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where the power series converges in the domain ©, and

_ 1 2 —
a_l(T):{l o l.fx 1
0, if x#1. []

Since L,(s,7;x) is defined for each 7 € C, such that ]Tlp <1, we now
have a p-adic function of two variables, L,(s,t;x), where s € D, s #£ 1 if
x=1,and t € C, with |t|, <1.

4. PROPERTIES OF Ly(s,t;X)

Most of the properties that follow are direct consequences of similar
properties that hold for the generalized Bernoulli polynomials. In all of the
following we will take p prime and x a Dirichlet character with conductor f, .

4.1 A SYMMETRY PROPERTY IN ¢

The first property we obtain regarding L,(s,f; x) 18 a direct consequence
of the generalized Bernoulli polynomials being either odd or even functions,
except when x = 1. Recall that L,(s,t; x) interpolates the values

1
(18) L,(1 —n,t;x) = —=by(1),
n
forneZ, n>1,and t € C,, [t[p < 1, where

(19) ba() = By, (@) — Xu(P)P" 'Bux, (0™ 'qt)

and we define

n

(20) HOEDY (Z) (=1 "bu(0).

m=0

LEMMA 4.1. For all neZ, n> 0, we have

Bui(—=1) = (=1)"By1(t) — (=1Y'nt" "

Proof. This holds for n =0 since Bg(f) = 1. Now assume that n > 1.
Because B, ; =0 for odd n > 3, we can write (2) in the form

n

B, 1(t) = Z <:1>Bn—m,1l‘m+ﬂ31,1fn'—l-

m=0
n—m even
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Any m such that n —m is even must have the same parity as ». Thus

R

Boi(—1) = (=1" > (Z)Bn_m,lr’"+<—1)”*1n81,1r"—1

m=0
n—m even

= (_l)an,l(t) - 2(—‘1)nI’LBl,1tnw1 .

From the value B;; = —B; = 1/2, the lemma then follows. [l

LEMMA 4.2. Forall neZ, n> 0,

bp(—1) = X(‘" )b, (1).

Proof. This is obviously true for n = 0 since

bo@®) = (1 = x(p)p~") Box »

and By, = 0 except when x = 1, in which case Byp; = 1. So we can assume
that n > 1.
First consider the case of x, = 1. This implies that Yy = w". By Lemma 4.1,

bu(—1) = Bu1(—qt) — "~ 'Bu 1 (—p~ ' q1)
= (—=1)"By,1(q?) — (=1)"n(gt)"™"
—p (D Bas (p7ar) — (< 1n (p7qr)" )
= (=1 (Bui(g) = p" "B (P 'qt))
= (—=1)"b, ().
Since x¥ = w" and w(—1) = —1, the lemma holds for x, = L..
Now suppose that x, # 1. Then, from (3),
ba(—1) = By,x,(—=qt) = xa(P)P" " 'Bux, (—p'qt)

= (=1)"Xa(—=1) (Ba,x, (@) = Xa(P)P" "By, (p~'qt))
= (—1)"xu(—= Dby ().

Note that x, = xw™", which implies that x,(—1) = (=1)*x(—1). Thus the
lemma also holds for y, # 1.

Since the lemma holds for both x, = 1 and Yy, # 1, the proof must be
complete. [

Using this result, we can prove
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THEOREM 4.3. Let t€ Cp, |t|, <1, and s €D, except s #1 if x = 1.
Then

Ly(s, —t;x) = X(=DLy(s, 1 X) -

Proof. From Lemma 4.2 we see that

bn(—=1) = x(=1)bn(1) .

Also, (20) implies that
Cn(-t) = X(—‘l)cn(t) .

From (16), whenever n > —1,
an(—1) = x(—Dan(1),

which implies that

Ly(s,—t;x) = x(=DLy(s,t;x). [

If x(—1) = -1 and t =0, then

L,(s,0;x) = —Ly(s,0; x),

which implies that
Ly(s;x) = —Lp(s3 %)
and thus L,(s;x) =0 for all s € D, as we would expect.

4.2 Ly(s,t;X) AS A POWER SERIES IN 1 —a, a € C,, |a|, <1

To develop L,(s,t;x) in terms of a power series in ¢ will enable us to
find a derivative of this function with respect to this second variable. All this
we shall do, but before doing so we need to specify some notation.

LEMMA 4.4. Let t € C,,

tlpgl. Then for n€ Z, n>1,

1
— (1 —x(p)p™") Boy -

lim (':> Ly(s+nt;x) =

s—1—n

Proof. Recall that, from Theorem 3.13, we can write

LP(S) £ X) = a—l(? + Zam(t)(s - 1)m,
m=0

where a_1(t) = (1 — x(p)p~ DBy, . Thus
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hq@—lﬂﬂ&mxﬁzofﬁﬂpm—”Bwp

Now let n € Z, n > 1, and consider

— , n—s
lim ( S>Lp(s +n,tx) = hrr% < , >Lp(s, 1 x) -
b Yo o

s—1—n n
If n =1, then we write this as
lim(1 — $)Ly(s, 1530 = — (1 = x(P)P™") Bos -
S—

If n> 2, then

which implies that
_ 1 n—2
lim ( ) )Lp<s 6 = — (}gq g(n —5— z)) (tim(1 = )Ly(s,50)

|
=—;(P—MPW"UBWV

Therefore the lemma holds for all n > 1. L]

Now, because L,(s,#;1) is undefined when s = 1, the quantity

—S
<n>g@+man

is undefined when s =1 —n, for n € Z, n > 1. However, Lemma 4.4 shows
that this quantity exists as s — 1 — n. In the following we will encounter

expressions that involve (~°)L,(s + n,#;X), and because of Lemma 4.4 we
shall assume the understanding that

(_S> L,(s +n,tx)
n

forneZ, n>1.

1
- (1 —x(p)p™") Box

s=1—n

THEOREM 4.5. Let t€Cy, [t]|, <1, and s €D, except s # 1 if x = 1.
Then

o0

@1) L(s,t:0 = Y (;j) gLy (s + 13 Xom)

m=0

Proof. Lett€C,, |t|, <1, and let k € Z, k> 1. Then
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k

k—1 r—1
"L (1 — (K — m); Xn) .
+mz_0< - >6] p(1 — (kK —m); Xm)
By evaluating the L-function, we obtain

k—1 1/k
( m >Lp (1 - (k - m); Xm) - _E <m> (1 - Xk(p)pk—m—l) Bk—m,xk )

and thus

(e o]

Z k—1
m:0< m )qmtmLpU — (k= m); Xm)
:——Z< ) e 1_Xk(p)pk " I)Bk m, Xk )

which implies that the sum converges for s = 1 — k. Breaking this into two
sums

= (k—1\ 1 _
Z( " )q "Ly (1= ke m3 xm) = —24“4(1 = Xe(P)P ™ )Box,

m=

oo

k—1
_S_ ( >qmrmLp (1 - (k—m)aXm)
m

m=0
k k
1 k " 1 _ k —m_m
= —-% g <m>Bk—m,qu "+ }C‘Xk(p)pk ! E :(m>Bk~m;ka q "
m=0

m=0

1
= =1 (Brx(a) = ()P B, (P a1))

=L, (1 -k 1:X) .

Thus (21) holds for a sequence {1 — k}2, that has O as a limit point.
Lemma 2.5 then implies that Theorem 4.5 holds for all s in any neighborhood
about 0 common to the domains of the functions on either side of (21).
Now we will show that the domains, in s, of each of the functions on
either side of (21) contain ®©, except s # 1 when x = 1.
This is obvious for the function L,(s,;x). Consider the function

> (D)aenesmxn =3 3 (7)a a4t m— 1

m=0 m=0n=-—1

We have seen that this sum converges for s =1 —k, where k€ Z, k > 1.
Now we need to show that it converges for s = &, where £ € D, £ # 1 if
x=1,and £ #1—k for ke Z, k> 1. So let ¢ satisfy these restrictions,
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and let € > 0. Note that [§ — 1| < r, where r = |p|;/(p—1)|q|p_1. Let rp € R,
0 <rp <r, such that |[{ — 1| =ro. Then for any m € Z, m > 0,
[E+m—1], < max{|m|p, 1€ — llp}

<max {l,r},

implying that £ +m € ©, £ +m # 1. Let § € R such that ° = max{1,r}.
Then 0 <6 < 1, and

(22) | [E+m—1], <.

Let Ny € Z such that

’*(1*5)(1\71—1)/(P—1)’ql(1—5)(N1—1)
P

p™ql,Ipl, <e.

Then for any m € Z., m > 1, such that m > N;, we must also have

—(1=8)(m—1)/(p—1)) _(1=6)(m—1)
| lgl,

p'q] Ip], <e.

<—£>@>+m——n—1
m

= [¢ +m —ll”H - “(l_l)‘

< ;oD

For m € Z., m > 1, consider

() raerm—07] <ipl;aly

P

p
Note that, by (22),

'(;f)(&m— 1)*

Therefore

< Ipl, 'lglym!], o,

p

<;§> qrtma_iy,(E+m—1)7!

and from the bound
(m—1)/(p—1)
imf‘p Z |p‘p ?

we obtain

l (;f) q"t"a_y ., (E+m—1)""

Thus if m > N;, then

— —(1=6)(m—1 - — -
P

‘ (;1§> g t"a_1y,E+m -1 <e.

p
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Now let N, € Z such that
—1;_ —(1=8)N2/(p—1 1—8)N
|fepl, pl, OO g (7O <

Then we must also have
p| " p| A= O tm/ (=1 1 (1=6)om+
4fX ‘p | Ip ( Ym+n)/(p )|‘]|§; Ym+n) <€

for any m,n € Z such that m > 0, n > 0, and max{m,n} > N,. Let us

consider
= ‘ ( m )
p

_5 m n
(m>q trnan,xm(§+m_ 1)

where mn € Z, m> 0, n> 0. For all m > 0,
()] < meen
mJlp
and by utilizing this along with (17) and (22), our expression becomes
("5> " ", (€ +m — 1)
m

Since

1917 | JE+m — 112,
P

< |mltn+ DU fpl, P gt
14

ml(n + D], > |p|+/ 7D,

we obtain
(‘5)4%%%KA5+4n—1Y
m
Thus if max{m,n} > N,, then
l (:f) g " apy, (E+m—1)" <e.
p

Let N = max{N;,N,}, and let mn € Z, m > 0, n > —1. Then for
max{m,n} > N, it must be true that

(’6) G ", (€ 4+ m — 1)
m

=1 (—(1—=6)m+n -1 1=8)(m+n
< 1l pl, TR g e,

p

<E€.
p

Thus, by Proposition 2.4, the sum

> (;f) " " @y, (€ + m— 1)"

m=0n=—1
must converge. This implies that the function on the right of (21) must converge
for all s € ©, except s # 1 if x = 1, and the theorem must then hold. [

Since we can now express L,(s,f;x) in terms of a power series in , we
can take a derivative of this function with respect to f.
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LEMMA 4.6. Let t € Cp, |t|, <1, and s €D, except s # 1 if x = 1.
Then

14

—g—L (s,t;x) = nlg" ( )L (s + 1,8 Xn)

for ne Z, n> 0.

Proof. 1If n =0, then the lemma is obviously true. So consider n = 1.
Applying Proposition 2.6 to (21),

0 - =S\ m —
§Lp(s,t;x) = n;l (m)q mt" ILp (s + m; Xm) -
Now,
()= (1)
m = —S 5
m m—1
so that
QL (s, ; )__i(_) —s—1 mlm—lL (s + m; )
6tp HX _m—-l ’ m—1 1 p S > Xim
N
= *C]SZ ( )memLp (S + 1+ m;X1+in)
m=0

= —gsL, (s + 1,6, x1) .
Now suppose that

71

8”L (s,t;x) = n! ”( )L (s + 1,1 Xn)

for some ne€ Z, n> 1. Then
n+1 6 an

—s\ O
= nlg’ ~L :
nq (n)@t p(5+n>t’Xn)-

From the case for n = 1, we see that

nf—S\ O _ wl =S
nlg <n>—(—9—tLp(s+n,t,Xn):n!q <n>(—s~n)qu (s+n+1,t;xn+1)

i -8
=+ 1lg +1 <n+ 1>Lp (s—!—n+ 1,t;x,,+1) )

Therefore
n-+1

n-+1 -
L5 60 = (4 Dlg (Hl)Lp(wnH,z;an),

and the lemma must hold by induction. [
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With this result, we can derive a more general power series expansion of
LP (Sa [N X) .

THEOREM 4.7. Let t€ Cp, |t|, <1, and s €D, except s# 1 if x = 1.

Then for o € C,, oz|p <1,
[~
L,(s,t;x) = Z;O <m>qm(z‘ —a)"L, (s +m, a; Xm) -

REMARK. Note that Theorem 4.5 is the case of o = 0 here.

Proof. It follows from the Taylor series expansion of L,(s,#; x) in the
variable ¢ about o (see Proposition 2.6) that we can write L,(s,?; x) in the
form

Ly(s,5X) = Y _ Pt — @)™,
m=0

where
Y41

~ m! o

B Ly(s, %)

=«
From Lemma 4.6

1 o™

m) Om

S
L,(s,t;x) = ( m )q’”Lp(S +m,t; Xm) ,

and so

B = <m>q L,(s +m, o Xm) ,

completing the proof. [

4.3 RELATING L,(s,t;x) TO SOME FINITE SUMS

From (4) it becomes obvious that the generalized Bernoulli polynomials
have a considerable significance in regard to sums of consecutive nonnegative
integers, each raised to the same power, itself a nonnegative integer. The
following illustrates how this can be extended with the use of L,(s,1; x).

For the character x, let Fy = lem(f,,q). Then f,, | Fo for each n € Z.
Also, let F be a positive multiple of pg~'Fy.
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THEOREM 4.8. Let t € C,,

t|, <1, and s€D, except s # 1 if x = 1.

Then
qF

(23) Ly(s,t+ F;x) — Ly(s, ;) = — Y xa@{a+q1)~"
a=1

(a,p)=1

Proof. Let t € C,,

tkp <1,and let n€Z, n>1. Then from (18),

1
Lp(l — n,[—[—F;X) - Lp(l —n, 1 X) — "'Z (bn(t+ F) — bn(t)) .
Now, (19) implies

bu(t + F) = by(t) = (By ,(q(t + F)) = xu(p)P" ™' Buy, (0" q(t + F)))
~ (Buxa (@) — Xa(P)P" " 'Boy, (p7'qt))
= (Bu, (q(t + F)) = By, 5, (q1))
— Xu(P)P" ! (Bu, (P7'qlt + F)) =B,y (p'qt)) .

Thus, by (4), we can write

bn(t + F)—_bn(f)

qF p~'qF
=n) xa@@a+g)" = nxu(pp"" Y xu@)a+p g
a=1 a=1

gF qF
=n) Xe@(@+ag)"" —ny xu@a+ g

a=1 a=1
pla
Therefore,
gF
L =mt+F)—Ll-ntx)=— Y xda)a+q) "
(ai;il

Now, x, = xiw~ "~V so that

Xn(@(@+ 0"~ = xi(@w ™" Da)a + gy
= x1@{a+qt)" .
Thus

qF
Ly(1=nt+ F) = Ll —n50 =~ Y xi@la+ gi)"",

a=1
(a,p)=1
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and (23) holds for all s =1 —n, where n € Z, n > 1. Therefore, since the
negative integers have 0 as a limit point, Lemma 2.5 implies that Theorem 4.8
holds for all s in any neighborhood about 0 common to the domains of the
functions on either side of (23).

It is obvious that the domains, in the variable s, of the functions on the
left of (23) contain 2, except s # 1 when x = 1. Consider now the function

— Z xi@{a+qt)™° = — Z xi1(@){a+qt) " Ha+qt)' .

a=1 a=1
(aap)zl (a,P):l

Since it consists of a finite sum of functions of the form (a + gr)!~*, where
a€c€Z, (a,p) =1, we need only show that each such function is analytic on
®, and the proof will be complete.

The quantity (a + gt)! = can be written as

(a+ gt)' = exp ((1 — s)log(a + qt)) ,

and by (9), the Taylor series expansion of the exponential function,

oo

1 m
la+qt)' ™ = Z — (- s)" (log(a + qt))

m=0
Since (a + gt) = 1 (mod go) for a € Z, (a,p) =1, and 1 € Cp, |t], <1,
we must also have log(a + gt) = 0 (mod go) for such a and ¢. Thus

‘——(1 — s)" (log{a + qt)

}—q - D"
P
for all m. By (8) we can write

1
l—,q’“(s—l)'" < [0 1|
m:. D

m

= 'p‘”“””q(s -1

p
Thus if
g 1) <1,
p
then 1
‘—"—(1 —5)" (log{a + qt))m —0
m! »
as m — 0o. So whenever [s—1| < Ipil/(” 1)(ql , meaning that s € D,

we have convergence for the power series. Therefore the functions on either
side of (23) have domains that contain ®, except possibly for s = 1 when
x = 1, and the theorem must hold. [
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COROLLARY 4.9. Let s €D, except s# 1 if x=1. Then

qF
L(s, F20 = Lp(six) — Y, xi@{a)™".

a=1
(a,p)=1

Proof. 'This follows from Theorem 4.8 since L,(s,0;x) = Ly(s;x) for
any character x. [J

We shall now consider how Corollary 4.9 can be utilized to derive a
collection of congruences related to the generalized Bernoulli polynomials.
Let A, denote the forward difference operator, A.x, = X,4+. — X,. Repeated
application of this operator can be expressed in the form

k
k —m
Aléxn = Z <m> (_l)k Xn+mc -

m=0

Recall that Fp = lem(fy,q). For n€ Z, n > 1, denote

1
ﬁn,x(t) — —Z (Bn,x,,(qt) - Xn(p)pnmlB’T’Xn (pglqt)) )

This is the polynomial structure that we utilized with respect to generalizing
the p-adic L-functions. We will incorporate this structure in an extension
of the Kummer congruences, but the results that we derive will be without
restriction on either x or p.

THEOREM 4.10. Let n, c, and k be positive integers, and let T € Z,
such that |T|p < }pq_lFo’p. Then the quantity q“kAlgﬁn,X(T)—q'kAfﬂn,X(O) €
Z,[x), and, modulo qZ,(x], is independent of n.

Proof. Since A, is a linear operator, Corollary 4.9 implies that

qF
A];Lp(l —n,F;x) = AIC{LP(I —n;x) — Z Xl(a)Alé<a>n_1,

a=1
(a,p)=1

where F is a positive multiple of pg~'F,. Thus

qF

DBy (F) = 8By (0) = — Y x1(@)(a) ™' A¥a)".
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Note that

k
@ s =Y () = (o) (@ - 1)

Now, (a) =1 (mod ¢Z,), which implies that (a)° =1 (mod gZ,), and thus
A(a)" =0 (mod ¢"Z,).
Therefore
A (F) = A 5 (0) = 0 (mod ¢"Z,[x1)
and so q‘kAlgﬁn,X(F)-q—kA’C‘ﬂn,X(O) € Z,[x]. Also, since (a)" =1 (mod ¢Z,),

gF

c_ 1 k
25) g AL (F) — g T* A B 0 = = Y xi(@)(a)" ! (<a>q )

a=1
(a,p)=1

implies that the value of ¢ *A*B, . (F) — g *A%3, ,(0) modulo gZ,[x] is
independent of n.

Let 7 € pq~'FyZ,. Since the set of positive integers in pg~'FyZ is dense
in pq_lFoZp, there exists a sequence {7;}%°, in pg~'FyZ, with 7, > 0 for
each i, such that 7, — 7. Now, (,,(f) is a polynomial, which implies that
B, (Ti) = Bu (7). Therefore

Hm (A8 x(71) = AgBux(0)) = Alfx (1) = AlBx(0)

The left side of this equality is 0 modulo ¢*Z,[x], which implies that

A () — BB x(0) = 0 (mod ¢'Z,[xD),

and so ¢ *AkB, (1) — g*ALB, ,(0) € Z,[x]. Furthermore, for n’ a positive
integer,
lim (47 A () = ¢ DB x () = (7 B x (1) = G A ()

= ((q_kAléﬂn,X(T) - q—kA]c(ﬁn,x(O)) - (q—kAlgﬁn’,x(T) - q_kAlé/Bn’,x(O))) .

Since 7; € pg~'FoZ for each i, the quantity on the left must also be 0 modulo
qZ,[x]. Therefore the value of g *A%B,, (T) — g * A%, (0) modulo gZ,[x]
is independent of n. [
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THEOREM 4.11. Let n, ¢, k, and k' be positive integers with k = k'
(mod p — 1), and let 7 € Z), such that IT qu 1Fo) Then

q_kAIé:Bn,x(T) - q—kA]ccﬁn,x(O)
=g ¥ A B, (1) — ¥ A B, ,(0) (mod pZ,[x]).

Proof. Let k and k' be positive integers such that kK = k" (mod p — 1).
Without loss of generality, we can assume that k > k’. From (25),

(q_"AkﬁnX(F)— g A B (0)) — (g% AF By (F) — 7% A B, (0)

= — Z x1(a)(a)"™ 1<< >q—1> + f: Xl(a)<a>nl<<a>cq_l>k/

(ap) 1 (ailp:)il
qF k' k—k’
_ <a>f—1> <<<a>c—1> _1>
; x1(a)(a) ( p p ,
(a,p)=1

where F is a positive multiple of pg~!Fy. If a is such that

(@) —1# 0 (mod pqZ,),

then

e 4 k=K
<<a>q 1) ~1=0 (mod pZ,),

since Kk — k' =0 (mod p — 1). Thus
G DB (F) = g A B 1 (0)

=g X A B (F) — g A¥ B, ,,(0) (mod pZ,[x]).

Now let 7 € pg~'FoZ,. Then there exists a sequence {7;}%°, in pg—'F,Z,
with 7; > 0 for each i, such that 7; — 7. Consider

Hm (@ AL (70) = 4 A (O0) = (@AY B (73) — g AF 3,,,(0)
= (4 BB () = AL x(0)) = (a7 AL Boy () ~ g7 A B, (0))

Since the left side of this equality must be 0 modulo pZ,[x], the theorem
must hold. []
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THEOREM 4.12. Let n, ¢, and k be positive integers, and let 7 € Z,
such that |7|, < ’pq_ng‘p. Then the gquantity

—IA —IAC
(q )ﬁn x( )_ (q k )ﬁn,x(o) € Zp[X]a

and, modulo qZ,[x], is independent of n.

Proof. We are once again working with a linear operator, so Corollary 4.9
implies that

_IAC —IAC aF —IAC
(‘1 . )Lp(l—n,F;X): (q ) )Lpa—n;x)— > X1(a)<q ) )<a>”*1,

a=1
(a,p)=1

where F is a positive multiple of pg~'Fy. Then

~1A, g~ 'A qF —1A,
(7)o = (7)== Y @t (T2 ar

a=1
(a,p)=1

Utilizing (15), we can write

_IAC 1 k

m=0

k

stk,myg~"(a)" ({a)* —1)",

Tk —

which follows from (24). This can then be rewritten as

(q‘;Ac) (@) = (a)" (Q“((ali" - 1)) |

Since g~ '({a)* — 1) € Z, for each a € Z with (a,p) = 1, we see that

—1 c
nl4 (<a> — 1)
(a) ( r €Z,.
This then implies that

g A, 1A,
( )ﬂn X(F) (q k )ﬂn,x(()} S ZP[X]-

Furthermore, since (@)" = 1 (mod gZ,), the value of this quantity modulo
qZ,(x] is independent of 7.
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Now let 7 € pg—'FoZ,, and let {r;}3°, be a sequence in pg~'FoZ, with
7. > 0 for each i, such that 7, — 7. We are working with polynomials, so
that

—IAC ‘IAC
lim ((‘] . )m,xm-)— (q . )ﬁn,xm))

—1 —IAC
b— <q kAC>)8,17X(T) - <q k )Bn,x(())a

which must be in Z,[x] since the limit of any sequence in Z,[x] must also
be in Z,[x]. Now let n' be a positive integer, and consider

tim (74 Bux— (72) Bur ) = (1) B ()= () B x(0)))

= (7% Bu™)= (7% B @) = () B x(1) - (%) B 1))

The quantity on the left must be 0 modulo gZ,[x], which implies that the

value of
~lA ~lA
(q k );Bn,x(’r) — (q k >6}2,X(0)

modulo gZ,[x] is independent of n.  [J

4.4 (GENERALIZED BERNOULLI POWER SERIES

In [9] we find a definition of ordinary Bernoulli numbers of negative index,
B_,, where n€ Z, n>1, in the field Q,, given by

(26) B—n == kl—lsnolc Bqﬁ(p")——n)

where the limit is taken in a p-adic sense. Note that ¢(p*) — 0 in Z, as
k — oc. Since |B,, |p is bounded for all m € Z, m > 0, we must have

2 5(p*y—n—
By = lim (1-p*" ") Booty—n

k—oc

= Jlim — (6 (1) ~ W) 1, (1~ (9 () — ) s77)

k—oc

=nL, (n+ Lw™) .

implying that the limit exists and can be described in familiar terms.

Recall that B,, = 0 for any odd m € Z, m > 3. Thus (26) implies that
B_, =0 for any odd n € Z, n > 1. Furthermore, we have the following :

[ S
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THEOREM 4.13. Let n € Z be even, n > 2. Then

B+ > %EZP,

r prime
(r—Djn

where each prime r is taken to be a rational prime.

REMARK. Since 1/r € Z, for any rational prime r # p, this implies that
B_,+1/p € Z, whenever (p—1)|n, and B_, € Z, otherwise.

Proof. By the von Staudt-Clausen theorem, we know that

for any even me€ Z, m > 2.

Let n € Z be even, n > 2. For any integer k > 2, ¢(p*) is even and
(p—1) | &(p*). Thus ¢(p*) —n is even, and (p — 1) | n if and only if
(p— 1) | (¢(p*) — n). Therefore, if k is sufficiently large,

1
By pky—n + Z - €Z,,

r prime
(r—Din

and the result follows from (26). ]

In a similar manner we define generalized Bernoulli numbers of negative
index, B_, ,, where n € Z, n > 1, in the field C, according to
(27) B_n>X - lim B¢(Pk)_"»X7

k— o0

where the limiat*is once again taken in a p-adic sense. For each m VE Z,m>0,
the quantity |Bm,x|p is bounded. Thus, since x4,x) = x for all characters x
and for all k€ Z, k> 1, we can write

B = lim (1—x k(p)pd’(pk)—”_1 By o
—n,X A ¢(p ) ¢(P )_n7X¢,(pk)

= lim — (¢ (p) —n) L, (1= (¢ (¢") — 1) 1 xn)

k— o0

= an (n+ 1;xn) ,

so that the limit exists. Since By pr_n1 = By(pty—n for n,k € Z, with n > 1
and k sufficiently large, we obtain B_,; = B_, for all such n.
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If k> 2, then ¢(p¥) is even. Thus n and ¢(p*) — n are of the same
parity. Recall that
{ 1, if x 1s odd
1o, if x 1s even.
Then By pty—n, = 0 whenever n # 6, (mod 2), provided (P —n > 1.
Because of this, the relation (27) implies that B_,, = 0 whenever
n# 0, (mod 2) for all n € Z, n > 1. Furthermore, we can obtain

THEOREM 4.14. Let x be such that x # 1, and let n € Z, n > 1. Then
FiB-nyx € Lplx].
Proof. Recall that when x # 1, fiBny € Z[x] for all me Z, m > 0.
Thus
FiBnx = kl_in;ofxB¢(pk)—rz,x
must be in the p-adic completion of Z[x] for any n € Z, n > 1. Since the
p-adic completion of Z[x] is Zy[x], the theorem must hold. [

We now define what we shall refer to as generalized Bernoulli power series
of negative index in Z,[x]. For n € Z, n>1, and for 1 € C,, 1|, < |q],,
let

B_nx(®) = klfgo By pry—nx (D) -
Then

. by,
B, x(qt) = kgrgo(B(b(pk)_n,xd)(pk)(qt) — X¢(pk)(p)p¢(” )—n—1

= lim —(¢(p") =)Ly (1 = (¢(p") —n), 1 x)
= an(n + 1,1 Xn) .

—1
B¢>(p"')~n,x¢(pk) (p qt))

Since L,(n+1,¢;x,) exists for each n € Z, n > 1, and 1 € Cy. t|p <1,
we see that B_, ,(qf) must also exist for such ¢. Thus B_, (1) exists for

te Cy, |t|, <lgl,- Now, by Theorem 4.5, we can expand this quantity as a
power series, obtaining

oo

- 1
B_, (gt =n Z < (nm+ )> q"t"L, (n +m+ 1; Xrl+m)

m=0

[~ +1D\ , . 1
=n 3 (O )b

e n+m

= [—n
- Z - )B*(wm),xqum -

m=0
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. -1 —1
Since |B_gumxl, < max{|pl; ", £, >"} and

()= ()
m m

this sum converges for Iqt{p < 1. Thus we have the relation

(28) B—n,x(t) = Z (:’:)B—n——m,xtm»

m=0

converging for all ¢ € Cp, |f|, < 1. Note that this is in the same form as
(2) for the generalized Bernoulli polynomials having positive index, which we

can rewrite as
> /n
Bn,x(t): § <m)Bn—m,xtma

m=0

since (;’1) =0 for myneZ, m>n>0. By setting ¢t = 0 in (28), we see
that B_, ,(0)=B_,, forall n€Z, n> 1.

THEOREM 4.15. Let n€ Z, n > 1. Then for any m € £, m > 1, such
that q | mf,,

mfy

B_nx (mfy) =B_nx(0)=-n > x(a)a """

a=1
(a,p)=1

Proof. By definition, since |mf, L, < lal,

B_nx (mfy) = B-nx(0) = kli)ﬂ;o (Botpy—nx (M) = Bo(ptr—n,x(0)

mfy

— i (¢ (pk) _ n) Zx(a)aqﬁ(pk)—n—l’
a=1

k—o0

following from (4). Now, v,(¢(p*)) = k — 1, and a®?) = 1 (mod p*) for
(a,p) = 1. These imply that

mfy mfy
. k——n— _—n—
Jlim (¢ (p") = n) ;:1 x(@a? P = —p a§:1i x@a ",

(a,p)=1

completing the proof. [
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THEOREM 4.16. Let n € Z, n > 1. Then for all x and for all t € Cp,
1], <1,
B—n,x(—t) - (_I)HX(—I)B—n,x(t)-

Proof. Since

(0.0]
—n m
By =) (m >B_n_m,xr ,

m=0

and B_,_, x = 0 whenever n+m # 6, (mod 2) foreach meZ, m>1, we
see that B_, ,(¢) is either an odd or an even function according to whether
n+ 6, is odd or even, respectively. Thus

B_p(—1) = (=1)"™™xB_, . (1)
= (—1)"X(=1)B_n (),

and the proof is complete. [
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