4. Free subgroups of $\mathrm{GL}(2, \mathrm{R})$ and of $\mathrm{GL}(2, \mathrm{C})$

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 29 (1983)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
19.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
also elliptic, the foot of the perpendicular from the fixed point of g onto the invariant line of g would be fixed by g, and this cannot be. If g was at the same time elliptic with fixed point $a \in H^{n+1}$ and parabolic with fixed point $b \in \mathbf{S}^{n}$, the line from a towards b would have two points at infinity b and b^{\prime} both fixed by g, and this cannot be.

That any $g \in G M(n)_{0}$ belongs to one of the three classes follows for example from Brouwer's fixed point theorem. (See also 4.9.3 in [Th].)

Observe that an hyperbolic isometry $g \in G M(n)_{0}$ has a unique invariant line δ. Suppose indeed that there are two of them, say δ and δ^{\prime}. If $\delta \cap \delta^{\prime} \neq \phi$, the intersection point (which is unique) is fixed by g, and this cannot be. If $\delta \cap \delta^{\prime}$ $=\phi$ and if δ, δ^{\prime} have no common point at infinity, there is a unique line perpendicular to both δ and δ^{\prime}; but this line intersects δ in a point fixed by g, and this cannot be. Assume finally that $\delta \cap \delta^{\prime}=\phi$ and that δ and δ^{\prime} have a common point at infinity; choose some number $\rho>0$ and consider the set C_{ρ} of points in H^{n+1} at a distance of ρ from δ^{\prime}; the intersection $C_{\rho} \cap \delta$ is a point fixed by g, and again this cannot be. One may consequently also define an isometry $g \in G M(n)_{0}$ to be
elliptic if $d(a, g(a))=0$ for some $a \in H^{n+1}$,
parabolic if $\inf d(a, g(a))=0$, with the infimum over $a \in H^{n+1}$ not attained,
hyperbolic if inf $d(a, g(a))>0$ (and the infimum is then attained exactly on the
invariant line of g).
We shall need below the following dynamical description. An hyperbolic isometry $g \in G M(n)_{0}$ has on \mathbf{S}^{n} one attracting point P_{a} and one repulsing point P_{r}. This means that, for any neighborhood U of P_{a} in \mathbf{S}^{n} and for any compact subset K of $S^{n}-\left\{P_{r}\right\}$, one has $g^{k}(K) \subset U$ for k large enough. (And similarly with g^{-1} instead of g when exchanging P_{a} and P_{r}.) Consider now a parabolic isometry $g \in G M(n)_{0}$ with fixed point $P \in \mathbf{S}^{n}$. Let U be a neighborhood of P in \mathbf{S}^{n} and let K be compact in $S^{n}-\{P\}$; then $g^{k}(K) \subset U$ for any $k \in \mathbf{Z}$ with $|k|$ large enough. (This is obvious when g is a translation in $\mathbf{R}^{n} \times \mathbf{R}_{+}^{*}$ by some vector in \mathbf{R}^{n}, and any parabolic isometry of H^{n+1} is conjugate to such a translation.)

4. Free subgroups of $G L(2, \mathbf{R})$ and of $G L(2, \mathbf{C})$

We show in this section that a subgroup of the proper Mœbius group G $=P G L(2, \mathbf{R})$ which is not almost solvable contains free groups; the same fact for $G L(2, \mathbf{R})$ follows straightforwardly. We discuss also the case of $G L(2, \mathbf{C})$.

Proposition. Let $g, h \in G-\{1\}$ be without any common fixed point in $H^{2} \cup \mathbf{S}^{1}$. Then the group Γ generated by g and h contains free groups, up to two exceptions.

The first of these happens when $g^{2}=h^{2}=1$. The second when one element is an involution, say $g^{2}=1$, when h is hyperbolic, and when g exchanges the two fixed points of h on $\mathbf{S}^{\mathbf{1}}$. In these two cases, Γ is the infinite dihedral group, and is thus solvable.

Proof. We check below in each of the non exceptional cases that Γ contains a free group.

Case 1. One element, say g, is parabolic with fixed point $P \in \mathbf{S}^{1}$.
Consider the parabolic $k=h g h^{-1}$, with fixed point $Q=h(P) \neq P$ in \mathbf{S}^{1}. Let S_{1} [respectively S_{2}] be a compact neighborhood of P [resp. $\left.Q\right]$ in \mathbf{S}^{1} with $S_{1} \cap S_{2}=\phi$. The end of section 3 shows that there exists a positive integer n_{0} such that $g^{n}\left(S_{2}\right) \subset S_{1}$ and $k^{n}\left(S_{1}\right) \subset S_{2}$ for any $n \in \mathbf{Z}$ with $|n| \geqslant n_{0}$. It follows from Klein's criterium that $g^{n_{0}}$ and $k^{n_{0}}$ generate a free subgroup of G.

Case 2. Both g and h are hyperbolic.
Let S_{1} [respectively S_{2}] be a compact neighborhood of the fixed points of g [resp. of h] in \mathbf{S}^{1} with $S_{1} \cap S_{2}=\phi$, and proceed as in case 1 .

Case 3. One of the elements, say h, is hyperbolic with fixed points $P, Q \in \mathbf{S}^{1}$ and g does not exchange them, say $R=g(Q) \notin\{P, Q\}$.

If $g(P) \notin\{P, Q\}$ then h and $g h g^{-1}$ are as in case 2 . We may thus assume that $g(P)=Q$. If $g(R) \neq P$ then h and $g^{2} h g^{-2}$ are again as in case 2 . We may thus also assume $g(R)=P$. Consider then $h^{\prime}=g^{-1} h g$, an hyperbolic with fixed points R and P, as well as $h^{\prime \prime}=g h g^{-1} h g h^{-1} g^{-1}$, an hyperbolic with fixed points Q $=g h g^{-1}(Q)$ and $S=g h g^{-1}(P)$. One has $h(R) \neq Q$ and thus $S=g h(R) \neq g(Q)$ $=R$; one has also $h(R) \neq R$ and $S \neq g(R)=P$. Consequently h^{\prime} and $h^{\prime \prime}$ are as in case 2.

Case 4. Both g and h are elliptic with $g^{2} \neq 1$.
Possibly after conjugation within G, one may assume that $g=r_{\alpha}$ is a rotation around the origin of the disc H^{2} by some angle $\left.\alpha \in\right] 0,2 \pi[-\{\pi\}$. Then $k=h g h^{-1} \neq g$, otherwise h would also fix the origin.

In the average, any point of \mathbf{S}^{1} is rotated by k of an angle α. More precisely, if $\tilde{k}: \mathbf{R} \rightarrow \mathbf{R}$ is the lifting of k to the universal covering of \mathbf{S}^{1} with $0 \leqslant \tilde{k}(0)<1$, then $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\tilde{k}^{n}(x)-x\right)$ exists for all $x \in \mathbf{R}$ and this limit is α. Moreover

$$
\min _{x \in \mathbf{R}}(\widetilde{k}(x)-x) \leqslant \alpha \leqslant \max _{x \in \mathbf{R}}(\widetilde{k}(x)-x) .
$$

(See any exposition of the rotation number, for example chapter 17 in [CL] or section 1 in [Ka].) It follows that there exists $P \in \mathbf{S}^{1}$ with $k(P)=g(P)$, so that $g^{-1} k$ has a fixed point in \mathbf{S}^{1} and one of the previous cases applies.

Exceptional cases. If $g^{2}=h^{2}=1$, then $g h$ generate an infinite cyclic subgroup of index 2 in Γ and Γ is isomorphic to the infinite dihedral group. If h is hyperbolic and if g exchanges its fixed points, then $g h g^{-1}=h^{-1}$ so that g^{2} $=(g h)^{2}=1$ and Γ is as in the previous case.

The proof is now complete.
The proposition above is well known, and may essentially be found in any of the following papers: [LU1], [Md], [Ro] (see corollary 1). One should also mention Magnus' surveys [Ms1], [Ms2].

As two elements of G having a common fixed point in $H^{2} \cup \mathbf{S}^{1}$ generate a solvable subgroup, we have proved the 2 -generators particular case of the following fact.

Theorem 1. A subgroup Γ of $G=P G L(2, \mathbf{R})$ (or of $G L(2, \mathbf{R})$) which is not solvable contains free groups.

Proof. We assume that Γ does not contain free groups, and check that Γ is solvable. If Γ contains at least one parabolic isometry, this follows from case 1 of the proof above. If it contains at least one hyperbolic isometry, then all hyperbolics in Γ have a common fixed point (see case 2) and then either all elements in Γ have a common fixed point or Γ is dihedral (see case 3). Finally, if Γ is an elliptic group, it follows from case 4 that Γ is abelian.

This covers in particular the case of Fuchsian groups. The next theorem covers that of Kleinian groups.

THEOREM 2. Let Γ be a subgroup of $S L(2, \mathbf{C})$ which is not solvable. Assume moreover that Γ is not relatively compact (or equivalently that Γ is not conjugate to a subgroup of the maximal compact subgroup $S U(2)$ of $S L(2, \mathbf{C})$). Then Γ contains free groups.

In particular, a discrete subgroup of $\operatorname{PGL}(2, \mathbf{C})$ which is not almost solvable contains free groups.

Proof. The group Γ acts on \mathbf{C}^{2}; as Γ is not solvable, the representation is irreducible. Easy arguments à la Burnside show that Γ does not contain elliptic elements only; indeed, Γ does contain a hyperbolic element (see [CG], or corollary 1.8 in [B]). The first statement follows now as theorem 1.

The second follows from this: a discrete subgroup of $\operatorname{PGL}(2, \mathbf{C})$ containing elliptic elements only is finite. Indeed, such a group is periodic. If Γ is a priori
known to be finitely generated, then Γ is finite by a theorem of Schur ($\S 36$ in [CR]) so that the hyperbolic subspace $F(\Gamma)=\left\{x \in H^{3} \mid \Gamma x=\{x\}\right\}$ is non empty. In general, to any finitely generated subgroup $\Gamma_{\mathfrak{l}}$ of Γ corresponds a non empty subspace $F_{\mathfrak{l}} \subset H^{n}$; it is easy to check that $F(\Gamma)=\cap F_{1}$ is non empty so that Γ lies in a compact subgroup of the Mœbius group; it follows again that Γ is finite.

Instead of the assumption of theorem 2, assume the following: there exists $g \in \Gamma$ with two distinct eigenvalues of same modulus, say $\mu_{1}=\rho \exp \left(i \theta_{1}\right)$ and $\mu_{2}=\rho \exp \left(i \theta_{2}\right)$ where $\rho, \theta_{1}, \theta_{2} \in \mathbf{R}$ satisfy $\rho>0$ and $\theta_{1} \not \equiv \theta_{2}(\bmod 2 \pi)$, and there exists an automorphism α of \mathbf{C} with $\left|\alpha\left(\mu_{1}\right)\right| \neq\left|\alpha\left(\mu_{2}\right)\right|$. Then α induces an automorphism $\tilde{\alpha}$ of $G L(2, \mathbf{C})$ and the proof applies to $\tilde{\alpha}(\Gamma)$. But this procedure has its limits, because there exist complex numbers μ (such as $\frac{1}{5}(3+4 i)$, see the remark below) such that $|\alpha(\mu)|=1$ for any automorphism α of \mathbf{C} but which are not roots of 1 ; then the argument above fails ${ }^{1}$) for example for $g=\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu^{-1}\end{array}\right)$.

Something is true however: let k be a finitely generated field of characteristic 0 , let $\mu \in k-\{0\}$ and assume μ is not a root of 1 . Then there exists a locally compact field k^{\prime} endowed with an absolute value ω and there exists a homomorphism $\sigma: k \rightarrow k^{\prime}$ such that $\omega(\sigma(\mu)) \neq 1$; this is lemma 4.1 of [T]. It follows that the argument above may be recuperated, but one has to consider other fields than subfields of \mathbf{C}.

For self-consistency, let us end with the announced remark. For any automorphism α of \mathbf{C}, one has clearly

$$
\left|\alpha\left(\frac{3+4 i}{5}\right)\right|=\left|\frac{3 \pm 4 i}{5}\right|=1
$$

we check now that $\frac{3+4 i}{5}$ is not a root of one.
Let p, q be coprime integers and let $\mu=\exp \left(i 2 \pi \frac{p}{q}\right)$ be a root of 1 . Then μ is an algebraic number of degree $\varphi(q)$, where φ is Euler's function. It follows that $\cos \left(2 \pi \frac{p}{q}\right)$ is an algebraic number of degree $d \geqslant \frac{1}{2} \varphi(q)$: because if F is a polynomial of degree d in $Z[X]$ with $F\left(\cos \left(2 \pi \frac{p}{q}\right)\right)=0$, then μ is a root of

[^0]$X^{d} F\left(\frac{1}{2} X+\frac{1}{2} X^{-1}\right)$, which is of degree $2 d$ in $Z[X]$, so that $2 d \geqslant \varphi(q)$. If $q \in\{1,2,3,4,6\}$, one checks easily that $\exp \left(i 2 \pi \frac{p}{q}\right) \neq \frac{3+4 i}{5}$. If $q=5$ or if $q \geqslant 7$, then $\varphi(q)>2$ so that $\cos \left(2 \pi \frac{p}{q}\right)$ is not rational. Thus the root of unity μ cannot be equal to $\frac{3+4 i}{5}$.

5. Some other cases of Tits' theorem

Let n be an integer with $n \geqslant 2$.
Define a subgroup Γ of $G L(n, \mathbf{C})$ [respectively of $\operatorname{PGL}(n, \mathbf{C})$] to be irreducible if any linear subspace of \mathbf{C}^{n} [resp. of $P_{\mathbf{C}}^{n-1}$] invariant by Γ is trivial, and not almost reducible if any subgroup of Γ of finite index is irreducible. When referring to the Zariski topology on $\operatorname{PGL}(n, \mathbf{C})$, we use below the letter Z.

Reduction. Tits' theorem for complex linear groups is equivalent to the following statements (one for each $n \geqslant 2$):

Let Γ be a subgroup of $P G L(n, \mathbf{C})$ which is not almost solvable. Assume that
(i) is not almost reducible;
(ii) the Z-closure G of Γ in $\operatorname{PGL}(n, \mathbf{C})$ is Z-connected. Then Γ contains free groups.

That one may assume (i) without loss of generality is an easy exercise on reducibility, and one may assume (ii) because the Z-closure of any subgroup of $\operatorname{PGL}(n, \mathbf{C})$ has finitely many Z-connected components. (The hypothesis of the reduced statement are redundant: (i) and (ii) imply by Lie's theorem that G is not solvable, so that Γ is not almost solvable!)

Now let $g \in P G L(n, \mathbf{C})$ and choose a representative $\tilde{g} \in G L(n, \mathbf{C})$ of g. Let us define g to be
elliptic if \tilde{g} is semi-simple with all eigenvalues of equal moduli,
parabolic if \tilde{g} is not semi-simple and has all its eigenvalues of equal moduli, hyperbolic if \tilde{g} has at least two eigenvalues of distinct moduli.

These definitions are obviously independent on the choice of \tilde{g}. They generalize those of section 3 as follows from [Gr]. The meaning of "hyperbolic" fits with current use in dynamical systems theory (see e.g. definition 5.1 in [Sh]).

Let g be hyperbolic and let \tilde{g} be as above. Let $\widetilde{A}(g)$ respectively $\left.\tilde{A}^{\prime}(g)\right]$ be the direct sum of the nilspaces of \tilde{g} corresponding to all eigenvalues of maximal modulus [resp. to all other eigenvalues] of \tilde{g}. Let $A(g)$ [resp. $\left.A^{\prime}(g)\right]$ be the canonical image of $\tilde{A}(g)-\{0\}$ [resp. $\left.\tilde{A}^{\prime}(g)-\{0\}\right]$ in $\mathbf{P}=P_{\mathrm{c}}^{n-1}$. Then $A(g) \cap A^{\prime}(g)=\emptyset$ and the smallest linear subspace of \mathbf{P} containing both $A(g)$ and $A^{\prime}(g)$ is \mathbf{P} itself. Tits calls $A(g)\left[\right.$ resp. $\left.A\left(g^{-1}\right)\right]$ the attracting space [resp. repulsing space] of g. We say that g is sharp if $A(g)$ is a point and that g is very sharp if both $A(g)$ and $A\left(g^{-1}\right)$ are points. For each $k \in\{1,2, \ldots, n-1\}$, the fundamental representation of $G L(n, C)$ in $\wedge^{k} \mathbf{C}^{n}$ induces an injection

$$
\left.\lambda_{k}: P G L(n, \mathbf{C}) \rightarrow P G L\binom{n}{k}, \mathbf{C}\right) ;
$$

as g is hyperbolic, $\lambda_{k}(g)$ is sharp for some k. We also say that two hyperbolic elements $g, h \in \operatorname{PGL}(n, \mathbf{C})$ are in general position if

$$
\begin{aligned}
& A(g) \cup A\left(g^{-1}\right) \subset \mathbf{P}-\left\{A^{\prime}(h) \cup A^{\prime}\left(h^{-1}\right)\right\} \\
& A(h) \cup A\left(h^{-1}\right) \subset \mathbf{P}-\left\{A^{\prime}(g) \cup A^{\prime}\left(g^{-1}\right)\right\} .
\end{aligned}
$$

Observe that any hyperbolic element of $\operatorname{PGL}(2, \mathbf{C})$ is very sharp, and that two hyperbolic elements of $P G L(2, \mathbf{C})$ are in general position if and only if they do not have any common fixed point on \mathbf{S}^{2}.

Recall that an element of $\operatorname{PGL}(n, \mathbf{C})$ is semi-simple if its inverse image in $G L(n, \mathbf{C})$ contains diagonalisable matrices.

Lemma 1. Let Γ be an irreducible subgroup of $\operatorname{PGL}(n, \mathbf{C})$ having a Z connected Z-closure. If Γ contains a sharp semi-simple element g, then Γ contains a very sharp element.

About the proof. Let $\tilde{g} \in G L(n, \mathbf{C})$ be some representative of g having an eigenvalue of "large" modulus and all other eigenvalues with moduli "near" 1. For suitable $h, u \in \Gamma$ and for $j \in N$ large enough, one may hope that $g^{-j} h g^{j} h^{-1} u$ has a representative in $G L(n, \mathbf{C})$ with one eigenvalue of very large modulus (look at $h g^{j} h^{-1} u$), one eigenvalue of very small modulus (look at g^{-j}), and other eigenvalues of moduli "near" 1 . Section 3 of [T] shows that this hope is realistic. (See also below, after the theorem.)

Lemma 2. Let Γ be an irreducible subgroup of $\operatorname{PGL}(n, \mathbf{C})$ having a Z connected Z-closure. If Γ contains a very sharp element, then Γ contains two very sharp elements in general position.

Proof. Let P_{1}, P_{2} be two linear subspaces of \mathbf{P} with $P_{1} \neq \emptyset$ and $P_{2} \neq \mathbf{P}$. Then $\left\{x \in G \mid x\left(P_{1}\right) \notin P_{2}\right\}$ is obviously a Z-open subset of G. It is not empty:

Choose indeed $p \in P_{1}$; then the subspace of \mathbf{P} spanned by the orbit $G p$ is stable under G and must therefore coincide with \mathbf{P}; hence there exists $x \in G$ with $x(p) \notin P_{2}$ and, a fortiori, $x\left(P_{1}\right) \notin P_{2}$.

Let g be a very sharp element in Γ. It follows from above that

$$
X=\left\{\begin{array}{l|l}
x \in G & \begin{array}{l}
A(g) \text { and } A\left(g^{-1}\right) \text { are not contained in any of } x A^{\prime}(g), \\
x A^{\prime}\left(g^{-1}\right), x^{-1} A^{\prime}(g), x^{-1} A^{\prime}\left(g^{-1}\right)
\end{array}
\end{array}\right\}
$$

is a non empty Z-open subset of G. Let $y \in X \cap \Gamma$. Then g and $y g y^{-1}$ are both very sharp and are in general position.

For the next lemma, we choose as above k with $1 \leqslant k \leqslant n-1$ and we consider the $k^{\text {th }}$ fundamental representation $\left.\lambda_{k}: S L(n, \mathbf{C}) \rightarrow S L\binom{n}{k}, \mathbf{C}\right)$ of $S L(n, \mathbf{C})$.

Lemma. Let Γ be a group and let $\rho: \Gamma \rightarrow S L(n, \mathbf{C})$ be an irreducible representation. Then the Z-closure G of $\rho(\Gamma)$ in $\operatorname{SL}(n, \mathbf{C})$ is semi-simple and the representation $\left.\sigma=\lambda_{k} \rho: \Gamma \rightarrow S L\binom{n}{k}, \mathbf{C}\right)$ is completely reducible.

Proof. We show first that G is semi-simple. Consider the solvable radical R of G. By Lie's theorem, there exists an eigenvector for R, namely there exist $v \in \mathbf{C}^{n}-\{0\}$ and $\alpha \in \operatorname{Hom}\left(R, \mathbf{C}^{*}\right)$ with $r(v)=\alpha(r) v$ for all $r \in R$. As R is normal in G, any vector $g(v)(g \in G)$ is also an eigenvector for R. By irreductibility, any vector in \mathbf{C}^{n} is also an eigenvector, so that R is made up of dilations. But R is connected and is in $\operatorname{SL}(n, \mathbf{C})$, so that $R=1$.

Now $\left.\lambda_{k}: G \rightarrow S L\binom{n}{k}, \mathbf{C}\right)$ is completely reducible; denote by $\lambda_{k, j}: G$ $\rightarrow S L\left(W_{j}\right)$ the components of a decomposition $\lambda_{k}=\underset{j \in J}{\oplus} \lambda_{k, j}$ and define σ_{j} $=\lambda_{k, j} \rho(j \in J)$. One has clearly $\sigma=\underset{j \in J}{\oplus} \sigma_{j}$, and each $\sigma_{j}: \Gamma \rightarrow S L\left(W_{j}\right)$ is irreducible (this because $\lambda_{k, j}$ is irreducible and by Schur's lemma).

Theorem. Let Γ be a subgroup of $\operatorname{PGL}(n, \mathbf{C})$ and assume
(i) Γ is neither almost solvable nor almost reducible,
(ii) Γ contains a semi-simple hyperbolic element.

Then Γ contains free groups.
Proof. As one may consider instead of Γ a subgroup of finite index, there is no loss of generality if we assume that the Z-closure of Γ is Z-connected. We denote by $\tilde{\Gamma}$ the inverse image of Γ in $S L(n, \mathbf{C})$. By (ii), there exists $k \in\{1, \ldots, n-1\}$ and a semi-simple element $\tilde{\gamma} \in \tilde{\Gamma}$ having eigenvalues μ_{1}, \ldots, μ_{n} with $\left|\mu_{1}\right|=\ldots$ $=\left|\mu_{k}\right|>\left|\mu_{j}\right|$ for $j=k+1, \ldots, n$. Let $N=\binom{n}{k}$, and denote by λ_{k} both the fundamental representation $G L(n, \mathbf{C}) \rightarrow G L(N, \mathbf{C})$ and the induced
homomorphism $\operatorname{PGL}(n, \mathbf{C}) \rightarrow P G L(N, \mathbf{C})$. Then $\lambda_{k}(\tilde{\gamma})$ has eigenvalues v_{1}, \ldots, v_{N} with $\left|v_{1}\right|>\left|v_{j}\right|$ for $j=2, \ldots, N$. By lemma 3 , there exists a $\lambda_{k}(\tilde{\Gamma})$-irreducible subspace W_{0} of \mathbf{C}^{N}, associated to a representation $\sigma_{0}: \tilde{\Gamma} \rightarrow G L\left(W_{0}\right)$, such that v_{1} is an eigenvalue of $\sigma_{0}(\tilde{\gamma})$. As the Z-closure \tilde{G} of $\tilde{\Gamma}$ in $S L(n, \mathbf{C})$ is semi-simple, the group \tilde{G} is perfect and $\sigma_{0}(\tilde{\Gamma})$ lies in $S L\left(W_{0}\right)$. As $\left|v_{1}\right|>1$, one has $\operatorname{dim}_{\mathbf{C}} W_{0} \geqslant 2$.

Thus one may assume from the start that Γ contains a sharp semi-simple element, and indeed by lemmas 1 and 2 two very sharp elements in general position. The conclusion follows as in case 2 of the proof of the proposition in section 4.

Now lemma 1 remains true without the hypothesis "semi-simple". This has been announced by Y. Guivarch', who uses ideas of H. Fürstenberg to show the following : given an appropriate subset S of Γ containing a sharp element, then almost any "long" word in the letters of S is very sharp. Using this, one may replace (ii) in the theorem above by the following a priori weaker hypothesis
(ii') Γ is not relatively compact.
Then, one first checks as for theorem 2 of section 4 that Γ contains hyperbolic elements; one concludes as in the previous proof, with Guivarch's version of lemma 1.

For subgroups of $P U(n)$, one may repeat the discussion at the end of section 4 .

REFERENCES

[A] Ahlfors, L. V. Möbius transformations in several dimensions. School of Mathematics, University of Minnesota, 1981.
[Ba] Bass, H. Groups of integral representation type. Pacific J. Math. 86 (1980), 15-51.
[BL] Bass, H. and A. Lubotzky. Automorphisms of groups and of schemes of finite type. Preprint.
[B] Bourbaki, N. Eléments d'histoire des mathématiques. Hermann 1969.
[CL] Coddington, E. A. and N. Levinson. Theory of ordinary differential equations. McGraw Hill, 1955.
[CG] Conze, J. P. and Y. Guivarch'. Remarques sur la distalité dans les espaces vectoriels. C. R. Acad. Sc. Paris, Sér. A, 278 (1974), 1083-1086.
[CR] Curtis, C. and I. Reiner. Representation theory of finite groups and associative algebras. Interscience, 1962.
[DE] Dubins, L. E. and M. Emery. Le paradoxe de Hausdorff-Banach-Tarski. Gazette des Mathématiciens 12 (1979), 71-76.
[D] Dixon, J. D. Free subgroups of linear groups. Lecture Notes in Math. 319 (Springer, 1973), 45-56.
[E] Epstein, D. B. A. Almost all subgroups of a Lie group are free. J. of Algebra 19 (1971), 261-262.
[FK] Fricke, R. and F. Klein. Vorlesungen über die Theorie der automorphen Functionen, vol. I. Teubner, 1897.

[^0]: ${ }^{1}$) This shows that one point on page 50 of [D] is incorrect.

