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Now, as the principal subgroups are all conjugate by an element of G, (see
[8], Théoreme, pp.46-47), so are their centralizers. Therefore, the extensions
Zo — Zg(H) — I', for H running through the family of principal subgroups,
all belong to the same class. This shows that © is well defined and satisfies
©®o A =idgrz, - As A is bijective, this shows that @ = A~'. [

We summarize the situation exposed in this section.

THEOREM 3.3. Suppose given G,, a homomorphism ¢:I" — Out(G,)
and an extension Z, — Z — I, for which the homomorphism T' — Aut(Z,)
coincides with @. Then, up to equivalence of extensions, there exists a unique
compact Lie group G fitting into the commutative diagram

ZoC Z r

|

G,© G r

|+

Inn(G,)—— Aut(G,) — Out(G,)

where the rows are group extensions. Moreover the given data allow the
construction of an extension G, — G — I, in which the subgroup Z is the
centralizer of a principal subgroup.

Conversely, the class of the extension Z, — Z —» T in G, — G - I can
be recovered by taking the centralizer of any principal subgroup.

4. PROOF OF THE MAIN THEOREM AND EXAMPLES

We are almost ready to show that the map described in the Introduction
1s an action of Out(G,) x Aut(I") on the set

£~ ]_[ HX(TZ,).
@ E€Hom(T',0ut(G,))
We first introduce some notation. For an element ¢ in a group K, we
will write ¢, for conjugation by g, i.. cg(x) = gxg~!, for all x in K.
For o € Out(G,), we will choose & € Aut(G,) such that (@) = «,
and we will denote the restricted automorphism by & € Aut(Z,). Finally,
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recall that a cohomology class u € Hé(r; Z,) 1is canonically identified
with the corresponding equivalence class of extensions and is denoted by

= [ZOJSZ—”»F].

LEMMA 4.1.
(1) The map Out(Gy) X € = &, (a,u) = u.a = a*(u) = [ZO 75 F}
defines a right action. The image «*(u) corresponds to the extension

oo

G, — G LA I', and belongs to H%(I“; Z,) C &, where 1 = cy-10 .

(i) The map Aut(T) X £ — £, (B, 1) = B.u = Bulu) = [zo & 7Y r]

defines a left action. The image [.(u) corresponds to the extension G, Ly

Bo
G I', and belongs to Hg-(r; Zy) C &, where 0 = o 71,

Proof. As the proofs of the two parts of the lemma are very similar, we
only treat the first one. Consider the following commutative diagram :

Zo—2 72 7 = Zo(H) — LT
a 1 C i p “
go G, G T
c l¢
Inn(G,)" Aut(G,) —== Out(G,)

The principal subgroups are preserved by isomorphisms. As a N(H) is
clearly centralized by any element in Z, the statement about which extension
corresponds to a*(u) follows from Theorem 3.3. At the same time, this shows
that the map is well defined. It is then straightforward to check that it is a right
action. For the resulting homomorphism, we choose a set theoretic section
v:I'= G of p: G- T, and compute for vy € I':

Y =7(({0a) " 0cyy 0 (i0d)
= 7'('(&—_1 o (i ocyiyy0i) 0 @)
=@ tor(lo Co(y) © ©) 0 T(C¥)
— o op()oa
= (ca-100)(Y). -
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Clearly for u € £ and a corresponding representative G, < G, » T,
we have G, = Gy = Gp.w for all a € Out(G,), B € Aut(I'). Moreover,
it is clear that the two actions commute and so we get a left action of
Out(G,) x Aut(I') on &. Elements in the same orbit represent isomorphic
groups; the main result of this paper, stated in the Introduction, tells that the
converse 1s true.

Proof of the Main Theorem: Let p: G,, — G, be an isomorphism of
compact Lie groups. As the connected component of the identity is preserved
by an isomorphism, this gives rise to the commutative diagram

GOL——> Gul —=T

R

GOC———> Gu2 ——=T

Let us define o = 7w(p) € Out(G,) and & = plz . As the centralizers of
principal subgroups are preserved by isomorphisms, and by Theorem 3.3, this
induces a new commutative diagram that we write as follows:

Thus, by Lemma 4.1, we have up; = (a~H*B.(u1), and so u; and u, are in
the same orbit. [

REMARK 4.2. The extension Inn(G,) < Aut(G,) —» Out(G,) is split;
however, other facts are relevant for allowing in the Main Theorem the passage
from up to equivalence to up to isomorphism. The crucial point is that the
class of extensions of the center of the connected component of the identity
G, can be represented by subgroups of G, namely centralizers of principal
subgroups, that are preserved by isomorphisms and all conjugate by elements
in G,. This also raises two natural questions: are there larger classes of
groups for which the Main Theorem holds, and also, can one find explicit
examples for which it fails (even when supposing that the extension relating
the automorphism groups of the kernel of the extension is split) ?
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Before proceeding with two examples, we introduce notations for three
elements of the group SU(2), which will also appear in the final proposition of
the paper. We denote the identity matrix by 1 and we set —1 = diag(—1, —1).

We also set
. (0 1
T=\-1 0o/

EXAMPLE 4.3. We take G, = SU(2) and I'=Z/2. As Out(G,) is trivial
and Z, = Z/2, we have

EZ/2,5U@)~ || HiZ/2%2/2)=HZ/%Z/2)=1Z)2.
wEHomM(Z/2,0)

The group Out(G,) x Aut(I') being trivial, these two elements correspond
to two non-isomorphic compact Lie groups. The first one is clearly G,, =
SU®2) x Z/2. Let us give a description of the second one. Conjugating a
matrix in SU(2) by j amounts to taking the complex conjugate of each entry
in the matrix, i.e. ¢;: SUQ2) — SU(2), g — ci(g) = g. Let us denote by
G., = SU(2) x; Z/2 the semidirect product where the generator ¢ of Z/2
acts as ¢; on SU(2). As the center of G,, is given by ((j, 1)) = Z/4, Gy,
and G,, are non-isomorphic. Therefore G,, is the second compact Lie group
that we were looking for.

It is clear, from what has been done so far, that the elements in Hé(l“; Z)
and in H%(I‘; Z,), with ¢ = c,-1 o, will be identified (at least) pairwise
under the action of the element o € Out(G,). The second example is intended
to show that identifications can even occur inside a given cohomology group
(i.e. without changing the “outer” action of I' on G,).

EXAMPLE 4.4. We take G, = SU(2)xSU(2) = Spin(4) andkeep I' =Z/2.
The outer automorphism group is given by Out(G,) = (), where T is the
automorphism that exchanges the two factors, i.e.

7: SUQ2) x SU2) — SU2) x SUQ2), (g,h) — (h,g),
and Z, = Z/2 x Z./2. We thus have

£(Z/2,SU(2) x SU2)) ~ 1T HX(Z/2,2/2 x 7./2)
weEHomM(Z /2,Z./2) ‘
=H*(Z/2%;Z/2 x Z/2) 1 H5(Z/2;Z/2 x Z/2)
~ (Z/2 x Z/2) 11 {0} .
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One then verifies that as extensions of the center, i.e. as centralizers of a
principal subgroup, these five non-equivalent extensions are in fact represented
by only three non-isomorphic groups, namely

1%

Z/2xZ/2x1Z1]2
~7/2 xZL/4
7.)2 x Z./4
~7/2 x 1/4

1%

Ly,
Zy,
Ly,
-
for the elements of H*(Z/2;Z/2 x Z./2)), and

Zoy 2 (Z)2 x Z.)2) x L2 = Dg

(where Dg denotes the group of symmetries of the square) for the element
of H(Z/2;Z/2 x Z./2). The group Z/2 x Z/4 yields three non-equivalent
extensions, because among its three elements of order 2, only one is divisible
by 2 (the element (0,2) in additive notation). Therefore, this element
must be characteristic and changing the non-trivial element of Z/2 x Z/2
that is mapped to it gives three extensions that must clearly be non-
equivalent. At the level of Lie groups, the five non-equivalent extensions
are represented by

w = SUQR) x SUR) x Z/2

w = (SUQ) x SUR)) xxia Z/2
w = (SUQ2) x SUQ)) Xigx; Z,2
w = (SUQR) x SUQ)) Xjx, Z,/2
Gy, = (SUR) x SUQR)) x, Z/2.

Q QQ Q Q@

(One checks that (—1,1,e) corresponds to the characteristic element of or-
der 2 in Z, whereas it is (1,—1,e) in Z,,, and therefore G, and G,, are
certainly not equivalent.) Finally, the group Out(G,) x Aut(I') = Z /2 acts on
this set of equivalent extensions, and it is clear that the only non-trivial orbit

is {Gu,, Gy, }. Therefore there are four non-isomorphic extensions of Z/2 by
SU2) x SU(2) = Spin(4).
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