Objekttyp: Abstract

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 47 (2001)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 16.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

FINITE TYPE LINK-HOMOTOPY INVARIANTS

by Xiao-Song LIN*)

ABSTRACT. An explicit polynomial in the linking numbers l_{ij} and Milnor's triple linking numbers $\mu(rst)$ on six component links is shown to be a well-defined finite type link-homotopy invariant. This solves a problem raised by B. Mellor and D. Thurston. An extension of our construction also produces a finite type link invariant which detects the invertibility for some links.

1. Introduction

The classification of links in 3-space up to link-homotopy [3] was published ten years ago. Since then, the question of whether one could extract link-homotopy invariants from this classification has not been addressed properly. Recall that this classification starts with the classification of k component string links up to link-homotopy by a finitely generated torsion free nilpotent group $\mathcal{H}(k)$. Then link-homotopy classes are classified as orbits of this group $\mathcal{H}(k)$ under the "nilpotent action" of conjugations and partial conjugations. The group $\mathcal{H}(k)$ is of rank

$$\sum_{n=2}^{k} (n-2)! \binom{k}{n},$$

so an element of $\mathcal{H}(k)$ can be described uniquely by that many integers.

These integers are Milnor's μ -numbers 1) with distinct indices. By a *link-homotopy invariant polynomial*, or simply a link-homotopy invariant, we mean a polynomial in these μ -numbers which is invariant under the action of

^{*)} Partially supported by the Overseas Youth Cooperation Research Fund of NSFC and a grant from NSF.

¹) Usually, they are called μ -invariants. But the word "invariant" is clearly abused here, so we decide to call them μ -numbers.