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A FORGOTTEN GEOMETRICAL TRANSFORMATION

by Daniel Pedoe

In 1882 Laguerre published Transformations par les semi-droites

réciproques (Laguerre [3]). Thirty years earlier, while still a student, he had

become famous for his discovery of the cross-ratio interpretation of Euclidean

angle. In this paper Laguerre describes a geometrical transformation
between oriented lines (which we shall call rays), using a given oriented

Fig. 1

J circle (or cycle),apoint outside the circle, and a line, called the as the
machinery of the transformation. If the cycle is called K, the point P,
the axis Q, and a ray NM meets Q in M, there is a unique parallel ray which
touches the cycle K. Let Abe its point of contact (Fig. 1), and let PA inter-
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sect K again at A'. There is a ray tangent to K at A'. Then the ray N'M
through M parallel to this tangent ray is the transform of the ray NM. I

Laguerre choses P so that its polar line with respect to K is parallel to Q,

and the transformation can also be described by saying that corresponding
tangents to K intersect on this polar line, which we call the auxiliary axis co.

The variables in setting up this transformation, called Laguerre inversion,
are K, Q and co. It is evidently an involutory transformation; that is, if the

map of NM is N'M, then the map of N'M is NM. Laguerre proves that j

the tangent rays belonging to a given cycle map onto the tangent rays to a

cycle, and this theorem at once makes Laguerre inversion interesting. The

origin of the transformation can be traced to a previous paper, Sur la

géométrie de direction (Laguerre [3], 592-603), where Laguerre considers \

tangent rays to a cycle which are in involution, and in both papers he j

stresses the correspondence of his transformation with ordinary inversion U

(transformation by reciprocal radii). The final theorem of this paper is: j

three given cycles may be simultaneously transformed into three points, and M

he then derives the eight Apollonius contact circles of the three original
circles by a most elegant device, from this theorem.

Geometers are familiar with ordinary inversion, but a number with "j

whom I discussed Laguerre inversion had never come across it. Laguerre
inversion is as powerful a method for solving certain kinds of problem as

ordinary inversion, and should certainly be a part of every geometer's
tool-kit. It is mentioned by Coolidge [2], and Yaglom [6] discusses it in
detail, using dual complex numbers. Blaschke [1] devotes a whole chapter jj

to Laguerre transformations but, as far as I can discover, none of these

three writers mentions Laguerre's final theorem, which is surely a remarkable

one.

Sophus Lie, around 1870, interpreted the group generated by com- j

position of Laguerre inversions in the plane as a subgroup of a group of |
transformations in E3 which map a certain geometric construct onto itself. |
Blaschke gives all this, and more. So the development given below, to show j
how Laguerre inversion arises quite naturally when we consider a dual $

aspect of ordinary inversion cannot claim to be entirely original, but it is 'j

perhaps more geometrical than Blaschke's treatment, and, in any case, was |
conceived independently.

At the end of this paper we shall use Laguerre inversion to obtain a jj

rapid proof of a theorem on chains of contact circles, first remarking that
the theorem is essentially one on chains of cycles. Non Angli, sed angeIi

may often apply to circles and cycles.
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1. If the circle I X2 + Y2 — 2pX - 2qY + r 0 in the plane

Z 0 is represented in E3 by the point V (p, q, r), then point-circles

(circles of zero radius) are mapped onto points which lie on the quadric
surface <P X2 + Y2 — Z 0. If the points P, P' in Z 0 are inverse

points in I, and these points, considered as point-circles, are mapped onto

the points Q, Q' of #, then the points V, Q, Q' are collinear. If P describes

a circle # in Z 0, the point Q describes a plane section of The theorem

that the inverse of a circle ^ in I is a circle or a line is equivalent to the

theorem in E3 that the cone of lines joining V to the points of a plane
section of $ intersects the quadric again in the points of a plane section,
and so we have a transformation between plane sections of a quadric. All
this is described in detail in Pedoe ([4], Chapter IV).

For the dual transformation in E3 we consider a tangential quadric W

and a plane v. The planes q, q' both touch W, and the line q n q' lies in v.

The dual theorem corresponding to the one just given above is : if the planes q

pass through a point, the planes q' also pass through a point, and so we have

a transformation between cones of tangent planes to the quadric W.

To obtain a transformation between cycles in Z 0, we map the circle
(X—p)2 + Y—q)2 — R2 0 onto the point (p, q, R) of E3 if the circle
is traversed positively, and onto the point (/?, q, — R) if the circle is traversed

negatively. The tangent planes to the cone with vertex (p, q, ± R) which

passes through the circle in the plane Z 0 all touch the conic X2 + Y2

— Z2 0 in the plane at infinity, and this conic is our (degenerate)
tangential quadric W. If cycles (oriented circles) Q) are represented by
points P, Ô, then the two common tangent rays to ^ and Q) are given by the
intersection with Z 0 of the two tangent planes to W which pass through
the line PQ. The points of the line PQ represent the set of cycles which also
touch the common tangent rays of ^ and Q). The points of a plane % in E3
which intersects the plane Z 0 in a line Q represent the set of cycles which
cut Q at the same angle a. This angle a is zero (so that the cycles all
touch Q) if and only if the plane n makes an angle of 45° with the plane
Z 0, in which case the plane touches W. All this is also described in
Pedoe ([4], pp. 426-431).

We now interpret this dual transformation in terms of cycles in the plane
Z 0. The planes q and q' touch lT, and the line q n q' lies in v. If v meets
Z 0 in the line Q, the intersections of the planes q and qr with Z 0
are lines p and p' which intersect on Q. The points of the plane v represent
cycles which all cut Q at some fixed angle a. The lines p and //, with a
suitable orientation, are rays which touch a set of such cycles, because the

L'Enseignement mathém., t. XVIII, fasc. 3-1. 18
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line q n q' in E3 represents a set of cycles with the same two common
tangent rays, and these common tangents are given by the intersections
with Z 0 of the two tangent planes to W which pass through the line
q n q'.

Our transformation is therefore described thus: let NM be any ray
intersecting a given line Q in the point M. Draw any cycle K' which cuts Q

at the given angle a, and also touches the ray NM (Fig. 2). Then the other
tangent from M to the cycle K\ MN\ gives the ray which is the transform

of NM.

We may use as a model for the cycle K' a fixed cycle K cutting a line œ

at an angle a anywhere in the plane, where co is parallel to Q, and since

the figures shown in Figure 2 are similar figures, we have rediscovered

Laguerre inversion. But the fact that the reference cycle K is not necessarily
in a fixed position in the plane is not explicitly stated by Laguerre, although
he makes use of this fact in the proofs of theorems. To give an immediate
demonstration of this assertion, let us consider Laguerre's theorem that

any two pairs of corresponding rays touch a cycle. Any two pairs of tangent

rays to K, intersecting on œ, naturally touch K, and this leads to the theorem
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for any two pairs of corresponding rays intersecting on Q. To obtain the

cycle K' which these corresponding rays touch, all that we have to do is to

map M' on M arid Qf on g in a direct similarity transformation, and the

map K' of K is the required cycle. What Laguerre does is to begin with the

pair of corresponding rays MN' and NM and to suppose that PQ is any
other ray, meeting Ü at Q. There is a unique cycle which touches three given

rays, and, if this be K', Laguerre suddenly announces that K' is the
fundamental cycle of the transformation, and that the tangent ray through Q

to K' is the ray which corresponds to the ray PQ in the transformation.

Of course this is correct, but the reader is not warned that the fundamental

cycle to be used can be any one of a class of similar and similarly situated

cycles.

2. Laguerre inversion maps the tangent rays of a cycle onto the tangent

rays of a cycle. Our dual approach gives this theorem immediately, since

we saw that if the planes q pass through a point, so do the planes q'. But
when planes q, which touch T, pass through a point of Ez, they all touch
the cycle in Z 0 which is represented by the point, and so the rays which
touch a cycle in Z 0 are mapped into the rays which touch a cycle
in Z 0. Laguerre proves more than this, that the cycle and the
transformed cycle have the axis Q as their radical axis, and his proof is worth
giving.

We note in the first instance that the tangent rays to K where K meets cd

(Fig. 1) map onto themselves under Laguerre inversion, so every Laguerre
inversion is blessed with a pair of self-corresponding (fixed) rays. Now
let K* be the cycle we wish to transform, cutting the axis Q at A and B
(Fig. 3). Draw tangent rays MN, N'Mr to K* parallel to the fixed rays of
the given Laguerre inversion, touching K* at M and M' respectively.
Let K' be the cycle through A and B which touches MN and N'M'. Then
Laguerre proves that K' is the transform of K*.

Laguerre uses K* as the fundamental cycle of the transformation, the
auxiliary axis being the line M'M cd. Let P be the intersection of the
lines NM and N'Mf, and let a line through P cut K* in ß and y, and Kr
in a, where a corresponds to ß in the similarity which exists between K'
and K*, centre P. The tangents to K* at ß and y meet at U on cd, the polar
of P with respect to K*, and since the tangent to K' at a is parallel to the
tangent to K* at ß, the intersection T of the tangent yU and the tangent
at a to K' is such that | Ty | | Ta |. Therefore Tis on the radical axis AB
of K* and K\
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It now follows immediately that the transform of the ray Uy, using K*
as fundamental cycle, is the ray aT, which is parallel to ßU, and inter¬

sects Q AB at the point T. Hence rays which touch K* are mapped onto

lays which touch K'.
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The proof is still valid if K* does not cut Q. We also note that K* and
its transform K' not only have Q as their radical axis, but their common
tangent rays are parallel to the fixed rays of the transformation.

If # and 3) are two cycles which map onto the cycles 33 and 3)', let
a common tangent ray to 3 and to 3 touch 3 at P, touch 3 at Q, and meet
the axis Q at T. Then this ray maps onto a common tangent ray to the maps

Fig. 4

(ê' and 9' of and 9respectively, with points of contact P' and
Since Q is the radical axis of and |, and since Q is
also the radical axis of9 and 9',\TQ\ \ TQ' |. Hence | | | P'Q' |,
and if we call | PQ \ the tangential distance between the cycles and 9,
we have the important theorem: Laguerre inversion preserves the tangential
distance between two cycles.
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3. At this stage Laguerre introduces algebraic considerations, but not
the power of a ray with respect to a cycle. We introduce this concept
later (§5). He obtains the theorem that an axial transformation may be

found such that a given cycle is mapped onto a given point lying outside the

cycle. We give a direct proof of this theorem, which leads to the final
theorem.

Let K* be the given cycle, and L a given point lying outside K*. Let Q

be the radical axis of the coaxal system determined by the circle K* and
the point-circle L (Fig. 4). Let the tangents from L to K* intersect Q at
the points A and B. Let K be the cycle which goes through A and B and
touches LA and LB. Then we assert that with K as fundamental cycle and Q

as axis, the cycle K* maps onto the point L.
If a line through L meets K at a, ß and K* at y, where y and ß correspond

in the similarity which has L as centre, then if the tangent at y to K*
meets Q at V, | Vy | | VL |, since Q is the radical axis of K* and L. If the

tangents to K at a and ß meet at Q on Q, then ßQ is parallel to yV, and
since | ßQ | | aQ | it follows that VL is parallel to Qa. Hence LV is the
transform of yV, and therefore the cycle K* is mapped onto the point L.

4. Laguerre's final theorem, that three cycles may be simultaneously

transformed into points follows almost visibly, and is worth reproducing.
We note that if two rays touching a given cycle map onto the same line
traversed in opposite directions, then the map of the given cycle must
be a point.

Let the cycles be Ku K2 and K3, with common tangent rays as shown,
and centres of similitude P, Q and R (Fig. 5). These lie on a line, and we
shall assume that this line does not intersect any of the cycles. We choose

PQR as axis of transformation. Then we may transform the cycle Kx into
the point col9 where co1 is the limiting point of the coaxal system, determined

by the circle Kx and the radical axis PQR, which lies outside the circle Kt.
The rays AP and PB tangent to Kt will transform into opposite rays lying
along the line Pœ1. But the rays AP and BP also touch the cycle K2. Since

they are transformed into opposite rays along the same line Pœl9 the

cycle K2 is transformed into a point co29 and this must lie at the intersection

of Pco1 and the perpendicular from the centre of K2 onto the line PQR.
The rays EQ and QF which touch K2 are transformed into opposite rays
along the line Qcd2, and since EQ and QF also touch K3, the cycle K3 is

transformed into a point œ3 at the intersection of Qœ2 and the

perpendicular from the centre of K3 onto the line PQR.
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This is the final theorem in Laguerre's paper, and he uses it to construct
a cycle to touch the three given cycles Ku K2 and K3. After transforming the

cycles into three points cou co2 and co3, he considers the circle which passes

through the three points. This circle determines two opposite cycles,

K and K\ say. Applying the same Laguerre inversion which mapped Ku

j Fig. 5

K2 and K3 onto the points cou co2 and co3, the points map back onto the
I cycles, and the cycles K and K' map onto cycles which touch the three
; given cycles Ku K2 and K3. If we begin with three circles, one circle can be
] given an arbitrary sense, and the other two can then be oriented in four

i
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distinct ways. Each set of three cycles obtained in this way produces
two contact cycles, and so we find the eight circles which touch each of
three given circles, and solve the Apollonius problem. This is surely one
of the most elegant methods ever applied to this problem

5. We conclude our discussion of the technical aspect of Laguerre
inversion by introducing the power of a ray with respect to a given cycle.

It is well known that if a chord through a fixed point V cuts a given circle

in the points P and Q, the product VP. VQ of directed segments is constant
for all positions of the chord through V, and this number is called the

power of the point V with respect to the circle. Now let PN in Figure 6 be

a given ray, K a given cycle, and PT a ray tangent to the cycle. With evident

axes of coordinates let the given line have equation X h, and let the given

cycle have radius r. Then the equation of the tangent ray is X cos 9

+ Y sin 9 — r 0, where 0 is the angle shown. If P be the point (h, k),
then Acos 0 -}- &sin 6 — r 0, and expressing cos 0 and sin 9 in terms of
tan (9/2), we obtain the equation :

where t tan (9/2), so that if the two tangent rays from P to the cycle

make angles 9 x and 92 with the ray PN,

N

Fig. 6

(h + r) t2 — 2kt + (r—K) 0,

tan (0J2) tan (92/2) (r — h)/(r + h),

and this is independent of k, that is of the position of P on the ray. This

number is called the power of the ray with respect to the cycle.



— 265 —

If Q is a given ray, and NM, MN' are rays meeting on Q and making

angles 6 and cp respectively with Q, then the equation tan (Ö/2) tan (q>/2)

k, where k is a constant, is the defining equation of Laguerre inversion,

and it is tempting to think that Laguerre arrived at his transformation this

way, but the power of a ray with respect to a cycle is not mentioned in the

paper we have been discussing. The theorems obtained by Laguerre may
be obtained by the use of the power concept, but unless Laguerre's
geometrical methods are followed the algebra becomes very tedious.

6. We conclude this paper with a discussion of a recent publication on

contact circles in which two theorems are proved (Tyrrell and Powell [5]).

The first, described in terms of circles, is essentially a theorem on cycles,

and Laguerre inversion yields a very rapid proof. We introduce the theorem,
as the authors do in their paper.

Let A, B and C be three circles of general position in the plane, and

let Sx be any circle touching A and B. Consider the following chain of
circles : S2 is a circle touching B, C and S1 ; S3 is a circle touching C, A
and S2\ S4 touches A, B and S3; S5 touches B, C and S4; S6 touches C,

A and S5 ; and S7 touches A, B and S6. There are a finite number of choices

for each of the successive circles S2, S7, but if the choice at each stage
is appropriately made (in a manner to be described later) then the last
circle S7 coincides with the first circle Sl.

The " appropriate choices " are now described.

(i) Three circles of general position in the plane have eight contact
circles. When, however, two of the three circles already touch, as is the case

at every stage in constructing the chain described above, this number is
reduced to six. For example, there are two circles of the contact coaxal
family determined by B and S± which also touch C, and these are two of
the six possible choices for S2. These are called the special choices for S2,
and the other four possible choices for S2 are called the general choices.

A similar distinction between special and general choices arises at each

stage in the construction of the chain.

(ii) If a circle S is drawn to touch two given circles, the line joining the
two points of contact necessarily passes through one of the two centres of
similitude of the given circles. The circle S is said to belong to that centre
of similitude. Thus, of the six possible choices for S2 in the chain, three
choices (one special and two general) belong to each centre of similitude
of B and C.
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With, these observations Tyrrell and Powell now state their theorem

more precisely :

A set of three collinear centres of similitude is chosen, once and for all,
for the circles A, B and C, and at each stage in the construction of the
chain the circle St must belong to the appropriate one of these fixed centres
of similitude. If the special choice for St is always made, the chain will
close up. On the other hand, if at each stage a general choice is made, and

if S2, S3 and S4 are chosen at will (two choices for each), then it is always

possible to choose S5 and S6 so that the chain closes up.
Laguerre inversion can be used to give a rapid proof of the " special

choice " part of this theorem. The three circles can be oriented so that the
three collinear centres of similitude chosen are precisely the centres of
similitude of the three cycles taken in pairs. For special choices of cycles
the centres of similitude need no longer be considered at all. If we use

Laguerre inversion to transform the three cycles A, B and C into points,
which we shall still call A, B and C, the theorem reads as follows:

A, B and C are three given points, and S± is a cycle through A and B.

The cycle S2 is drawn to touch S1 at B and to pass through C. The cycle S3

is drawn to touch S2 at C and to pass through A. The cycle S4 is drawn to
touch S3 at A and to pass through B. The cycle S5 is drawn to touch S4

at B and to pass through C. The cycle S6 is drawn to touch S5 at C and to

pass through A. Finally, the cycle S7 is drawn to touch S6 at A and to pass

through B. Then S7 coincides with S±.

This theorem can be proved easily by a number of methods, but if we

use ordinary inversion (as Laguerre advocates, if it is necessary) and invert
with respect to A as centre of inversion, noting that circles which touch
each other at A invert into parallel lines, the theorem becomes the following,
the proof of which is immediate :

Cycles ^ and Q) intersect at points B and C, and the tangent to ^ at B
is parallel to the tangent to 3) at C. Then the tangent to 3) at B is also

parallel to the tangent to at C.

The part of the Tyrrell-Powell theorem which involves a general choice

of contact circle does not seem to be a theorem on cycles, and so a simple

proof by Laguerre inversion does not seem to be possible. The proof given

in the authors' paper involves elliptic functions. It is a remarkable fact

that both the special and the general parts of the theorem were conjectured

as the result of a series of accurate drawings made by amateurs of geometry,
J. Evelyn and G. B. Money-Coutts.
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