.

Proof We shall prove only (2.2) for the case u ^ 0, as (2.3) for the

case v ^ 0 can be proved similarly. Suppose that u # 0 and

(2.4) y x(X0 + \lB1 + + Xn-1Bn-l)

is an n-plane in On containing (w, v). Then we have

v u(X0 + X1B1 p^..4-Xn^1Bn_1),

which can be written as

v — [^o^i Xn-1] uB\

uB„-\
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Multiplying the two sides of this equation on the right by

[u7, -B^u7,...,

and making use of the Hurwitz matrix equations (1.2), we get

v[uT, -JVr, -, -Bn- iU7"][LAi... (mm7)/

Since uuT ^ 0, the above equation determines the Xfs uniquely in terms

of u, v. Now with these values of Vs, equation (2.4) becomes equation (2.2),

as we wanted to prove. Incidentally, the above proof also confirms that there

is exactly one n-plane in containing the vector (n, v) (cf. Theorem 1.2).

Next, we give a direct proof of Theorem 1.3 for the special cases

n 2, 4, 8, and state the result as

Theorem 2.3. The maximal set <X>„ {x 0, y xB(X)} of mutually
isoclinic n-planes in R2n, n — 2, 4, or 8, can be given a differentiable
structure so that it is diffeomorphic with the n-sphere Sn.

Proof Let us regard <D„ as a point set whose elements are the n-planes
in Then, the subset ®„\O1 {y xB(k)} of is an open subset
in which we can define a coordinate system by assigning to the element

y xB(X) the coordinate X (X0,X1,..., Xn„... t). The subset ®„\0 {x 0

and y xB(X\ where X ^ 0} of ®„ is also an open subset. By Theorem 2.1 (ii),
this subset is the same as the subset {x yB(p)r}, and so, we can define
in it a coordinate system by assigning to the element x yB(p)T the
coordinate p (p0 p1?..., Thus is covered by the two coordinate
neighborhoods

(2-5) («»AO1, X), (<D„\0, n).

Moreover, we can see from Theorem 2.1 (ii) that for any element in
(«AO1) n («AO) «A{0\ O}, its two coordinates X, p, both nonzero, are
related by

(2.6) p — X/N(X), or equivalently, X p/iV(p).

Hence, is an n-dimensional manifold.
To show that is diffeomorphic with the n-sphere Sn, we view Sn

as the unit sphere ,v- -! -r .v1. 1 in Rn+1, and use stereographic
projections. Let q^O,...,0, 1) and q2(0,—1) be respectively the north
and south poles of S". Then S" is the union of the two open subsets
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Sn\ql and Sn\q2. For an arbitrary point q in Sn\ql9 let the line qxq meet
the equator n-plane xn + 1 0 at the point ÇX, 0) ; and for an arbitrary point q
in Sn\q2, let the line q2q meet the equator rc-plane xn + 1 0 at the point
(p, 0). Then Sn is covered by the two coordinate neighborhoods

Moreover, it is easy to verify that for a point in Sn\{q1, q2}, its two
coordinates X and p are also both nonzero and related by (2.6).

It now follows from (2.5), (2.6) and (2.7) that if f1 is the map from
®n\O1 to Sn\q1 sending an n-plane in with coordinate X to the point
in Sn\q1 with the same coordinate X, and f2 is the map from ®„\0 to

Sn\q2 sending an rc-plane in ®„\0 with coordinate p to the point in Sn\q2

with the same coordinate p, then /x, f2 combined will give a diffeomorphism
from to Sn.

In the- remainder of this section, we are concerned exclusively with the

matrices B(X) with N(X) 1. For convenience, we shall denote such matrices

by B(X'\ with the understanding that X' always satisfies the condition
N(X') 1.

We know from Theorem 2.1 (iv) that every B(k') belongs to SO(n).

Let us now regard SO(n) as the special orthogonal group. Then the set

of elements B(X') of SO(n) will generate a subgroup of SO(n). We wish to
know what this subgroup of SO(n) is, and the next three theorems will
give us the answer.

Theorem 2.4. For n 2, the set of elements B(X') forms the group
SO(2) which is isomorphic with S1.

Proof Since

(2.7) (S"\qi,X),

XQ X

B{X') and det B{X') (X0)2 + (X\)2 1

X i X o —

the elements of S0(2) are the elements B(X') themselves.

Theorem 2.5. For n 4, the set ofelements B(X') forms a 3-parameter

subgroup of SO(4), isomorphic with S3.



ISOCLINIC PLANES 177

Proof. First, since N(k') (V0)2 + + (V3)2 1, the set B(k'), with a

natural topology, is homeomorphic with the unit 3-sphere 53 in R4. Next,

using (1.4), we can easily verify that

B2B3 -Bx, B3BX -B2, BxB2 -B3.

With this and Theorem 2.1 (ii), straight forward computation will show

that for any two elements B(k!) and B(pf) of 50(4), the product B(k')B(\x') ~1

is an element of 50(4) of the form B(V), where the components of v' are

analytic functions of the components of V and p'. This proves our theorem.

For the case n 8, we first observe that the elements B(k!) of 50(8)
do not, by themselves, form a subgroup of 50(8). For example, although
B1, B2 are both of the form B(k'\ their product B1B2 is not. In fact, we
have

Theorem 2.6. For n 8, the set of elements B(X') of 50(8) generates

the group 50(8) itself

Proof Our proof consists of two steps (i) and (ii). In (i), we prove
that the 28 skew-symmetric 8x8 matrices Bt, BiBj(iJ= 1,..., 7, and i<j)
are linearly independent. In (ii), we prove that the Lie algebra of the subgroup
of 50(8) generated by the elements B(k') coincides with the Lie algebra
o(8) of 50(8). The assertion in our theorem then follows from the well-
known fact in Lie groups that there is a one-one correspondence between
the connected Lie subgroups of a Lie group G and the Lie subalgebras of
the Lie algebra of G.

(i) From (1.5), we see that the 8x8 matrices Bfi= 1,..., 7) can be

partitioned as

5, B2

K
-K

-/
B, -L

J
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B,
K

-K B7
-L

L-l L J

where

1
~ 1 0""

J
" 0 1 ~

K
- 1 0~ "0 1 "

_0 1 _
L

_ -1 0 _ _0 -1 _ _ 1 0_

are 2x2 submatrices and each empty space represents a 2 x 2 zero-matrix 0.

Since the matrices J, J, K, L have the properties

I2 7, J2 -7, K2 7, L2 C
JK -7L7 -L, KL -L7C J, LJ -JL -7C,

we can easily verify that the products BtBj(z, j 1,7, and i <j) are matrices
of the same form as Bt, having some of 0, ±7, ±J, ±7C, ±L as

2x2 submatrices.

To prove that the 28 matrices Bt, BtBj are linearly independent, we

construct the 8x8 matrix

M ~ ^irj,Bl + £
i<j

where the oc's are some real numbers, and show that if M 0, then all
the oc's are zero. Let M [MÄk], where Mhk(h, k= 1, 2, 3, 4) are the 2x2 sub-
matrices of M. Then by using the explicit forms of Bt and BtBj, we can
write M as the sum of the following four matrices :

Mu
Mr.

Mr
Ms,

Cti + a23

+ CI45

-/

-/J
(*67

-J
-J

-J_
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Mi:
M2]

M43

a2

A
-A"

+ <^13

A
-a

+ a3 + <*12

— L

+ a46

-/
-A

a:

+ <*57

-/
A

-A

+ a47

-J

-L
L

+ a56 -L

My

M31

M42

M*
a4

A
-/

-A' + ai5

TT

-AT

+ (X5

L

-7
-/

ai4

-J

+ <*26
— A

A

+ a37
a:

-i
-A

+ <*27 -L + <*36

-/
-L

-7
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Mu
Mr-

Mr,
LM41

<*6
K

-K
L -/

+ (*17
K

-K

+ a7 -L (*16

L J

-L

+ a24

-^n
-/ + a35

.-w

K
-i

-L~ -L~

+ (*25 -J + (*34

Now, M — 0 means that all its submatrices Mhk are zero. Since

/, /, X, L are linearly independent, the equations Mhk — 0 are equivalent
to a number of linear equations in the a's, and from these linear equations
we can easily see that the a's must all be zero. For example, it is obvious
from the equations

Mi2(«2 + «! 3)K+ (a3-a12)L - (a46 + oc57)/ - (a47-a56)J 0,

-^34 (a2 —a13K + (a3 + a12V + (~a46 + a57)-K — (a47 + a56)L 0

that

^2 5 ^13 5 ^3 5 ^12 5 ^4-6 5 ^57 5 ^47 a56

must all be zero. Thus we have proved that the 28 matrices Bif BtBj
are linearly independent.

(ii) Let G be the Lie subgroup of 50(8) generated by the elements

B(k'), and g its Lie algebra. Then g is a Lie subalgebra of the Lie algebra
0(8) of 50(8). We now prove that in fact g 0(8).

From the theory of Lie groups we know that if t -» /(£), where t e R

and f(t)eG, is any curve in G passing through the identity element
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/ /(0) of G, then the velocity vector /'(0) of this curve at I is an

element of g. Now

t f(t) (cos t)I + (sin t)Bt (i 1,7)
are obviously curves in G such that /f(0) I and //(0) Bt. Therefore,

J3Z- are all elements of g.

Since g is a Lie subalgebra of 0(8) and e g, the Lie products [Bt,
BtBj — BjBi 2BiBj, where i,j 1,7, and i < j, are all in g.

We have thus proved that the 28 linearly independent skew-symmetric
matrices, Bt, Bt Bj all belong to g cz o(8). Since 0(8) is the Lie algebra of all

skew-symmetric matrices of order 8 and is therefore of dimension 28,

g coincides with 0(8). This completes the proof of Theorem 2.6.

3. The sphere bundles S2n 1
<Pn, n 2, 4, or 8,

WITH FIBERS ON MUTUALLY ISOCLINIC 77-PLANES IN R2n

In R2n, n 2,4, or 8, provided with rectangular coordinate system
(x, y), let S2n~1 be the unit sphere and On the maximal set of mutually
isoclinic n-planes {x 0, y xB(X)} defined in Theorem 1.6. Then with
the preparations we have made in § 2, we can now prove

Theorem 3.1. In R2n, n 2, 4, or 8, the n-planes in the maximal set

>„ of mutually isoclinic n-planes slice the unit sphere S2n~1 into a fiber
bundle

Jfn {S2n-\d>n,n, Sn~\ G„),

with base space projection n, fiber S"-1 and group Gn, where
G2 S1, G4 S3, and G8 50(8).

Proof We prove by exhibiting all the ingredients of a representative
coordinate bundle.

(1) The bundle space S2"-1 has the equation xxT + yyT 1 in R2n.

(2) The base space is covered by the two coordinate systems

(2-5) (<L\Ox, X), (®„\o, n)

as in the proof of Theorem 2.3, where Ox is the plane x 0, O is
the n-plane y 0, Xisthe parameter in the equation y of an
»-plane in and p is the parameter in the equation x yB(p)r of
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an n-plane in ®„\0. Moreover, for an n-plane in the intersection O^O1, O}
of the two coordinate neighborhoods, its two coordinates X and p, both
nonzero, are related by

(3) The projection 7r:52"-1 -> is the map which sends a point of
S2"-1 to the unique n-plane in On containing this point (cf. Theorems 1.2

and 1.4).

To see that n is continuous, we let

V\ {(x, y) e S2"'1: x # 0} K2 {(x, y) e S2"'1: y # 0}

Then {V1, V2) is an open cover of S2"-1, and ^„XO1, n(V2) 0>n\O.

Now by Theorem 2.2, the restriction n | V1 of n to V1 sends a point
(u, v)eV1 c: S2"-1 to the n-plane y xB(X) in with coordinate

X (X0, Xl9..., Xn^1) (vur, — vB^u7,..., —vBn_1uT)/(uu)7

This shows that n | V1 is continuous. Similarly for n | V2. Therefore, n is

continuous.

(4) The fiber Sn~1 is the unit sphere ttT — 1 in Rn. Here, t [G £n]

is a rectangular coordinate system in Rn.

(5) The group Gn of the bundle is G2 S1 SO(2), G4 S3 50(4),

or G8 50(8), for n 2, 4, or 8, respectively.

To see that G„ acts on 5n_1 effectively, we need only observe that if
M is an element of Gn a SO(n) such that tM t for all t with ttT 1,

then M /.

(6) With the coordinate systems (2.5) covering the base space <3>„ as

described in (2), the coordinate functions are the maps

(2.6) ja X/N{X), or equivalently, X p/iV(p).

cK^AO1) x s""1

4>2:(0„\0) X S"-1-Tt-^XO),
defined respectively by

(3.1) <t>i(X, r) (x,
(t, tg(A.))

(3.2) «Mm* o (*'> y)

y i + MW
'

(t'g(p)r, f)

yi + N(h)
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Here, the X in <|>1(X^ t) denotes the n-plane in O^O1 with equation

y — xB(k), and the p in 4>2(lT t') denotes the n-plane in >„\0 with equation

x - yß(p)T

To justify our definition, we must show that 4>i, cj>2 are homeomorphisms.

Obviously, they are continuous maps. To find 4b1 which sends (x, y) to

(X, £), we first note that x ^ 0 (cf. (3)) and the last equation (3.1) is

equivalent to

(3.3) y «= xB(X), t Xy/i + N(X)

Now, equation (3.3)2 gives t as a continuous function of x and X, and

by Theorem 2.2, equation (3.3)x determines X as a continuous function of
x and y. Therefore, X and t are continuous functions of x and y. This

proves that cjjf1 is well defined and is continuous, and consequently, 4>i

is a homeomorphism. Similarly for <t>2.

(7) The projection 71 and the coordinate functions 4>i? cj>2 as defined
in (3) and (6) satisfy the conditions

(3.4) (71 o (X, t) X (tx o cj)2) (jLi? t') \i.

In fact, from (3.1) and (3.3), we see that the point (x, y) ((^(X, t) of S2"-1
lies on the n-plane y xB(X). Therefore, by (3), 7t(x, y) is the n-plane
y xJ5(X) in ®n\0L with coordinate X. This proves (3.4)x. Similarly for
(3-4)2.

(8) Let B be any fixed n-plane in O^O1, O} with coordinate X in
On\O1 and coordinate p in 0„\0, and let and 4>2jB be the two
homeomorphisms Sn_1 -» 7C~1(B) c S2"-1 defined by

4)l,ß(0 4>l(^'> 0 5 4*2,ß(0 4>2(h, t')

Then 4>7/B ° c|>lfB is a homeomorphism in the fiber Sn~1, called a coordinate
transformation.

We now show that this coordinate transformation coincides with the
action of an element of the group G„. Suppose that t is any point of
S"-1 and

M>2,b°<1>i,B)(£) fer1.
Then

4T,bW — 4)2,B(05 be., 4>i(X, t) 4)2(IL 0
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Now, by (3.1) and (3.2), this equation is the same as

n s)

yr+iw vi +

Since the two coordinates X, p of the n-plane B satisfy the conditions

X^O, p^O, B{X)~l £(p)r,

p tyN(A,), X \iJN(\i), N^)N(p) 1

we can easily verify that equation (3.5) is equivalent to

(3.6) f tB{X)/N(X)1/2,

and this, on putting X' X/N(X)1/2, we can write as

(3.6') t' tB(Xf), where N(X') 1

The transformation (3.6), or equivalently, (3.6'), is then a coordinate
transformation in the fiber Sn_1. Now, by Theorems 2.4, 2.5 and 2.6, Gn is the

subgroup of SO(n) generated by the set of elements {B(X')\ N(X') 1} of
SO(n). Therefore, the coordinate transformation (3.6') coincides with the action
of an element of Gn.

(9) Finally, we see from (3.6) that the map

(OAO1) n (0„\O) <D„\{0\ O} - G„,

defined by B-> (t)2~B° can t>e expressed in coordinates as

X B(X)/N(X)112

Therefore, it is continuous.

Thus, with the ingredients (l)-(9) exhibited above, we have constructed

a representative coordinate bundle of the sphere bundle Jn in Theorem 3.1.

Remark 1. In Theorem 2.3, we have shown that <!>„ is diffeomorphic
with Sn. Therefore, the three sphere bundles Jn in Theorem 3.1 are topo-
logically the same as some sphere bundles S2n~1 Sn by 5"_1. In fact, we

shall prove in § 5 that they are topologically essentially the same as the

three Hopf-Steenrod sphere bundles.

Remark 2. The coordinate functions and 4>2 which we used in (6) were

not accidentally come by. They were obtained in the following way. By

definition, the coordinate function
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<(>! : (<D„\Ox) xT1^ cS2""1

is a homeomorphism sending

(X, t) -> (x, j/) G TT
~ 1(0n\0"L)

so that x, y are some continuous functions of X and t, and X,, £ are some

continuous functions of x and y. These functions are not arbitrary, but should

satisfy certain conditions. First, they must be such that (rc°(j)1)(X, t)

n(x, y) X (cf. (7)). Therefore, x and y must be related by

(3.7) y xB(X).

Secondly, since (xj)eS2""1, we must have xxT + yyT 1. Furthermore,
because of (3.7) and Theorem 2.1 (i),

yyT xB(X) (xB(X))T — xxTN(X).

Therefore,

(3.8) xxT (1 + N(X))_1.

Finally, since teS"-1, we must have

(3.9) ttT 1

Conditions (3.7), (3.8) and (3.9) suggest that the simplest possible choice

of the continuous functions x, y of X and t which define our 4>x are those

given in (3.1). Similarly for <J)2 -

With slight modification, we can prove

Theorem 3.2. In R2n, n 2, 4, or 8, the n-planes in the maximal set

of mutually isoclinic n-planes slice the space R2n\0 into a fiber bundle

CR2n\0, 7i, R"\0, Gn x pj
with base space ®n, projection n, fiber Rn\0 and group Gn x p„,
where G2 S1, G4 S3 and G8 SO(8), and pn is the group of
similitudes in Rn\0.

Here, by a similitude in Rn\0, we mean a transformation of the form
t -> tp, where p is a positive real number.

Proof The proof is similar to that of Theorem 3.1 but with the following
difference. The bundle space is R2n\0 provided with a rectangular coordinate
system (x, y\ and the fiber is Rn\0 provided with a rectangular coordinate
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system t; whereas, the base space <h„, with coordinate systems (2.5), is the

same as that in the bundle Jn. The projection n is the map which sends a

point of R2n\0 to the (unique) n-plane in <D„ containing this point, and the

two coordinate functions

^(O^O1) x (R»\0)->K-\<ï>n\O1),

§2 : (3>n\0) X (Rn\0) -> 7T~ 1(0n\0)

are defined respectively by

(3.10) ^t) (x,y) (t,tB(X)),

(3.11) ch(M') (*',/) - {t'B{f)\t').

It readily follows from (3.10) and (3.11) that, for any fixed B e O^jO1, O}
with coordinate X in the coordinate transformation 4>2,b ° ^i.b i*1

the fiber Rn\0 sends t to

(3.12) t' tB(X),

which, because X ^ 0, can be written

(3.120 t' (tB{X)/N(X)l/2)N(X)1/2

Since £(À,)/N(?01/2 e Gn and t -> tN(X)1/2 is a similitude in R"\0, (3.120 shows

that the coordinate transformation £ -+ £' coincides with the action of an
element of Gn x p„. Finally, by (3.12), the map O^O1, O} - Gn x p„ defined

byB-^cJ)^^0^!^ can expressed as X -> B(X), and is therefore continuous.

The relationship between the bundle Jn in Theorem 3.1 and the bundle
in Theorem 3.2 is described in the following

Theorem 3.3.

(i) The bundle

(R2n\0, 0B, 7i, R"\0, Gn x pj
is equivalent in Gn x pn £o £/zp bundle

JJ?'n (R2n\0, <F„, 7i, K»\0, GJ
with group Gn.

(ii) XTzp bundle

Jn » (S2"~\<Fn,7i,S"-\ GJ

zs ß subbundle of the bundle JT£'n in (i).
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Proof, (i) This is an immediate consequence of a result of Steenrod in

[5, p. 56, § 12.6]. In fact, from (6) and (8) in the proof of Theorem 3.1,

we easily see that the coordinate functions

<j)] : (OnXO1) x (Rn\0)'(«LXO1),
<t> '2 : (<I>„\0) x R"\0)n" X(<L\0)

of !£("„can be defined respectively by

(t, tB(V>)
<K(^ 0

V i +
'

(t'Bfif, f)

y/r+W)'
and that for any fixed element B e ^{O1, O}, the coordinate transformation

° $ub in Rn\0 is t -+ f tB(k)/N(X)1/2, and thus it cooincides with

the action of an element of Gn.

(ii) Obviously, S""1 cz Rn\0 is invariant under Gn. Therefore, according

to a result of Steenrod [5, p. 24, 2nd paragraph], there is a unique
subbundle of J5£'n with fiber Sn'1 and the same coordinate neighborhoods
and coordinate transformations as ^S£'n. Comparison will show that this

subbundle is precisely our «/„.

4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES

In the early 30's, H. Hopf [2, 3], using complex numbers, quaternions,
and Cayley numbers, discovered his fiberings of S2"-1 by S"~x over Sn,

n 2, 4, 8. Later in 1950, N. Steenrod [5, pp. 105-110] used these fiberings
of Hopf to construct three sphere bundles, which we here call the Hopf-
Steenrod bundles. But he did this in a roundabout way. For the two cases

n 2, 4, he obtained the bundles Sz -> S2 and S1 — S4 as special cases

of a general result on "sphere as a bundle over a projective space". For
the case n 8, he obtained the bundle S15 -> S8 as a subbundle of a linear
bundle which he constructed by using Cayley numbers. This being the case,
he did not need to define the coordinate functions for his bundles. Still
later in 1952, P.J. Hilton [1, pp. 52-55] showed, in a direct manner, that
the Hopf fiberings S2"-1 -» sn, n 2,4,8, are fiber spaces by exhibiting
some sets of coordinate functions. But he did not calculate the coordinate
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transformations or mention the bundle groups because they were not needed

for his purpose.
In this section, we first describe the fiberings of S2"-1 by Sn~x over

S", n 2, 4, 8, as Hopf first discovered them, and then, using Hopfs ideas
and method and taking into consideration the work of Steenrod and Hilton,
we give a unified and explicit formulation of the structures of the three

Hopf-Steenrod bundles S2n~x -> Sn. In the next section, we shall show how
the Hopf-Steenrod bundles are related to the sphere bundles we constructed
in § 3.

Let Qn, n 2, 4, 8, be respectively the (hypercomplex) systems of complex
numbers, quaternions and Cayley numbers. (See Appendix 1 for properties of
Cayley numbers.) Suppose that Ia, a 0, 1,..., n — 1, are the base elements

in Qn. Then any element X of Qn can be uniquely expressed as

where xx,..., xn are real numbers called the components of X. Furthermore,
let us define

m (Ii:L*2+i)1/2

as the length of X. Then we can identify Qn with the Euclidean rc-space
Rn by taking the components (xl5..., xn) of an element X in Qn as the

rectangular coordinates of the point X in Rn.

Consider now the space Qn x Qn of ordered pairs (X, Y) of elements

of Qn, and let x xn) and y (xn + x,..., x2n) be the components
of X and Y. Then we can identify Qn x Qn with Rln by taking (x, y)

(xj,..., x„; x„ + 1,..., x2n) as rectangular coordinates in R2n. Calling (X, Y)

the (^-coordinates in R2n, we define a Qn-line in Rln as either the point set

X 0, or a set of all the points whose (^-coordinates (X, T) satisfy an

equation of the form Y CX, where C is some element of Qn. We can easily

see that the ß„-lines are n-planes in R2n with the properties that through any
point in R2n\0, there passes one and only one such n-plane, and that any
two such n-planes intersect only at the origin of R2n.

Suppose that S2"-1 is the unit sphere |X|2 + |T|2 lin Rln. Then it
follows from the above that the great (n — l)-spheres in which S2"-1 is

intersected by the Qn-lines are such that one and only one of them passes

through each point of S2"-1, and so they form a fibering of S2"-1 by
S"'1.

Closely associated with this fibering of S2n~x is a map p from S2n~x

onto the n-sphere Sn, defined as follows. First, we regard Sn as Rn closed



ISOCLINIC PLANES 189

by the point oo at infinity, so that Sn Rn u oo Qn u oo. Then p sends

each point of S2n~1 which lies on a ß„-line Y CX to the point

CeQnaSn, and sends each point of S2n~1 which lies on the ß„-line
X 0 to the point oo e Sn. In other words, the map p:S2n_1 -> 5" is

defined by

where (X, 7) is any point of S2"-1. It is easy to see that p is a continuous

map, and that the inverse image of each point of Sn is one of the great
(n — l)-spheres in which S2"-1 is intersected by the <2„-lines.

The fibering S2"-1 -> sn by S"_1 constructed above is then the famous

Hopffibering, and the map p is the Hopf map related to it.
We now prove the following theorem which gives a unified and explicit

formulation of the three Hopf-Steenrod bundles S2/1_1 Sn, n 2, 4, 8.

Theorem 4.1. Let Qn, n — 2, 4, 8, be respectively the systems ofcomplex
numbers, quaternions and Cayley numbers, and let the spaces Qn, Qn x Qn

be identified with R", Rn x Rn R2n, respectively. of Qn-lines

{X 0, Y CX) in R2n slice the unit sphere S"2"-1 in R2n into a

fiber bundle

Xe^n (S2"~x, S\ p, 5""1, O(w))

with base space Sn Qn u oo, projection p, fiber S"'1 and group the
orthogonal group 0(n).

Proof We prove by exhibiting the ingredients of a representative
coordinate bundle.

(1) The bundle space S2n 1 is the unit sphere |X|2 + |7|2 1 in
R2n QnX Qn-

(2) The base space Sn is identified with R" u oo Qn u oo. Therefore,
Sn is covered by the two coordinate neighborhoods

with elements of Qn and oo serving as coordinates.

(3) The projection p : S2n~1 Sn is the Hopf map defined by (4.1).

(4) The fiber Sn~1 is the unit sphere | X | 1 in R" Qn.

(5) The group 0(n) of the bundle acts on S"'1 effectively.

(4.1)
X # 0,
X 0,

Qn, Sn\0 (Q„uoo)\0 (Qn\0) U 00
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(6) Let C, D be elements of Qn such that | D | 1, so that D represents
a point of Sn~\ Then the two coordinate functions are the homeomorphisms

*1 -QnX S"-1

\|/2 : (Sn\0) x S""1 -» p-\Sn\0),

defined respectively by

CD)
(4.2) ^i(C, D)

ynrcp

(4.3)

(C_1Z), £>)
\|/2(C, D) where C # co,

Vl + 1/1 C I2

\|/2(oo, D) (0, D).

That \Jz-l \J/2 are indeed homeomorphisms is easy to verify.

(7) It can readily be seen from (4.1), (4.2) and (4.3) that the projection p
and the coordinate functions \|/i, \J/2 satisfy the conditions :

(4.4)
(po^JiQD) C,
(p o \|/2) (C, D) C if C ^ oo and (p ° \J/2) (oo, D) oo

(8) For each fixed point C in the intersection Qn n (5"\0) Qn\0 of
the two coordinate neighborhoods in the base space Sn, let \||/1>c and \|/2>c

be the two homeomorphisms S"-1 -> p_1(Q S2"-1 defined by

*i(C, D), x|/2tC(Z)) ^2(C, D),

where \|/1? v|/2 are the coordinate functions defined in (6). Then, we can

easily verify by using (4.2) and (4.3) that the coordinate transformation

^o^cin the fiber S"-1 is

(4.5) D -> CD/I C I,

where D with | D | 1 is a variable point of S"-1 e: Now since the

components of the product CX of any two elements C, X of Qn are
bilinear functions of the components of C, X, the map X -> C2T/| C | is a

linear transformation in Rn Qn. It is in fact an orthogonal transformation
because | CX/1 C | | | X |. Therefore, the coordinate transformation (4.5)

coincides with the action of an element of the group 0(n).

(9) Finally, from the bilinearity of the product CX, it also follows that
the coordinate transformation (4.5) varies continuously with C. Therefore, the
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map from Qn n (Sn\0) Qn\0 -> 0(n) defined by C -> c ° ti,c is

continuous.

Thus, with the ingredients (l)-(9) exhibited above, we have constructed

a representative coordinate bundle of the bundle in the theorem.

Remark. The coordinate functions \\f± and \|/2 as given in (4.2) and (4.3)

were arrived at as follows. By definition, \J/x is a homeomorphism sending

(C,D)eQn x S»"*-(X, Y)ep-\Qn)c=:S2n-1.

Here, X and 7 are not arbitrary functions of C, D, but must satisfy
certain conditions. First, they must satisfy (4.4)!, so that (p ° \|/i) (C, D)

p(X, 7) C. Therefore, by (4.1) X and 7 are related by

(4.6) 7 CX

Secondly, since (X, 7) is a point of S2"-1, | X |
2 + | 7 |

2 1. Combining
this with (4.6), we get

(4.7) I X I2 1/(1 + | C I2).

Finally, since D e S"'1 cr Qn,

(4.8) I DI « 1

Conditions (4.6), (4.7) and (4.8) suggest that the simplest choice of \(/1 is
(4.2). Similarly, we choose (4.3) as v| i2becauseof conditions (4.4)2.

Similar to Theorem 4.1, we have

Theorem 4.2. In R2n, n2,4,or8, the slice R2n\0 into
a fiber bundle

SfSßt (R2n\0,S",Qn\0, R))

with base space S" Q„ kj go, projection p, fiber Qn\0, and group the
general linear group GL(n, R).

Proof. The proof is similar to that of Theorem 4.1, but with the following
difference. The projection is the map p : R2"\0 -> S" defined by

(4-9) p(X, Y) _ j YX'1 if X^O,
co if 0 :
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and the two coordination functions

(Qn\0)^p-\Qn),
^2:(S»\0) x (iQn\0)^p~1{Sn\0)

are defined respectively by

(4.10) i(C,D) (D, CD),

(4 11) I ^2^C' ^ ^C_1Z)' ^ ' where C ^ 00 '
1 *2(co, D) (0, D).

The coordinate transformations ° where C e Qn n (Sn\0) Qn\0,
are the linear maps D -> CD in the fiber Qn\0.

The relationship between the bundles «9*„ and is described in
the following theorem, the proof of which is similar to that of Theorem 3.3.

Theorem 4.3.

(i) The bundle

Sf JSP, (R2n\0,S»,p,

is equivalent in GL(n, R) to the bundle

(R2n\0, S\ p, Qn\0, 0(n))

with group 0(n).

(ii) The bundle

(S2""1, 5", p, Sn~1, 0(n))

is a subbundle of the bundle ££'n.

Let us now explain how the bundle given in Theorem 4.1 is a

unified formulation of the sphere bundles S2"-1 -> Sn9 n 2, 4, 8 constructed

by N. Steenrod using the Hopf fiberings, and how our construction
incorporates the work of P. J. Hilton.

(a) Comparison of the ingredients of the sphere bundle y8 in Theorem 4.1

with those of the fiber space S15 -> S8 of Hilton [1, p. 54] shows that
they have the same projection (4.1) and coordinate functions (4.2) and (4.3).

(b) Suppose that in the construction of the sphere bundle in
Theorem 4.1, we use the "Q„-lines" X CY instead of the Q„-lines Y CX
in defining the projection p: S2"-1 -> Sn. Then we can obtain another sphere
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bundle S2"'1 -> Sn by using the ingredients of but interchanging the

roles of X and 7, i.e., by replacing

(i) the projection (4.1) by

I7"1 if 7^0,
oo

(4-1 P(X> ^0 ') ^ jf Y Q,

and

(ii) the coordinate functions (4.2) and (4.3) by

(CD, D)
(4.2') ^(C, D)

V1 + Ie i2'

(D, C~lD)
v|/2(C, D) — —, where C / co

VI + VI CI2
(4.3')

\|/2(oo, D)0).

For n 2, the X, Y, C and D (with | D | 1) are all complex numbers.

On putting X zl9 Y z29 C \i and D we can see immediately
that the projection (4.1') and the coordinate functions (4.2') and (4.3') are

exactly those used by Hilton [1, p. 51] to prove that the Hopf fibering
S3 ->• S2 has a fiber space structure.

(c) Suppose that in the construction of the linear bundle SfS£
n in

Theorem 4.2, we use the "Qn-lines" X CY instead of the g„-lines 7 CX
in defining the projection p : R2n\0 -> Sn. Then we can obtain another linear
bundle by using the ingredients of 9?5£n, but interchanging the roles of X
and 7, i.e., by replacing

(i) the projection (4.9) by

XY~1 if 7^0.(4.9') p(X, 7) -
and

oo if 7 - 0,

(ii) the coordinate functions (4.10) and (4.11) by

(4.10') *MC,

2(4.11')
v|/2(C, D) (D, C 1D), where C ^ co

\|/2(oo, D) (D, O).
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For n 8, the X, Y, C and D are Cayley numbers. On putting
X c, Y d, C x and D y, we can see immediately that the

projection (4.9') and the coordinate functions (4.10') and (4.11') are exactly
those of the linear bundle constructed by N. Steenrod in [5, pp. 109-110].

Therefore, this linear bundle Fè of Steenrod and the linear bundle <9C£?8 in
Theorem 4.2 are two slightly different representations of the same bundle.

5. Comparison of our bundles with the Hopf-Steenrod bundles

In § 3, we constructed the sphere bundles

Jn (S2n~\<ï)n,K,S"-\Gn), n 2,4,8,

with fibers lying on mutually isoclinic n-planes in R2n. In § 4, we gave a

unified treatment of the classical Hopf-Steenrod sphere bundles

xe<fn (S2n_1, Sn, p, Sn~\ 0(n)), n 2, 4, 8

using, as N. Steenrod did, the Hopf map and the hypercomplex systems of

complex numbers, quaternions and Cayley numbers. In this section we shall

prove that (i) the Hopf fibering S2n_1 -a Sn and our maximal set of mutually
isoclinic n-planes in R2n are equivalent concepts (Theorems 5.1 and 5.2),

and (ii) the representative coordinate bundles constructed in § 3 and § 4

for the bundles Jn and are topologically essentially the same

(Theorem 5.3). For convenience, the theorems will be stated and proofs

given for the case n 8 only. Similar theorems hold for the cases

n 2, 4, and their proofs follow the same line and are simpler.

Theorem 5.1. For n 8, let us identify the space Q8 of Cayley
numbers with R8 by regarding the Cayley number

X (xi + x2i + x2j + x4.k, x5Fx6i-\-x1jFxsk)

as the point in R8 with rectangular coordinates (xl5..., x8), and the space

Qs x 08 °f ordered pairs of Cayley numbers with R8 x R8 R16 by

regarding the ordered pair

(.X, Y) EE ((Xi + x2i + Xjj + xfk x5 + x6z" + x7j + x8fc),

(x9 + x10i + x1L/ + x12/c, xl3 + x14i + x15j + x16k))

as the point in R16 with rectangular coordinates (xx,..., x8 ; x9,..., x16).

Then, written in terms of x \^x1 x8] and y [x9 x16],
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(i) the equation X 0 becomes x 0 ;

(ii) the equation Y CX becomes y xB(X), where B(X) is the

8x8 matrix in Theorem 1.6 (Hi) and X (X0, X1,..., X7) is related to
C by

Proof. Since (i) is obvious, we shall prove (ii) only. Let X (p, q),

Y — (r, 5) and C (a, b). Then the equation Y CX is

(xg + Xioi + x^+x^k, x13 + x14i + x15/ + x16fc)

— (Xq -b Xp -b X2j L X3/< X4 + X5z + Xßj -1- X7k)

x (xx + x2i + Xij + x4k xf + x6z + x7y+ x8X)

((^0 Y ^1* Y X2j + X3k) (x-l + x2i + X3j + x4/c)

(-V5 x^i x7j x8k) (X4 + X5i + Xçj + X7k),

(x5 + x6i + x7j + x8k) (X0 + Xxi + XJ + X3k)

+ (X4 + X5i-yX6j-yX7k) {x1—x2i — x3j — xAk))

— ((X0xt Xjx2 X2x3 X3X4) (x5X4 + x6X5 + x7X6 + x8X7)
+ (X0x2 + X1x1 + X2x4 X3x3)i (x5X5 X5X4 — x7X7 -bx8X6)z
+ (X0x3-X1x4-\-X2x1 + X3x2)j - (x5X6 + x6X7 — M7X4 — x8X5)j
+ (X0X4 + X1x3 X2x2 + X3x1)k (•XsX-y — x6X6 + x7X5— x8X4)/c

(x5X0 — x6X1 — x7X2 — x8X3) + (X4x1 + X5x2 + X6x3 + X7x4)
+ (x5X1 + x6X0 + x7X3 — x8X2)z + — X4x2 + X5x1 — X6x4 + X7x3)z
+ (x5X2 x^X3 + x7X0 + x8X()j + X4x3 + X5X4 + X6xx—X7x2)j
+ (x5X3 -bx6X2 — x7X1 +x8X0)k + — X4X4 — X5x3 + X6x2 + X7x1)k),

which is easily seen to be equivalent to

(5.1) C — (Xq T X±iTXjjT X3k X4-hX5Z-f-X^/TX7X).

(r, 5) (a, b) (p, q) {ap-q*b, qa + bp*),

i.e.,

[x9...xi6] [Xi ...x8]

^0 Xi X2 X3 X4 X5 X6 X7

^1 Xo X3 — X2 X5 — X4 — X7 Xg
a

1 Xg X7 — X4 — X5

0 X7 — Xg X5 — X4

7 Xq Xj X2 X3

6 Xj Xo X3 X2

~ Xß X7 X4 — X5 — X2 X3 Xo — X]

— X7 Xß X5 X4 X3 X2 Xj Xq

i.e. to y » xß(X).



196 Y.-C. WONG AND K.-P. MOK

An immediate consequence of Theorem 5.1 and Theorem 1.6 (iii) is the

following

Theorem 5.2. The Hopf fibering S15 -> S8 and our maximal set of
mutually isoclinic 8-planes in R16 are equivalent concepts. More precisely,
under the identification of Q8 x Q8 with R16 described in Theorem 5.1,
the set of Q8-lines {X 0, Y CX} in Qs x Qs corresponds to the

maximal set <h8 of mutually isoclinic 8-planes {x 0, y xB(X)} in R16.

(In Appendix 2, we shall prove, by working directly with Cayley numbers,
that the g8-lines, regarded as 8-planes in R16, are mutually isoclinic 8-planes.)

We are now ready to prove our main

Theorem 5.3. The representative coordinate bundles constructed in § 4

and § 3 for the sphere bundles XTXT 8 and X8 are topologically essentially
the same, with only the group SO(8) in X8 replacing the group 0(8)
in XTX8.

Proof. We first identify the bundle space, fiber and base space in XTX8
with those in and then show that, under this identification, the

projection, coordinate functions and coordinate transformations in Xf6T8 correspond

to those in J> 8.

(a) The bundle spaces and the fibers.

The bundle space in XT9?8 is the unit sphere S,15:|X|2 + |7|2 1

in Q8 x g8, and that in J> 8 is the unit sphere S15 : xxT + yyT 1 in R16.

The fiber in XT8 is the unit sphere S1 : | X | 1 in Q8, and that in

X8 is the unit sphere S1 : ttT 1 in R8. Let us identify these two S15,s and

two S7's by identifying Q8 with R8 and g8 x Q8 with R16 R8 x R8

as in Theorem 5.1.

(b) The base spaces.

By definition, the base space in XTTf 8 is S8 Q8 u co covered by the

open sets

{ô8> S8\0{Qs\0) u co}

with the Cayley numbers and oo serving as coordinates. On the other hand,
the base space in X8 is >8 covered by the open sets

{<I>8\0-\ <t>8\0}
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such that an 8-plane y xB(X) in O^O1 has the coordinate X and an

8-plane x - yB(p)T in >8\0 has the coordinate p.

Now Qg u oo can be regarded as the image of the unit sphere S8 in

R9 under the stereographic projection from the north pole of S8 onto

the equator 8-plane, and (by Theorem 2.3) there is a homeomorphism from

(3>8 to S8 which sends the 8-plane y xB(X) in <ï>8 to the point of S

whose stereographic projection is the point X on the equator 8-plane.

Therefore, we can identify Qg u oo with 08 by means of a homeomorphism

defined as follows.

Let A : Qg -> be the map which sends the point

C (7,Q T X±i + X^ ~f~ i X^-\-X5i-\-X^j-\-X7k)

in Qg to the 8-plane y - xB(X) in ®8\Ol with coordinate

X (^o, • • *5 L?),

and ;2- S8\0 (Q8\0) uoo-> 08\O the map which sends the point

C (p0 + ILX+Bz/+ +

in Qg\0 a Ss\0 to the 8-plane x yB(p)T in #8\0 with coordinate

P (PO ' Bl 5 iL) 5

and the point 00 g S8\0 to the 8-plane O1 : x 0 in <D8\0 with coordinate

p 0. Then it follows easily from Theorem 2.3 and its proof that the map

7\ u 72, is a homeomorphism from the base space S8 - Qg u 00 in Xf 8

to the base space ®8 in J>8.

Let us identify these two base spaces by means of the homeomorphism

h v j2.

(c) The projections.

We now prove that, under the identification defined in (a) and (b)

above, the projection p in 2tfXfg coincides with the projection 71 in J>8.

Suppose that P is a point of S15 lying on the ß8-line Y CX. Then
p(P) C e Qg a S8. Now by Theorem 5.1, this point P lies on the 8-plane

y xB(X) in R16, where X (X0,X1,..., X7) is related to C by (5.1). Therefore,
under the identification of S8 and <D8 defined in (b), p(P) n(P). Suppose
now that P is a point of S15 lying on the ß8-line X 0. Then p(P) 00 g S8.

By Theorem 5.1, this point P lies on the 8-plane O1:* 0 in R16.

Therefore, n(P) is the 8-plane O1 in <D8. Since the point 00 g S8 corresponds
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to the 8-plane O1 in <f>8 under the identification defined in (b), p(P) n(P).
Hence our proof that p and tu coincide is complete.

(d) The coordinate functions.

Consider first the coordinate functions

tfiösx S7 p~\Qs) and ^:^s\Ox) x S7 ->

in and ,/g, given by (4.2) and (3.1) respectively. Suppose that under
the identification defined in (b) and (a), the element (C, D) e Qs x S7

corresponds to the element (X, t) e (08\0) x S7. Then C and X are related by

(5.1) C (Xq + X±i + X2j + X2k T ^5i 4- + ?l7/c)

and D and t by

(5.2) D (t1 + t2i + t2j + tàk t5-R6i + t7; + t8/c).

Now since D e S7 a Q8 and t e S7 a R8, we have | D | 1 and ttT 1,

and, by Theorem 5.1, the product CD corresponds to tB(X). Therefore,

|C|2 - I C I
2

I D I
2

I CD I2 - tB(X) (tB{X))T GB(X)B(A,)r£r N(X),

and

v|/x(C, D) p
' £ 1= corresponds to 4>i(>C t) |

^

V1 + ici2 yi +

Next, consider the coordinate functions

v|/2: (S8\0) x S7 ^ p'\S8\0) and c|>2: (08\0) x S7 ^ n-\<S>s\0)

in and */8, given by (4.3) and (3.2) respectively. Suppose that under
the identification defined in (b) and (a), the element (C, D) g (S8\0) x S7

corresponds to the element (p, t') g (<D8\0) x S7. Then, C and p are related by

(5.3) C - (p0 + p1i + p27>p3/c, p4 + p5i + pJ + p7/c)/iV(p),

and D and t' by

(5.4) D t'2i-\-t'2jt'^k 15 4-f5 i 4*17j 4-1 g/c).

Since (5.3) implies that | C |
2 N(p)-1, (5.3) is equivalent to

(5.3') C"1 C*/|C|2 (|x0 —M-ii —M-2/" —(j.3Ac -|x4-n5i-n6j-n7fc).

Therefore, by Theorem 5.1, C~1D corresponds to

^ ••• ^7^7) t'B(p)r.
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Hence, it follows from the above that

fC_1D D)
\|/2(C, D) corresponds to c|>2(|i, 0 -

yi + vi c 12 yr+Mn)
To complete the proof that \|/2 and <|)2 correspond, we need only observe

that under the identification defined in (a) and (b), the point go g 58\0

corresponds to the 8-plane O1 : x 0 in an<^ the point

\[/2(go, D) (O, D) e p~ 1(S8\0)

of S15 coincides with the point

<t>2(0, f) « (O, t') G TC'HOgXO)

(e) The coordinate transformations and the bundle groups.

Suppose that in #C9?8, C is any point in the intersection Q8 n (S8\0)

Q8\0 of the two coordinate neighborhoods in the base space 58, and

D g Q8 with I D I 1 is a variable point of the fiber S1. Then the coordinate

transformations in the fiber S1 are D CD/\ C \ (cf. proof of Theorem 4.1).

Now let X be the point in the intersection (OgXO1) n (®8\0) OgXjO1, O}
of two coordinate neighborhoods in the base space ®8 in J>8 corresponding
to the point C under the identification defined in (b) above, and t g R8 with
ttT 1 the point of the fiber S1 in J>8 corresponding to the point D

under the identification defined in (a). Then C and X are related by (5.1),

and D and t are related by (5.2). Since (5.1) implies that | C|2 N(X)
and since by Theorem 5.1. CD corresponds to tB(X), the coordinate transformations

D CD/1 C I in JfXf8 correspond to the coordinate transformations
t -> tB{X)/N(X)112 in J8.

Since the bundle group of a coordinate bundle may be taken as the

group generated by the coordinate transformations in the fiber, or any
effective transformation group of the fiber containing this group, it follows
from the above that the bundle groups in #CSf8 and J8 are the same.
Now, the bundle group in 2tfXf8 as originally given by N. Steenrod is

0(8) ; whereas, we have shown in § 3 that the bundle group in J8 is
G8 50(8) and, moreover, it cannot be replaced by any smaller subgroup
of 50(8).

The proof of Theorem 5.3 is now complete.
Let us now consider the cases n — 2 and 4. By using the results

similar to those in Theorem 5.1 for the case n 8, we can prove, as in
(e) above, that the coordinate transformations D CD/| C | in
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correspond to the coordinate transformations t tB(X)/N(k)1/2 in J> where

B(X) are the matrices given in (1.7) in Theorem 1.6. By Theorem 2.5,

the elements B(X)/N(X)112 of SO(4) form a subgroup isomorphic with S3.

Therefore, the bundle group 0(4) in <9% can be replaced by S3. Similarly,
the bundle group 0(2) in can be replaced by S1. With these

observations, we can now prove the following theorem by proceeding as in
the proof of Theorem 5.3.

Theorem 5.4. The representative coordinate bundles constructed in § 4 for
the sphere bundles XTXT 2 and with bundle groups S1 and S3

respectively, are topologically the same as the representative coordinate bundles

constructed in § 3 for the sphere bundles J2 an& <$4 > respectively.

Finally, we remark that representative coordinate bundles of the bundles

STSTn in Theorem 4.2 are topologically essentially the same as the
representative coordinate bundles of the bundles JSTn in Theorem 3.2.

Appendix 1. The Cayley numbers

The Cayley numbers, denoted by X, Y, Z, W, etc. are ordered pairs
(q1, q2) of quaternions subject to the rules and having the properties listed

below. The set of all Cayley numbers, therefore, forms a (non-commutative
and non-associative) real division algebra. No proof of the properties will be

given as they can all be checked by direct computations.

(1) The addition is defined by

(.11,12) +(h+i'i, Qz+q'z)-

The zero is 0 (0, 0).

(2) The multiplication is defined by

(4I>42)(4'I,4 2) (4i4'I-4

where q'*, q'* are respectively the conjugates of (the quaternions) q\^q'2-
The (two-sided) unit is 1 (1,0).

(3) Multiplication is

(i) distributive with respect to addition, i.e.,

(X+Y)W XW + YW, W(X+Y) WX + WY ;
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(ii) not commutative, i.e., generally, AY # 7A (but see (4) (iv) below);

(iii) not associative, i.e., generally, ± X(YW) (but see (7) below).

(4) The realpan of X m(q,.q2) is Re X (Re s Re is said to

be real if X Re X :i.e., (q^q2) is real iff ql is real and q2 0.

(i) Re (X+ Y)Re (X) +Re Y).

(ii) Re (AY) Re(YA).

(iii) Re (CA) 0 for all Ximpliesthat 0.

(iv) CXXC for all A iff Cis real. In this case, C (cx, 0), where

real, and CA (Ci^i, c^-,) AC.

(5) The conjugateof A [qt,q2)isA* (qf. —q2)-

(i) (A + T)* A* + Y*,

(ii) (AT)* Y*X*.

(iii) A* A iff A is real.

(6) The norm of A is the non-negative real number .Vl.Vl AA*, which is

also equal to A*A. The length of A is the non-negative real number

I A I A(A)1 2 (AA*)1 2.

(i) Ar(A) 0 iff A 0.

(ii) If A 0, then A"1 s A* A(A) is a right and left inverse of A.

(iii) A7(AY) X(X)X{Y). It follows from this that AT 0iffA 0

or Y 0.

(7) Though multiplication is generally non-associative,

(i) (A 7)7* A(YY*).

(ii) If 7 # 0, then (A7)7_1 A 7_1(7A).

(iii) Re((A7)IT) Re(A (YW)).

Appendix 2. The Hopf fibering and mutu.ally isoclinic planes

At the beginning of § 4, we described how H. Hopf obtained his fibering
of S2"-1 by S"-1 over S", n 2,4, or 8, by intersecting the unit sphere
S2"-1 in R2n Q„ x Qn with the 2„-lines 7 CA and A 0. In
Theorem 5.2, we proved that the Hopf fibering and maximal set of mutually
isoclinic n-planes in R2n are equivalent concepts. Here we prove, directly, the
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Theorem A2.1. The set of Qn-lines {Y CX, X 0} in Qn x Qn,
when viewed as n-planes in R2n, are mutually isoclinic n-planes.

Proof We shall prove the theorem for the case n 8 only. The proof
for the cases n 2, 4 follows the same line and is simpler.

Some preliminaries are necessary. Suppose that under the identification
°f Qs x Qs with #16 as in Theorem 5.1, the elements (.X, Y), (XY')
°f fis x 08 become the vectors (X, 7), (X', Y') in R16 with respectively
the components (xx,..., x16), (Vl5..., x'16). Then it can easily be verified that
the inner product of the two vectors (X, 7) and (X', 7') is

16

<(X9 7), (X\ Y')> X «= Re (XX'* +77'*).
i l

It follows from this that the length of the vector (X, 7) is

I (X, 7) | <(X, 7), (X, Y)> 1/2 - (XX* + 7 7*)1/2

and that the two vectors (X, 7) and (X7, 7') are orthogonal if and only if
Re (XX'*+77'*) 0.

We can now prove our theorem by showing that in R16, the 8-plane
A : 7 AX is isoclinic with the 8-planes B : 7 BX and O1 : X 0.

Let (T, BT) g B be the projection of any nonzero vector (X, AX) e A
on B. Then the vector X—T,AX —BT)is orthogonal to B, i.e., it is

orthogonal to all the vectors (W, BW)eB,where W is an arbitrary Cayley
number. Therefore,

(A.l) Re {(X-T)W* + AX-BT) (B0 for all

Since, by (4) (ii) and (7) (iii) in Appendix 1, the terms inside the brackets

in Re { } are commutative and associative, the left-hand side of (A. 1) is equal to

Re {{X — T)W*+ [(AX — BT)W*
Re {(X-T)W* + [B
Re {(X-T)W* + [(-(B*B)T]W*}

Re{[X-T + (B*A)X-(B*B)T]W*}

Therefore, by (4) (iii) in Appendix 1, condition (A.l) implies that

X — T +B*A)X-0

and hence

(A.2) T (l + B*A)X/(l + B
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Now, the squared length of the vector (X, AX) is

I {X, AX)\2 XX* + (AX)*

XX* + AA*XX*

i.e.,

(A.3) I (X, AX)12(1 +

Similarly,

I (T, BT)I2 (1

But by (A.2),

TT*(l+B*A)Xl(l+B*A)X~]*/(l+B*B)2

(l + B*A)(l + A*B)XX*/(l +

Therefore,

(A.4) I (T, BT)12(1 + B*A)(1+ 1 +

Hence, it follows from (A.3) and (A.4) that the angle 0 between the vector

(X, AX) e A and its projection on B is given by

I (T, BT)12(l + A*B)(l+B*A)
cos 0 — —

\(X,AX)\2 (1 +AM) (1 + 5*5)'

which shows that the angle between any nonzero vector (X, AX) g A and its

projection on B is independent of the choice of X ; that is, the 8-plane A is

isoclinic with the 8-plane B.

Finally, to show that the 8-plane A: Y AX is isoclinic with the 8-plane
O1 : X 0, we need only observe that the projection of the nonzero vector
(X, AX) g A on O1 is the vector (0, AX), and

I (0, AX) 12 (AX) (AX)* AA*
I (X, AX) I

2 ~
(1 + A*A)XX*

~
1 + AA*

is independent of X.
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