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of a, such that both paths Q and Q' have one point A-close to h!, for some

constant A. Since Q and Q' both end or begin at the point a, this implies
that Q' admits a point B -close to each point of the orbit-segment between a
and h!. In particular there exists Q^Q' which is B + L\ -close to P G Q.

It remains to consider the case where no horizontal geodesic connects the

past orbits of the endpoints of the considered (Z,/)-quasi geodesic bigon.
Then, in the future orbit of the initial endpoint there exists a point z whose

past orbit can be connected to the past orbit of the terminal endpoint, and

this property is not satisfied by the point w with f(z) — f(w) to, which
is either in the future or past orbit of the initial endpoint. The strong
hyperbolicity of the semi-flow and Proposition 8.1 then give a constant

Cg.i(M,7,/) such that initial subpaths of both sides of the bigon are

+ to -close to the orbit-segment connecting the initial endpoint
of the bigon to z< From what precedes, any (R,Rf) -quasi geodesic bigon
between z and the terminal endpoint of the considered bigon is XÇR.R1)-thin,
for some constant X(R,Rf). This easily implies that the given bigon is

2(Citi(Af, J> J') ~b *o) "F X(R, R' + Cs.i(M, J, J') T £o)-thin. Q

11. Geodesic triangles are thin

The following lemma was suggested to the author by I. Kapovich, and
allows us to simplify the conclusion. Let us recall that, in the context of quasi
geodesic metric spaces, an (/, s') -chain bigon is a bigon whose sides are
(V, 7)-chains. Still with this terminology, an (r, s)-chain triangle is a triangle
whose sides are (r,^-chains.

LEMMA 11.1. Let X be an (r, s) -quasi geodesic metric space. If
(r7, s')-chain bigons are &(/,/)-thin, r' >r,s'> s, then X is 26(r, 3s) -hyperbolic.

Proof. We consider an (r,s) -chain triangle with vertices a, b, c and sides
[ab], [ac] and [be]. We consider a point x in the (r,s)-chain [ab] which is
closest to c. We claim that [cx] U [xb] is an (r, 3s)-chain, where [cx] and
[xb\ denote (r, s) -chains from c to i and from x to b. Indeed, for any
points u,v in [xb] or [cx], one obviously has rdx(u,v) > \[uv]\x. Let us
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thus assume that u G [cx] and v G [xb]. Since x is a point in [ab] closest

to c, x is a point in [ab] closest to u. Thus |[ux]\x < \[uv]\x. Moreover
I [xv] \x —

I [xul \x +11uv] \x • Therefore | [ux] \x +1 [xv] \x < 31 [uv] \x. Whence the

claim. The given (r, s) -chain triangle can be decomposed into two (r, 3s) -chain

bigons. Therefore this triangle is 25(r, 3s)-thin.

LEMMA 11.2. Let (X,/, cr^H) be a forest-stack. There exists a
constant C„.2(r, s) such that any (r^s)-chain in (X,d~^) is contained in a

(Cn 2(r,s), Cn.2(r, s))-quasi geodesic.

Proof. Any pair of consecutive points x;_xit i 1,.. in an

(r,s)-chain c xo,... ,x^ can be connected by a telescopic path pt which
is the concatenation of exactly one vertical and one horizontal geodesic. The

vertical length of the vertical geodesic is bounded above by d~n^(x$-i,Xi). By
the bounded-dilatation property, the horizontal length of the horizontal geodesic

(l~ (X;_ i ,Xj)

is bounded above by \+'n) d(~^(xz_i,xA. If p is the concatenation of
the pi's then p is a telescopic path containing the chain c, whose telescopic

length satisfies

\p\(X,U) — '

i= 1

Since we consider (r,^-chains, we have J(-^(x/_i,x/) < r. Thus
k

\plxn) < (1 + Af)J2d~n)(xi-UXi). By definition of an (r,s)-chain
' i= 1 '

k

Y, d~H){xi-uXi) < sd~H)(x0,xk).Thus<s(l +
i= 1

'

Any subpath p' of p decomposes as a concatenation qp,Pi+ \ pmq' where

q, q' are proper subpaths respectively of /?,_ i and The same

arguments as above prove that \pipi+i .pm<s(l + A^d-^Ch^),
Furthermore < (1 + A+)r and < (1 + A+)r.

This implies that \p'\~H)< \P+ 2r(l + A+) and

d^H)(iipi),t{pm)) < d~n)(i(p'),t(p')) + 2r. We concîude that

\p'\(gmŝ+A'-)</,x;v/.('(//>-t(p,))+2r(1+5)(1 + A+} •

Setting Cn.2(r,5) max (.s, 2r(l + s))(l + A+), we get Lemma 11.2.
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LEMMA 11.3. There exists a constant Cn.3(/, J') such that any (/, J')-quasi

geodesic G is Cn.3(/, J')-close to a straight (Cn.3(/,/0, Cii.3(/,/0)-quasi
geodesic.

Proof. Let us call bad subpath of G any 'maximal' subpath p of G whose

endpoints lie in a same orbit-segment of the semi-flow, where 'maximal' means

that, if po (resp. p\ are arbitrarily small, non trivial subpaths preceding (resp.

following) p in G, then the endpoints of po and p\ do not lie in a same

orbit-segment. We consider a bad subpath p. It might happen that p contains

other bad subpaths pa. In this case, we choose one of them, denoted by q,
and we replace all the other bad subpaths in p by the orbit-segment between

their endpoints. Since orbit-segments are telescopic geodesies, the resulting
path, denoted by p', is a (/,/')-quasi geodesic. Since p' does not contain any
bad subpath other than q, there exists a point a G q C p' such that p' is the

concatenation of two straight (7,/)-quasi geodesies go, g\, where go goes
from its initial point i(pr) to a, and g\ goes from a to its terminal point t(pf).
We now consider the (/,/)-quasi geodesic triangle of vertices iip'), tip'), a,
and with sides go, g\ and the orbit-segment O between i(pf) and tip'). We
consider any point z G g\ which minimizes the telescopic distance between

Hp') and g\. We choose a telescopic geodesic g2 between iip') and g\.
We denote by u (resp. v) the path from i{p') to a (resp. tip')) which is the

concatenation of g2 with the subpath of g\ between z and a (resp. tip')). As in
the proof of Lemma 11.1, we prove that the bigon of vertices iip!) and a, with
sides go and u, and the bigon of vertices Hp') and tip') with sides v and O

are straight (3/, 3J') -quasi geodesic bigons. By Proposition 10.1, these bigons
are 5/(3/, 3J') -thin. Thus there exist two points x G go and y G g\ which are

25/(3/, 3/)-close, and such that the subpaths of go (resp. of g\ between iip')
and x (resp. between tip') and y) are 25/(3/, 3/)-close to O. Since p' is a

(/,/')-quasi geodesic, we conclude that p' is (2/ +2)5/(3/, 3/)+ /-close to
O. The same conclusion holds if one considers any bad subpath other than q
in p. Thus any point in p is (2/ + 2)5/(3/, 3/) +/'-close to O. Since the
choice of the bad subpath p is arbitrary, the proof is complete.

Proof of Theorem 4.4. Let iXJ,at,TL) be a forest-stack equipped with
some horizontal metric TL such that iat)teR+ is strongly hyperbolic with
respect to TL. By the Lemma-Definition of Section 3.2, this forest-stack is
a (1,2)-quasi geodesic metric space. Let us consider any (r,^)-chain bigon,
r > 1, s > 2. By Lemma 11.2, it is contained in a (Cn.2(r,s), Cn.2(r, ^))-quasi
geodesic bigon. By Lemma 11.3, this bigon is A(r,s)-close, with A(r,s)
Cii.3(Cii.2(r,s),Cn.2(r,$)), to a straight (A(r,^),A(r,,s))-quasi geodesic bigon.



296 F. GAUTERO

Proposition 10.1 provides a n(r,s) Bi(A{r,s),A{r,s)) such that this bigon
is «(r, s)-thin. Thus the given (r,s) -chain bigon is 5(r, sj-thin, with S(r,s)
M/, s)+2A(r, s). By Lemma 11.1, the given forest-stack, which is a (1,2)-quasi
geodesic metric space, is 25(1,6)-hyperbolic.

In this section we elucidate the relationships between forest-stacks and

mapping-telescopes.

12.1 Statement of the theorem

An R -tree (see [9], [2] among many others) is a metric space such that

any two points are joined by a unique arc and this arc is a geodesic for the
metric. In particular an R-tree is a topological tree. An R-forest is a union
of disjoint R-trees.

LEMMA 12.1. Let (T,dy) be an R -forest and let ip: T —> T be a forest-
map of T. Let (K^,/, at) be the mapping-telescope of ('0,T) equipped with
a structure of forest-stack as defined in Section 2. Then there is a horizontal
metric % (mr)reR on such that

1. The R-forests (/-1(r),mr) and (/-1(r + 1), mr+\) are isometric. Each

stratum (/_1(n),m„), n G Z, is isometric to QT,dp).

2. For any real r and any horizontal geodesic g Gf~l{r), the map

is monotone.

Such a horizontal metric is called a horizontal dy -metric. The telescopic
metric associated to a horizontal dy -metric is called a mapping-telescope
dy -metric.

Proof. We make each T x {n}, n G Z, an R-forest isometric to V. We

consider a cover of T by geodesies of length 1 which intersect only at their

endpoints. Each T x {n} inherits the same cover. There is a disc De n in
for each such horizontal geodesic e in T x {n}. This disc is bounded by e,
i/j(<e) and the orbit-segments between the endpoints of e and those of ip(e).

12. Back to mapping-telescopes

+ 1 - r] R+

t^ Wtig)\r+t
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