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THE WITT GROUP OF LAURENT POLYNOMIALS

by Manuel Ojanguren and Ivan Panin

Abstract. We give a direct, self-contained proof of the fact that for a large class of
rings A, in particular for all regular rings with involution, W(A[t, l/t]) W(A)®W(A).

1. Introduction

The purpose of this note is to give a short direct proof of two fundamental

theorems on the Witt group of polynomials and Laurent extensions of a

ring A. These theorems were proved independently by M. Karoubi [3] and by
A. Ranicki [5]. We will state them under the most general conditions on A

and for their proofs we will use nothing more than a general result on the

^-theory of Laurent polynomials. In the last section we will show, by two

counterexamples, that the assumptions we make on A are necessary.
We begin by recalling briefly some definitions. We refer to [4] for a more

detailed exposition and for the proofs of the few basic results that we will
use.

Let A be an associative ring with an involution denoted by a i—» a°.
Except in §2 we will always assume that 2 is invertible in A. If M is a

right A-module, we denote by M* its dual Horn^(M,A) endowed with the

right action of A given by fa(x) a°f(x) for any f: M —» A and a e A. If
P is a finitely generated projective right A-module we identify it with P**
through the canonical isomorphism mapping x e P to Y: P* A defined by
x(f) =/(*)•

Let e be 1 or —1. An e-hermitian space over A is a pair (P, a) consisting
of a finitely generated projective right A-module P and an A-isomorphism
a: P -» P* satisfying a ece*. For brevity e-hermitian spaces will be called

spaces. A 1-hermitian space (over a commutative ring A) is also called a

quadratic space.
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Two spaces (P, a) and (ß, ß) are isometric if there exists an A-isomorphism
ip: P — ß such that the square

P —ß
al 1ß

P* < ß*
ip*

commutes. A space is hyperbolic if it is isometric to a space of the form

HÇP)=(/>©/>*, (°i)) •

The orthogonal sum of two spaces (P, a) and (ß, ß) is the space

(P, a) _L (ß, /3) (P ® ß, a ® /?).

If (P, a) is a space and M a submodule of P we denote by M1- the orthogonal
of M, defined by the exact sequence

0—> M1- —>P-^>M*,
where z* is the dual of the inclusion i: M — P. A submodule M of P is

totally isotropic if M Ç M-1. A sublagrangian of a space (P, a) is a totally
isotropic direct factor of P. A lagrangian of (P, a) is a sublagrangian L such

that L L-1. For instance, P and P* are lagrangians of H(P).
The Witt group W(A) of e-hermitian spaces over A is the quotient of the

Grothendieck group of e-hermitian spaces with respect to orthogonal sums,
by the subgroup generated by all hyperbolic spaces. We say that two spaces

are Witt equivalent if they represent the same element of W{A).
Consider now the rings A[t] and A[t, r1], endowed with the involution

that fixes t and maps a G A to a°. For the ring A[t,t~l] we introduce a

variant W'(A[t, t~1]) of the Witt group. We first consider the Grothendieck

group ß of e-hermitian spaces over A[t,t~l] which are extended from A

as A[t, t~l] -modules, and its subgroup N generated by the hyperbolic spaces

H(P) where P is extended from A. We then define W'(A[t,t~1]) as Q/N.
Clearly W'(A[t,t~1]) maps canonically to W(A[t,t~1]). Here are our results.

A (THEOREM 3.1). Let A be an associative ring with involution, in which
2 is invertible. The canonical homomorphism

W{A) - W(A[t])

is an isomorphism.
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B (THEOREM 5.1). Let A be an associative ring with involution, in which

2 is invertible. The homomorphism

ip:W(A)© W(A)

mapping (£,77) to £ -b trj is an isomorphism.

C (THEOREM 7.1). Let A be an associative ring with involution, in which

2 is invertible. Let

tp: W\A[t,r1])-> W(A[t,t~

be the canonical homomorphism.

(a) If H2(Z/2,K-i(A)) 0, then p is surjective.

(b) If Kq(A) i^0(AM) Ko(A[t, t~1]), then p is an isomorphism.

Two examples will be constructed in §8 to show that the assumptions in
(a) and in (b) cannot be omitted.

An amusing application of B is the following result :

D (PROPOSITION 6.8). Let A be a commutative semilocal ring in which
2 is invertible. Let (P, a) be a quadratic space over A. If (P, a) is isometric
to (Pp-a) over A[tp~l], then (P, a) is hyperbolic.

We remark that in general, even for a commutative local ring, there is no
residue map Res:W(A[t,t~1]) -* W(A)

satisfying the following two properties :

• For any constant space £ G W(A) C W(A[t,t~1]), Res(Q 0.

• For any constant space £ G W(A) c W(A[tp~1]), Resit •£) £.

In fact, the existence of such a residue map immediately implies the

injectivity of

p W(A)® W(A)-> W(A[r,r1])>

which may fail, as in Example 8.1. However, there exists a residue map
Res: W'{A[tp~x]) —> W(A) (Proposition 5.2) which yields the injectivity of f.
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We now recall three elementary, well-known facts about hermitian spaces.

PROPOSITION 1.5. Let (P, a) be any space. Then:

1. The space (P, a) _L (P, — a) is hyperbolic.

2. If L is a lagrangian of (P, a), then (P, a) is isometric to H(L).
3. If M is a sublagrangian of (P, a), t/zen the map a induces on M1- /'M a

natural structure of hermitian space that makes it Witt equivalent to (P, a).

2. ^-THEORETIC PRELIMINARIES

We recall a few results proved in the twelfth chapter of Bass' book [1]. For

any ring A we denote by Kq(A) the Grothendieck group of finitely generated

projective right A-modules and by K\(A) the abelianized general linear group
of A : K\{A) GL(A)/[GL(A),GL(A)]. By Whitehead's lemma KfA) is also

the quotient of GL(A) by the subgroup E(A) generated by all elementary
matrices over A.

For any functor F from rings to abelian groups we denote by N+F(A)
the kernel of the map F(A[t]) —» F(A) obtained by putting t 0. Similarly,
we denote by N-F(A) the kernel of P(A[r-1]) —> F(A) obtained by putting
t~l 0. The inclusions of A[t] and A[t~~l] into A[t, t_1] define a map

N+F(A) © AGP(A) —f F(A[t, r1])

whose cokernel will be denoted by LF(A). The functor LK\ turns out to be

naturally isomorphic to Ko, hence we will denote LKi by 1 for i 1

and also for i — 0.

THEOREM 2.1. Let A be any associative ring.

(a) For i 0 or 1 there exists a natural embedding

A f. Ki^A)

such that the composite

Ki-i(A)-EKi(A[ty r1]) L^.(j4)

is the identity.
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(b) The embedding A/ and the canonical homomorphism

N±Kj(A) —> Ki(A[t,r1])

yield canonical decompositions

K\(A[t,r1])ä"!(A) ® N+K^®N-Ki(A) © K0(A)

and

K0(A[t, r1]) K0(A) © N+Ko(A) 0 N-K0(A) 0 K^(A).

Proof. See [1], Theorem 7.4 of chapter XII.

We will also use the following well-known result.

PROPOSITION 2.2. If 2 is invertible in A, the groups N±K\(A) are uniquely

divisible by 2.

Proof By [1], XII, 5.3, every element of JV+Xj(A) can be represented

by a matrix a 1 + vt, with v a nilpotent matrix of Mn(A). Let
ooP(X)Ci2)xn e Z[1/2][X].
0

Then P(yt) G Mn(A[t]) and (P(ut))2 1 + vt. This shows that N+K\(A) is

divisible by 2. To show uniqueness it suffices to show that A^+J^i(A) has no
2-torsion. Take a tm 1 © vt as before and suppose that a2 e E(A[t]). Put

s t(2+vt), so that a2 I +vs.Since
OO

1

we have Mn(A)[t] Mn{A)[s].If a21 + vsGE(A[s]) E(M„(A)[s]) we
clearly also have a — 1 0 vt G E(Mn(A)[t]).

COROLLARY 2.3. If 2 zA invertible in A, the groups N±K0(A) are uniquely
divisible by 2.

Proof K0(A) is a direct factor of ^i(A[X,X_1]), hence N±K0(A) is a

direct factor of N±K1 (A[X,
1 ]).

Assume now that A has an involution. Associating to any projective module
its dual and to any matrix its conjugate transpose yields actions of Z/2 on
K0 and K\ which are compatible with the decompositions of Theorem 2.1.
From Corollary 2.3 we immediately deduce
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COROLLARY 2.4. Suppose that A is a ring with involution, in which 2 is

invertible. Then

THEOREM 3.1. Let A be an associative ring with involution, in which
2 is invertible. Let e be 1 or — 1 and let W be the Witt group functor of
e-hermitian spaces. The natural homomorphism

is an isomorphism.

Proof. It suffices to show that the homomorphism W(A[t]) —» W(A) given

by the evaluation at t 0 is an isomorphism. Surjectivity is obvious. To

prove injectivity let (P, a) be a space over A[t] and (P(0), a(0)) its reduction
modulo t. Suppose that (P(0), a(0)) is isometric to some hyperbolic space

H{Q). Choosing a projective module Q' such that <20 Q! is free and adding
to (P, a) the space H{Q'[t\) we may assume that P(0) is the hyperbolic

space over a free module. The class of P in Ko(A[t])/Kq(A) N+(A) is

a symmetric element. By Corollary 2.4 it can be written as a 0 a*, hence,

adding to (P, a) a suitable free hyperbolic space, we may assume that (P, a)
is of the form

Let R' be an A[t] -module such that R 0 R' is free. Adding to (P, a) the

hyperbolic space H{R') we are reduced to the case in which P is free and

a is an invertible e-hermitian matrix with entries in A[t\.

LEMMA 3.2. Let a eot G Mn(A[t\) be any e-hermitian matrix. There

exist an integer m and a matrix r G GLn+2m(Mf\) (actually in E„+2
such that

where ao and ot\ are constant matrices and x i>s a sum of hyperbolic blocks

//2(Z/2, K0(A[t,t~1])/K0(A)) H2(Z/2,

3. The Witt group of polynomial rings

W(A) —> W{A[t])

H(An[t]) ±(R®R*,ß)

0 '
of various sizes.

el 0 y
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Proof of the lemma. Write ex 7 ~F ht^, where <5 is constant and 7 °f
degree less than N. Assume that N is at least 2. Since S is e-hermitian and

2 is invertible in A we can write (5 a + ecr* • Then

is of degree < N - 1 and after N - 1 such transformations we get a linear

matrix.

Writing a ao + ta\ as a0(l + vt) we see immediately that, a being

invertible, v is nilpotent. The formal power series

T d + vtr1'2 Y<{~TYvfF

is a polynomial. From a ea* we get — eao and u*Gq eaou. This

implies that r*aq eaot and therefore

riar T*ao(l + ut)T aor(l + vt)r ao

This proves that (P, a) is Witt equivalent to (P(0),a(0)) and is, therefore,

hyperbolic.

4. The Witt group of torsion modules

Let M be a finitely generated right A [t] -module and suppose that it is

a t-torsion module and that it is projective as an A-module. Obviously, it
will be finitely generated over A. We denote by the left A[t]-module
Horner](M,A[t, t~l]/A[t]) and we consider it as a right module through the

involution on A[t].
Recall that, as an A-module, the quotient A[t, t~l]/A[t] can be written as

a direct sum

A[t\t~l]/A[t] At"1 ©Ar2 © • • •

Thus, to any / G UomA[î](M,A[t,t~l]/A[t]) we can associate an A-linear map
/_i : M —> A, which is defined as the composite of / with the projection
onto Ar1.
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Proposition 4.1. The map

ddM: Horn m(M,A[t,t~l]/A[t])—> HornA(M, A) M*

obtained by associating /_ i to f is a functorial A-linear isomorphism.

Proof. It is clear that d is A-linear. To show that it is bijective we
construct its inverse. Given any g G M* define g by the (finite sum

g(x) t~lg(x) + t~2g(tx) + t~3g(t2x) H

It is easy to check that g G (g)-\ g and /_i =f. Functoriality is

clear.

COROLLARY 4.2. For any finitely generated t-torsion module M which
is projective as an A-module the canonical homomorphism M —> is an

isomorphism.

Proof. It suffices to remark that the diagram

M

can can

AfM M**

commutes and that M M** is an isomorphism.

An e-hermitian t-torsion space (or, briefly, a t-torsion space) is a pair
(M, consisting of a finitely generated t-torsion right A[t]-module M
which is projective as an A-module, and a perfect e-hermitian pairing

): M x M —» A[7, t~1]/A[t]. Giving is the same, of course, as giving
its adjoint p: M —> defined by p(a)(b) (a,b).

Isometries and orthogonal sums are defined in the obvious way. For any
subset X C M we define its orthogonal as

X1 {j M I (x,y) 0 VxGX}.

A sublagrangian of (M, p) is an A [t] -submodule L of M which satisfies the

following two conditions:

(1) It is contained in its own orthogonal: L Ç Zr1.

(2) The quotient M/L is projective over A (which is the same as saying that

L, as an A-module, is a direct factor of M).
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A sublagrangian L is a lagrangian if L Zr1. A t-torsion space is

metabolic if it has a lagrangian. The Witt group of t-torsion spaces is

the quotient of the Grothendieck group of t-torsion spaces with respect to

orthogonal sums, modulo the subgroup generated by the metabolic spaces. We

will denote it by Wtors(A[t]). Lemma 4.6 below will show that the opposite
of the class of (M, p>) is the class of (M, —p).

LEMMA 4.3. Let M and N be finitely generated t-torsion modules and

i: N —> M an A[t] -linear homomorphism. Assume that as A-modules M
and N are projective. Then the map fl : is surjective (respectively
injective) if and only if i* : M* —> N* is surjective (respectively infective).

Proof. Look :

s"! I9"

M* N*

PROPOSITION 4.4. Let (M, <p) be a t-torsion space and L an A[t]-submodule
M/L is pi'ojective over A, then L and L1- is a direct factor

of M as an A -module.

Proof. First observe that as an A-module L is finitely generated and
projective. Let i: L — M be the natural injection. By Lemma 4.3 the map
f o p is surjective, thus the sequence

is exact. Hence L1- is a direct factor of M as an A-module; in particular it
is A-projective. Identifying L with L^ we can write the dual sequence as

0 — L A M(L-L)S—> o _

Notice that it is exact by Lemma 4.3. Again by Lemma 4.3 the sequence

0 —+ L±J- —> M(L-1)»—> 0

is exact because L1-isa direct factor of M as an A-module. Since
comparing the last two sequences we get the result.
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We now prove a fundamental result on the equivalence of t-torsion spaces.

THEOREM 4.5. Let (M, p) be an e-hermitian t-torsion space and L a

sublagrangian of (M, p). The quotient L^/L carries a natural structure of
t-torsion e-hermitian space and its class in Wtors(A[t]) is the same as that of
(M,p).

Proof We first prove the following lemma.

LEMMA 4.6. Let (M, p) be any e-hermitian t-torsion space. The space

(M, <p) _L (M, —p) is metabolic.

Proof of Lemma 4.6. We show that the image L À(M) of the

diagonal map M A M 0 M is a lagrangian. The condition L Ç L1- is

immediately verified. The quotient (Af®M)/L is isomorphic to M, hence

it is projective over A. It remains to see that L1- Ç L. If (a,b) G L1- we
have 0 ((a,b),(x,x)) (a — b,x) for any x G M. Since the pairing is

perfect, this implies a — b, i.e. (a,b) G L.

We now prove the theorem. By Proposition 4.4, L± is a direct factor of
M as an A-module. Since LÇL1 is also a direct factor of M, the quotient

L^/L is projective. Denoting by ä, b the classes modulo L of two elements

a,b G L, we define the hermitian structure of Ll/L by (a,b) (a,b).
It is clear that (a,b) only depends on ä and b. We first check that this

pairing defines a t-torsion space. It is clearly e-hermitian. The injectivity of
the adjoint map L^/L —> (L^/L)# follows immediately from Proposition 4.4.

To show surjectivity consider any A[t]-linear map /: L-1 A[t, t~l]/A[t].
Since L1- is a direct factor of M as an A-module, /, by Lemma 4.3, extends

to an A[t\ -linear map /: M —» A[t, t~l]/A[t]. Choose an m G M for which

f — (/n, •). If / vanishes on L, then m is in L^~. This proves that L±/L is

a t-torsion space.
To show that L^/L is equivalent to (M, p) we check that the image of the

diagonal map A: L^ —> MeL^/L is a lagrangian of (M, —p)LLL/L which

is, therefore, metabolic. It is easy to check that AfjJ-) is contained in its own

orthogonal. Conversely, if (a,b) G MSL^/L is orthogonal to every (x,x), then

(a — b,x) =0 for every xGL1. This means that a — b is in L±-l which by

Proposition 4.4 coincides with L. We thus have (a,b) (a, a) G À(L1-).

The next proposition connects the Witt group of t-torsion spaces with the

Witt group of A.
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Proposition 4.7. The isomorphisms

dM- Horn A[t)(M,A[t,rl]/A[t])Horn

induce a surjective homomorphism

dw: Mf])-»W(A).

Proof. Associating to any t-torsion space (M,p) the hermitian space

(M, <9m o (p) preserves isometries and orthogonal sums and, by Lemma 4.3,

transforms metabolic t-torsion spaces into hyperbolic spaces (with the same

lagrangian). Therefore it induces a homomorphism

dw: Uv„rl(.4|/|) -,
To find a preimage (M,ip) of a space (M, a) over A consider M as an

A[t]-module annihilated by t and replace a: M —>• M* by ip d^1 o a.

5. The Witt group of extended spaces

Let Wf(A[t,t~1]) be the group defined in the introduction.

THEOREM 5.1. Let A he an associative ring with involution, in which 2
is invertible. The homomorphism

W(A) © W(A) -> W'(A[t> r1])

mapping (£,rj) to Ç + trj is an isomorphism.

Proof. The injectivity of ijj is based on the following result, whose proof
will be given in §6.

PROPOSITION 5.2. There exists a homomorphism

Res: W'(A[t,r1]) -> W(A)

with the following properties :

R\ : For any constant space £ G W(A) C W'(A[t, t~[]), Res(0 0.

R2 : For any constant space f G W(A) C W'(A[t, t~1]), Resit • 0 £.

Proof. See Theorem 6.7.
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Assuming this proposition, suppose that for two elements 77 G W(A) we
have ^ + ^77 0. Then 0 Res{^ + t - 77) 77 and hence £ — 0.

We now turn to the surjectivity of f We have to show that every hermitian

space (P, a) over A[t, t~l] with P P0[f, £_1] is Witt equivalent to a space of
the form (Qo[t,t~l],ao) _L (Q\[t,t~l],tai). Let Pi be a projective A-module
such that Po ® Pi An for some n. Replacing (P, a) by

(P0[t, r1], a) ± (P0[f, r'],—a(i)) ± r1]),

we may assume that Po is free. Replacing a by t2Na with a suitable N, we

may also assume that a maps PqM into Pq[î]. By Lemma 3.2 we are reduced

to the case where a ao + ta\ for some e-hermitian maps Do, ol\ : Po — ^0 •

LEMMA 5.3. If for a constant matrix ß,

a 1 + (t - l)ß e GLn(A[t, r1]) n Mn(A[t]),

then there exists an N such that (1 — ß)NßN 0.

Proof This is Corollary 2.4 of [2]. For the convenience of the reader we

reprove it here.

Writing the inverse of a as a Laurent polynomial and equating coefficients

in the identity

1 aa"1 (1 - ß + tß)in-qt~qH 1- 7_if"1 + 70 + 71 r H h 7'//)
we get

(1 - ßYf-q 0, (1 - ß)l-q+\+ ßj -q=0,
(1 - ß)l-\+ /?7—2 0, (1 - /?)7o + ßl~\ 1

and

(1 - /3)7i + /3y0 0, (1 - ß)jp + ß^p-% =0, ß% 0.

From the first line we get (1 — ß)q^-t 0, from the third /^+17o 0 and

then from the middle one ßp+l(l — ß)q 0.

We put ß d(1)-1di : Po —> Po, so that

a(l )~la= l + (t-l)ß.
We will repeatedly use the fact that ß is adjoint with respect to a, a(l), a0, a\,
by which we mean that aß ß*a, and so on. The same clearly holds for

any polynomial in ß with integral coefficients.
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By Lemma 5.3 we can find an integer N such that ßN(l — ß)N 0.

Denoting by Z[ß] the subring of End^(Po) generated by ß we can write

Z[ß] Z[ß]e x Z[ß](l - e), where e is an idempotent of the form ß + v
and v is a nilpotent matrix. Note that e and v are polynomials in ß and

therefore they commute with ß and with each other. If we decompose Po as

ePo + (1 — e)Po and represent A-linear endomorphisms of Po as 2 x 2 block
matrices, we have

1 °) p=(l + Ul 0

0 0/' PV0 V2

a=(a" ai2
and

a
v
ea12 a22

Computing the product we see that the condition «* ea implies that

«12(1 — y2) — —y*«12 «H — e«n and «22 e«22 •

From this we immediately deduce

«12(1 — y2t — (—^*)^«i2

for any natural integer k. Since v\ and y2 are nilpotent, this implies that
«12 0. Thus « is of the form

«11^(1 + yx) — «nui 0

0 «22(1 + (t - l)u2^
and (Po[M_1],g) splits as a hermitian space.

Since «, «n and «22 are symmetric, evaluating the above matrix at t 1

we see that

«11^1 yi «11 and «22^1 y2 «22 •

The first block can be written as

cj\ «nfiT + — t
1

y\) — «ii^(l + (1 — t~l)y\).
Since (1 - t~l)yx is nilpotent, the formal power series

n (1 + (1 - rVi)~1/2 (~i/2)(d - t~l)vx)k
is a Laurent polynomial and we can replace the first block by rfc^n —
Similarly, the power series

t2 (1 + (f - l)/y2)-'/2 (- 1

is a Laurent polynomial and we can replace the second block by t2*o-2t2 a22.
This shows that

(Polt, r>], a)~P0e[t,r'], ton) 1 (P0(l - e)[t, '], a22),
thus proving the surjectivity of ß.
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6. The residue

In this section we construct a residue map

Res: W'{A[t,rx])W(A)
satisfying Pi and R2 of §5.

The definition of Res will be preceded by a few preliminaries.

LEMMA 6.1. Let Po be a (finitely generated) projective A-module and

define M(a) by the exact sequence

0 — P0[t] A P*[t] —+ M(a) 0,

where a is A[t\-linear. Suppose that its localization at: Po[t,t~l] PotM-1]
is an isomorphism. Then, as an A-module, M(a) is finitely generated and

projective.

Proof. Decompose PotM-1] as a direct sum PqW © J-1 Pol/-1] of
A-modules. Let ir be the projection onto the first summand. Then ß
TT o is an A-linear splitting of a. Hence M(a) is A-projective. It
is also finitely generated as an A[t] -module, hence, being annihilated by a

power of t, it is finitely generated as an A-module.

Let M m M (pi) be as in the previous lemma. Assume that a is

e-symmetric. We define a pairing

M xM -+A[tyrl]/A[t]

by (ci,b) — a(afl(b)), where a and b are representatives in PJM
afb eM.

LEMMA 6.2. If a is e-hermitian, then is a perfect e-hermitian pairing.

Proof. Since at is e -hermitian, denoting by the involution on A

we have

(ä, b) a(afl(b)) e(b(afil(a)j)° e(b,~ä)°

This proves the first assertion.

We now check that the adjoint of

x: M~*RovnA[t](M,A[t,rl]/AM),

defined as x(ß)(Z?) (ä,b), is an isomorphism. We first prove injectivity.
Suppose that, for some a and every x in M, x(ä)(x) 0. This means
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that ci(at !(x)) G A[t] for every x G Pq[î]. We only have to show that

cÇl{a) G Po M- Consider the diagram

P0[f] —> Hom^ffjCPg [?L A[?])

1 1

Pot?:.? '] —^ Hom^[r](Po[?],A[f,t '])

where the horizontal arrows are the canonical ones. Since Po[t] is projective

(and finitely generated over A[t], they both are isomorphisms. Therefore an

element b G Po[t*t~l] is in Po[t] if and only if, for any x G PqD], x$)
is in A[t]. This is indeed the case for b of1 (a) because x(a^l(a))
e(fl(ar_1(x)))° G A[t] by the very assumption on a. Thus injectivity is proved.
We now check that y is surjective. Let /: M —> A[t, t~l]/A[t] be an A[t] -linear

map. Since PoM* is projective, there exits an / which makes the right hand

square of the diagram

0 Pot?] —Pot?]* —^ M > 0

0 > A[f] » A[t.rl] — » 0

commute, p and q being the canonical surjections. Clearly qofoa 0, hence

there exists an A[r]-linear map a: PoO] — A[t] such f o a — i o a, i being
the inclusion A[t] A[t.t~1]. We claim that x(a) ~ f F°r this it suffices
to show that for any b G PoW* we have a{a^x(b)) =f(b) modulo A[t]. We
denote by at the localization of a at t and by ft \ P0[/\f-1]* —>• A[U f_1] the

unique A[t, t~l] -linear extension of /. Observing that oql(a) at o a"1 we
get the following relations :

a(a~lm(a, o a"1)^) =ft(b)

This proves that x is surjective.

Let now (P0p*f_1].a) be an e-hermitian space. For any natural integer n
for which t2,1a(P0[t]) Ç P0[t]* we define M{a,ri) by the exact sequence

0 —• Polt] ^ Polt] —+ M(a. 77) — 0

and equip it with the e-hermitian structure defined above:

1 a

(a,b) a((t2"a,)
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Lemma 6.3. Let iß: iPç>[t,t~l],a) —» (ßo[M-1L/3) be an isometry and

assume that ißiPolt]) G Qo[t], a(P0[t]) Ç P0W* and ß(ßoM) £ ßoM*- 77^
Af(a) Af(/3) are Witt equivalent t-torsion spaces.

Proof. Consider the diagram

0

î
0 K

1 4
0 P0[t] —^ P0[t]* M(a) 0

f r]
0 * ßoM Q0[t]*-¥->» 0

1- I
L 0

i
0

By Lemma 6.1 the module L, viewed as an A-module, is finitely generated
and projective. The map iß* is obtained from the map iß by dualizing over

A[t]. We denote the cokernel of iß* by K and we denote the canonical map
Polt]* — K by q. One may observe that K is isomorphic to Ü* (see §4 for
the notation) but we will not use this observation.

The A [t] -linear map 6 qa ° iß* : ßoM* -> M(a) induces a map
9: M(ß) —> 9(Qo[t]*)/0(ß(Qo[t])). The statement will be deduced from the

following claims.

(1) The map 6 is an A [t] -linear isomorphism.

(2) The map q induces an A [t] -linear isomorphism

p:M(a)/0(Qo[tr)^

(3) 9(ß(Qo[t])) is a sublagrangian of M(a).

(4) {d{ß{QM)V =e{QM*)-
(5) The map 0 is an isometry of t-torsion spaces.

In fact, by (4), (5) and Theorem 4.5, Miß) is Witt equivalent to Mia).
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We now prove the claims. The surjectivity of 0 is clear. To show injectivity,

suppose that x G ker(0). Choose a lift x G goM* of x. There exist a y G go (7]

and a zG Po[t] such that ip*(ß(y)—X) a(z). Replacing a by tp* oßofs we

get ip*(x) ip*(ß(y — ip(z))). Since ip* is injective, this shows that x G lm(ß)
and hence x 0.

To prove (2) observe that, since qoa qoip*oßoip 0, q induces a

surjective map p: M(a) /0(goM*) —» K- Injectivity is also clear.

To prove (3) we first observe that 9(ß(Qo[t])) is a direct factor (as an

A-module) of M(a). In fact, by (2), 0(ßoM*) is a direct factor (as an

A-module) of M(a) and, by (1), 9(ß(Qo[t])) is a direct factor of ö(ßoW*)-
For any two elements a,b G Po M* let us denote by {a,b)a the element
a(aß1 (b)), and similarly for (a,b)ß. We then have

(,a,b)ß «= {i>*{a\ip*(b))a

because ßt is an isometry. Let now äßb G ö(/?(ß0[r])) and x, y G go M such
that a ip*(ß(x)) and Z? - ip*(ß(y)) are preimages of a and b. We have to
check that (a,Z?) 0. This is the same as saying that {a,b)a is in A[t\.
This is indeed the case because

A b)a ß*(ß(y)))aß(y))ß G A[/].

We now prove (4). For any aG 9(ß(Q0[t])) and any b G M(a) we choose
preimages aand b of the form a ip*andb with x G Q0[t]
and y G Qo[f,f-']*. Then we have

a,b)a {i>*(ß(x)),ip*(y))ay(x)°

which shows that, for any y G ßotFt"1]*, <^*C0(ÔoW)), b)a is in if
and only if y G ß0[f]*, which is equivalent to G 0(ßo[t]*).

We now prove (5). We already know that 6 is an -linear isomorphism.
A computation like the one above proves that it is an isometry.

COROLLARY 6.4. Let (Poit,bean space. Let n be
such that t2"a(Fo[t]) Ç P0W*- Then the class does
not depend on the choice of n.

COROLLARY 6.5. Let (Po[t,t 1],q) and (PoLt, f~{], ß) be isometric spaces
and assume that for some natural integers m and r2'"Q(P0[t]) C P0W* and
t2"ß(P0[t]) C P0[t]*. Then M(a,m) and M(ß,n) are Witt equivalent
spaces.
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Proof. Let 0: (Pol>, t~l], t2ma) —» (Po[tf~l]f2nß) be an isometry
and let i be a natural integer such that tkf>(Po[t]) Ç PoM*. Then

tkf : (PolL f-1], f2ma) —> (P0L, r*1], t2n+2kß) is an isometry and, by Lemma
6.3, M(a,m) and M(/?,n + fc) are Witt equivalent. Hence, by Corollary 6.4,

M(a,m) and M(ß,ri) are Witt equivalent as well.

PROPOSITION 6.6. Associating to any space (PoL, I-1], a) torsion

space M(a,n) (for a suitable n) yields a homomorphism

res: W'(A[t,t~'])- Wtors{A

Proof By Corollary 6.5, associating to the isometry class of a space
(PoO, rl],a) the Witt class of the t-torsion space M(a,n) for some suitable

n is a well defined map. It is obvious that the orthogonal sum of two spaces is

mapped to the corresponding sum of t-torsion spaces, hence this map induces

a homomorphism to: Kh —* Wt0rs(A[t]), where KH is the Grothendieck group
of e-hermitian spaces of the form (PolL t~l], a). It is clear from the definition
of M(a,ri) that a standard hyperbolic space H(Qo[t, t~1]) is mapped to zero,
hence uj induces a homomorphism res: W'(A[t,t~1]) —> Wtors(A\f\)' D

If we compose res with dw : Wtors(A[t]) W(A) we get a homomorphism

Res dw o res: W'(A[t, t~1]) W(A)

which we call residue.

Theorem 6.7. The residue

Res: WfA[t,r1]) W(A)

satisfies the following two properties :

R\ : For any constant space £ G W(A) C W(A[7, t~1]), Res(fi) 0.

P2 • For any constant space £ G W(A), P<?s(7 •£) £.

Proof. The two properties immediately follow from the construction of
res.

An amusing application of the existence of Res is the following result.
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Proposition 6.8. Let A be a commutative semilocal ring in which 2 is

invertible. Let (P, a) be a quadratic space over A. If (P, a) is isometric to

(P, t • a) over A[t,rl], then (P, a) is hyperbolic.

Proof. Let £ be the class of (P, a) in W(A). In W(A[7]) we have £=*•£.
Applying Pes to both sides we obtain £ « 0 Since A is semilocal, by Witt's

cancelation theorem we conclude that (P, a) is hyperbolic.

7. The Witt group of Laurent polynomials

Let W'(A[t,t~1]) be the group defined in the introduction.

THEOREM 7.1. Let A be an associative ring with involution in which 2

is invertible. Let

be the canonical homomorphism.

(a) If #2(Z/2,P_i(A)) 0, then cp is surjective.

(b) If K0(A) K0(A[t]) Ko(A[t, t~1]), then p is an isomorphism.

Proof of (a). Corollary 2.4 implies that

H2(Z/2,K0(A[t,rl])/K0(A))0.

This means that every projective A[t,t_1]-module P is in the same class as

some projective module of the form

Potf.r1] &Q®qt,
where Po is a projective A-module. Therefore, adding to a space (P, a) a

hyperbolic space H(Qf) with Q® Q' free, we may assume that P is of the

form P0[t, t~1]. This means precisely that the class of (P, a) is in the image
of w'(A[t, r1]),

Proof of (b). Surjectivity is obvious, because by assumption every
projective A|Y, t~{]-module is stably extended from A. Suppose that the class

of a space (P0[M_11,a) vanishes in W(A[t,t~1]). This means that, for some
Q and P, there exists an isometry

Adding to both sides a suitable H(A[t, t~l]n) we may replace Q and P by
extended modules Q0[t, t~l] and P0[t, t~l]. Then the isometry means precisely
that the class of (PoO, t~l], a) vanishes in W'(A[t,t~1]).
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We can restate assertion (b) of Theorem 7.1 as follows.

THEOREM 7.2. Let A be an associative ring with involution, in which 2

is invertible. Assume that Kq(A) Ko{A[t\) Ko(A[t, t~1]). Then there exists

a natural homomorphism Res such that the sequence

0 - W(A)->• W(A[t, ']) W(A) -> 0

is split exact. The homomorphism Res restricts to an isomorphism of t • W(A)
onto W(A).

8. TWO COUNTEREXAMPLES

In this section we show that the map W'(A[t, t~1]) —» W(A[t,t~1]), in

general, is neither surjective nor injective.

Example 8.1. We first recall the Mayer-Vietoris sequence associated to

a cartesian square of commutative rings (see [1], Ch. IX, Corollary 5.12). Let

R > 5

'I !•
R 5

be a cartesian diagram of commutative rings, with / or g surjective. Denote

by Ko the kernel of the rank function on Ko. Then there is a commutative

diagram with exact rows

K\(R) x K\(S) K\(S) —^ Ko(R) -+ Ko(R)xKo(S) -> Ko(S)

ldet ldet jAmaX lAmaX jAmaX

Gm(R) x Gm(S) Gm(S) Pic(R) —> Pic(R) x Pic (S) —> Pic (S)

Let A be the local ring at the origin of the complex plane curve
Y2 X2 — X3, A the normalisation of A and c the conductor of A in
A. Applying the big diagram above to the cartesian squares

A — A A[——» A[t,rl]

i 1 and 1

„
1

(A/c) ——» (A/c) (A/c)[r, r1] —— (A/c)[t,t
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it is easy to see that Ko(A[t,r1]) C* © Z Pic(A[t,t~1]). This shows

that a projective A[t, t~l] -module P is stably free if and only if its maximal

exterior power /\max(P) is isomorphic to A[tj~1].
Let I be an ideal representing (1,1) in C*©Z Pic(A|>, t~1]). The module

underlying the space H(I © A[t, t~{] ®A[L-1]) is free. In fact it is stably
free because its determinant is trivial, hence, by a well-known cancellation

theorem it is free. This shows that H(/©A[l, r1] ®A[f, r1]) is a quadratic

space of the form with Pq free of rank 6 over A. Clearly this

space represents the zero element of W(A[t, t~1]). We claim that its class in
W'(A[t,t~1]) is not trivial.

Since A is local, projective modules extended from A are free. If
//(/0A[t, t~l] ©A[t,

1

]) were hyperbolic in W'(A[t, 1

]) it would be stably
isometric to H(A[t. r1] 0 A[f, r1] © A[f, r1]) and hence, by the quadratic
cancellation theorem (see [4], VI, 6.2.5), it would be isometric to it. Recall
that, for any commutative ring R in which 2 is invertible and any finitely
generated projective R -module P, the even Clifford algebra C0 of H(P) is
of the form

C0 End*(An""(P)) x End*(A"V)),

where f\eie"(P) (respectively /\'"ld(P) is the even (respectively odd) part of
the exterior algebra of P.Inthe case we have

C0 End^^-ijfAfr, r1]2 © I2)x End^-ijCUt, r"1]2 012).

Suppose now that fl(/©A[t,r']2) and H(A[t,r1]3) are isometric. In this
case their even Clifford algebras would be isomorphic, hence the algebra
EndA[rif-r-1]2 ®/2) would be a 4 x 4 matrix algebra. By Morita theory
the module A[t,f-1]2©/2would be of the form /4 for some invertible ideal
J. Taking the fourth exterior power of both sides we would have 2

which is impossible because I represents (1,1) in C* ©Z.
This shows that, even for a one-dimensional local domain, the map

W'{A[t, ?"']) —* W(A[t, ?-1]) may fail to be injective.

Example 8.2. We define a commutative ring A by the cartesian diagram
of real algebras

At R[X,y]

(1) I 1*

R —» C
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where C R[x,y] R[X, Y]/(X2 + Y2 — 1), tt is the canonical projection and

i the canonical injection. Then C © C is the direct sum of its two submodules

P Ci(y + 1, —x) + Ci(—x, 1 — y) and P' Ci(l — y,x) + C^(x, 1 + y)

and we can define an automorphism a of C[t, t~l] ® C[t, t~l] as the identity
on P' and multiplication by t on P. With respect to the canonical basis of
C[r, t~l] © C[t, r1],

i f t(l y) I — y ~—tx x
a 2\ —tx + x t(\—y)+\+y/

The matrix a has determinant equal to t and thus lies in GL2(C[t, t-1]).
According to Theorem 7.4 of [1] its class in K\(C[t, t~1]) is the image of
P by the canonical injection A mentioned in §2. It is easy to see that P
is not free over C. In fact it turns out to represent the non trivial class of
Pic(C) Z/2. Since the homomorphism i in the cartesian square that defines

A is surjective, tensoring the diagram with R[t, t~l] yields a Milnor patching
diagram

A[m_1] » RIX,,*"1]
I

R[f, r1]—> ]

We can use this diagram and the matrix a (see for instance [1], Chapter IX,
Theorem 5.1) to patch a rank 2 free module Q over R[X, Y][t, t~l] with a

rank 2 free module R over R|y, rl] and get a rank 2 projective module

M {(q, r) eQxR \/„('')}

over A[t,r-1].We now equip M with a skew-symmetric structure. To do this

we put on Q and on R the skew-symmetric structures defined, respectively,

by the matrices

on / o i/i
_1 oj and T =(-!/' «

Since a*ra cr, the skew-symmetric structures a: Q —» ß* and r: R —> R*

are compatible with the patching and therefore they define a skew-symmetric
structure ip\ M — M* on M.

We claim that the class of this space is not in the image of W'{[t, t-1]).
Extending to K-\ the Mayer-Vietoris sequence associated to (1) (see [1],

Chapter XII, Theorem 8.3) we get an exact sequence

X0(R[X, Yl) © K0(R) K0(C) X_i(A) -> R[X, Y]) © K^(R).
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From the fact that regular rings have a vanishing K-j, that ^]) —

^To(R) Z and that K0(C) Z © Z/2, where the element of order

2 is the class of P, we easily deduce that Z/2, generated

by the image of M. Thus, by Corollary 2.4, the class of M generates

H2(Z/2,Ko(A[t, t~l])/K0(A)) Z/2. Consider now the homomorphism

u: W(A[t,r1})—» H2(Z/2,rl])/K0(A
obtained by associating to any space its underlying projective module.

Since a/((M, <p)) ^ 0, (M, (p) cannot be Witt equivalent to a space

supported by a module extended from A. This shows that the map
W'(A[t, t-1]) —> W(A[t, t-1]) is not surjective.

Remark 8.3. We suspect that even if the assumption of (a) is satisfied

the map W'(A[t,t~1]) W(A[^r-1]) may not be injective, but we did not
find an example to confirm our suspicion.
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