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(1) Neville Smythe [23] used the orderability of surface groups to prove
that any null-homotopic curve on a surface S is the image under projection
of an embedded unknotted loop in S x I.

(2) As pointed out by N. Smythe [16] in response to a question of
L. Neuwirth [15, Question N], knot groups are in general not bi-orderable.
For instance the trefoil knot group (which is isomorphic to the braid group
on three strings B3 is not bi-orderable. To show this, recall that £3 contains

an element À (the "half twist") which is not in the centre, but whose square
À2 is. Assume that > is a bi-ordering of £3, and let b G #3 be such that

M/ Ab, say M > Ab. Multiplying this inequality on the left by À and on
the right by A-1 would yield Ab > A2bA~l bA2A-1 bA, which is a

contradiction.

Neuwirth reformulated the question as Are knot groups left orderable?'.
A positive answer to this question follows from an observation by J. Howie
and H. Short [12] that knot groups are locally indicable (every non-trivial

finitely generated subgroup has Z as a homomorphic image), together with a

theorem of Burns and Hale [4] that locally indicable groups are left orderable.

The converse of Burns and Hale's theorem is known to be false - see [1] and

[9, Theorem 5.3].

(3) We have just seen that B3 (and hence Bn for all ri) is not bi-orderable.

Kim and Rolfsen [13] have recently proved that the finite index subgroup PBn

of pure braids is bi-orderable. However, no bi-ordering of PBn extends to a

left ordering of Bn [20].

(4) The Zero Divisor Conjecture, often attributed to Kaplansky, asserts

that if R is a ring without zero divisors and G is a torsion-free group
then the group ring RG has no zero divisors. The hypothesis that G be

torsion-free is necessary, for if G contains an element x of order n then

(1 — jc)(1 H-jcH fx"-1) 0 in RG. The conjecture is known to hold for left
orderable groups. In fact, it is not hard to see that left orderable groups have

the "two unique product" property which implies that the conjecture holds for
them (see e.g. [18], and also Delzant [7] and Bowditch [3] for some recent

remarks about this property).

2. Orderings of mapping class groups using hyperbolic geometry

In this section we present the construction of orders on mapping class

groups of surfaces which we learned from W. R Thurston, and prove that they
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all extend the subword-ordering of Elrifai-Morton. The idea comes from the

following classical situation as developed by Nielsen. As is well known, every
closed surface of genus g ^ 2 can carry a hyperbolic structure; i.e. there is a

homeomorphism between the universal cover S~ of S and the hyperbolic plane
H2 such that the covering transformations are isometries of H2. There is a

__ 2
natural closure S~ H of S~ H2, defined by adding the so-called circle at

2
infinity S^ <9H Points of this circle can be defined as classes of geodesies,

or quasi-geodesics, 7: [0,00) —» H2, staying a bounded distance apart. The

covering action of 7Ti (iS) on S~ extends to an action on S~. So in particular,

we have an action of 77 (S) on the circle at infinity by homeomorphisms ; this

action has been much studied (for a good modern exposition of this see [10]).
Even stronger, every homeomorphism of the surface lifts and extends to a

homeomorphism of S~ ; however, there is a tï\ (S) -family of possible choices

of lift, and therefore we get no well-defined action of A4CQ(S) on S1^.

Instead of closed surfaces, Thurston considers surfaces S with nonempty
boundary, a finite number of punctures, and x(S) < 0. Again, one can obtain
a hyperbolic structure on S in which dS is a geodesic and the punctures are

cusps; this time, S~ is identified with a proper subset of H2. The boundary
of this subset is just the union of the lifts of dS ; in particular it is a union of
geodesies in H2, and it follows that S~ is convex in the hyperbolic metric.

2
Moreover, the set of limit points of S~ on the circle at infinity <9H is a

—2 - 2
Cantor set in <9H The closure of S~ in H i.e. S~ with its limit points
on the circle at infinity attached, is homeomorphic to a closed disk; dS= is

—2
a circle, also containing S~ n <9H as a Cantor set.

We now fix, once and for all, a basepoint of S~ anywhere on dS~. We
denote the component of dS~ which contains the base point by n (see
Figure 1). The basepoint projects to a basepoint of S in dS, and n is
an infinite cyclic cover of one component of dS. We consider the set of
geodesies in S~ starting at the basepoint - they are parametrized by the
interval (0, w), according to their angle with n. We shall denote by % the
geodesic with angle a e (0, tt) and by 7Q its projection to S. Since is
hyperbolically convex, each point of dS~ can be connected to the basepoint
by a unique geodesic (possibly of infinite length) in .S'=, and for points in
S~\ri this is one of the geodesies % with a e (0,7r). This construction
proves

Lemma 2.1. There is a natural homeomorphism between <9,S~\n and
(0,7T).
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universal cover
V

Figure 1

Picture of S~ in H2 (here S is a twice-punctured disk)
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As in the case of closed surfaces, we have an action of on S

which restricts to an action on However, this time we have more :

PROPOSITION 2.2. There is a natural action by orientation preserving

homeomorphisms of MCQ(S) on dS~\Tl (0, n).

Proof Every homeomorphism p: S —* S has a canonical lift p : S —> S

namely the one that fixes the basepoint of S~, and thus all of II. Moreover,

p has an extension p: -* The restriction of this homeomorphism to

dS~ is invariant under isotopy of p, and fixes n, and thus yields a well-

defined orientation-preserving homeomorphism of dS~\EL (Note that there is

no requirement for S to be orientable here.)

Corollary 2.3. MCQiS) is left orderable.

Proof No nontrivial element of MCQ(S) acts trivially on (0,7r), because

if such an element existed, it would in particular fix all liftings of the

basepoint of S, and thus induce the identity-homorphism on 7n(5); by [2,

Corollary 1.8.3] it would then be isotopic to the identity, in contradiction with
the hypothesis. The result now follows from Remark 1.2(2), because (0, tt) is

homeomorphic to R.
However, there is an elementary proof in our situation. We choose arbitrarily

a finite generating set of TFiOS), and denote the end points of the liftings of
these elements by Si,.....3Sk G (0,7r). A left order on MCQ(S) is now defined

inductively: if (^Cm) > Si then p > 1 (and the same with > replaced by <);
if p(s\) si, but p(sf) > So, then p > 1 as well, and so on; this is a total

order, because we have that p(st) Sj for all / if and only if p 1.

However, for the rest of the paper we shall be less interested in orderings
of this type, but rather in orderings induced by the orbits of single geodesies,
i.e. in orderings of the type introduced in Remark 1.2(1).

We recall the definition of a positive Dehn twist along a simple closed

curve r in the surface S : it can be characterised as a homeomorphism S —* S

which maps all but an annular neighbourhood of r identically, and sends any
arc that crosses r to an arc that, upon entering the annular neighbourhood,
turns left, spirals exactly once along r, and then turns right to leave the
annular neighbourhood through its other boundary component and continue
as before. For example in the case of a punctured disk, if A G Bn denotes
the "half-twist braid", then A2 is a Dehn twist along a curve parallel to the
boundary of the disk.
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PROPOSITION 2.4. For the positive Dehn twist T along any simple closed

geodesic r in S we have T(a) ^ a for any a G (0,n). If ja intersects r
at least once, then the inequality is strict.

Proof If 7a is disjoint from r, then T(a) a. If, on the contrary, 7^
intersects r, and hence any curve isotopic to r, any number of times (possibly
infinitely often), then we denote by Ti(ya) (i G N) the curve obtained from

7a by applying the Dehn twist to the first i intersections of 7a with r
and ignoring all following intersections; we denote by Tfa) its end point in

dDn\U. We have T(a) — lim^oo Tfa).
We now claim that (7)(a));GN is a strictly increasing sequence. To simplify

notation, we shall prove the special case Tfa) > a, the proof in the general
case is exactly the same. In the universal cover D~ we consider the lifting of
the curve Ti(7a) : starting at the basepoint, it sets off along up to the

first intersection with some lifting f of r. There it turns left, walks along

r up to the next preimage of the intersection point, where it encounters a

different lifting 7^ of There it turns right, following this lifting all the

way to âD~\n. The crucial point now is that ja and 7^ intersect r at

the same angle, because the two intersections are just different liftings of
the same intersection between and r in Dn. It follows that and 7^
do not intersect, not even at infinity, for if they did they would determine

a hyperbolic triangle in D„ two of whose interior angles already add up to
180 degrees, which is impossible. This implies the claim, and thus proves the

proposition.

COROLLARY 2.5. All total orderings of the braid group Bn considered

in this paper extend the subword-ordering of Elrifai-Morton [8, 25]. More

precisely, if a curve r in Dn encloses a precisely twice punctured disk and
T1/2 is the positive half-Dehn twist along r interchanging the two punctures
then Top> p for any p G Bn and any ordering > of Thurston-type.

Proof It suffices to prove that Tl/2(a) a for all a G (0, tt) If
there existed an a G (0, tt) with Tl/2(a) < a then it would follow that

T(a) T1/2 o T1/2(d) < T1/2(a) < a (where the first inequality holds since
T1/2 is orientation preserving), in contradiction with the proposition.

Remark 2.6. Here is an example of an ordering -< of Bn that does not
arise from Thurston's construction : if "< " is any ordering of Thurston-type,
then we define an element p G Bn to be in the positive cone of -< if either

ab(p) is positive, where ab: Bn ^ Z is the abelianization, or if ab(p) 0
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and lBn < p. In this ordering the commutator subgroup is convex [19], and

we leave it to the reader to verify that no Thurston-type ordering has this

property.

3. Main results

We shall mainly be interested in the case S Dn (n > 2), where Dn is the

closed unit disk in C, with n punctures lined up in the real interval (-1.1);
in this case the mapping class group is a braid group : MCQ{Dn) Bn. We

recall that for a G (O. tt) we denote by the geodesic which starts at the

basepoint with angle a with dS, and by ja its preimage in the universal

cover starting at the basepoint of S~.

DEFINITION 3.1. A geodesic ya, a G (0.7r), is said to be of finite type

if it satisfies at least one of the following conditions :

(a) there exists a finite initial segment yra such that any two punctures that

lie in the same path component of S\yla also lie in the same path component
of S\ya, or

(b) it falls into a puncture, or

(c) it spirals towards a simple closed geodesic.

If a geodesic is not of finite type then we say it is of infinite type.
We also define the ordering of MCQ(S) induced by a geodesic ya to be of
finite or infinite type if is of finite or infinite type.

An infinite type geodesic looks as follows. All its self intersections occur
in some finite initial segment At least one of the path components of
S\y!a contains three or more punctures in its interior, and the closure of pa\la
is a geodesic lamination without closed leaves inside such a component. In
particular, there is a pair of punctures which are separated by the whole

geodesic, but not by any finite initial segment. (Note that the geodesic 7a\Ya
is isolated from both sides - in this it is very different from leaves of geodesic
laminations on surfaces without boundary.)

Definition 3.2. For a geodesic ja of finite respectively infinite type we
say that it fills the surface in finite respectively infinite time if all punctures
lie in different path components of S\ya. By contrast, a geodesic ya does

not fill the surface if S\ya has a path component that contains two punctures.
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