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The paper is organized as follows. In Section 1 we recall basic definitions
and facts related to cubical complexes, prove some criteria for foldability
and discuss nonpositive curvature. In Section 2 we recall some constructions
and examples of foldable cubical complexes. In Section 3, we introduce

hyperplanes in cubical complexes as in [NR]. Foldability then leads to systems
of disjoint hyperplanes and their "dual trees" which will accomplish the proof
of Theorem 1. In Section 4 we investigate the induced actions on the dual

trees and obtain the proof of Theorem 2. In Section 5 we develop the idea

of parallel transport in cubical manifolds and use it to prove Theorem 3.

We are grateful to M. Bridson, T. Januszkiewicz, S. Mozes and the referee

for helpful discussions and hints.

1. Cubical complexes

In this section we briefly recall basic notions and facts related to cubical

complexes.

Cubical complexes and cubical metric

A cell P is the convex hull of a finite set of points in a real vector space.
Faces of P are then well defined, and they are also cells (see e.g. [Br]). The

set V of faces of P is partially ordered by inclusion and called the poset of P.
Two cells are combinatorially equivalent if their posets are isomorphic. For

example, every convex quadrilateral polygon is combinatorially equivalent to
the unit square. An isomorphism of posets induces a bijection between sets of
barycenters of faces and thus determines a piecewise linear homeomorphism
between two cells. We call such a homeomorphism a realization of a

combinatorial equivalence.

A cell complex is a collection X of cells which are glued by realizations

of combinatorial equivalences along faces. We also assume that different faces

of the same cell are not identified and that the intersection of different cells is

either empty or consists of one cell. These latter assumptions are not essential,

but they simplify the exposition considerably. However, we do not require that

X is locally finite, so that, if not explicitely stated otherwise, a vertex in X

may belong to infinitely many distinct cells.

We say that a cell complex X is simplicial if the cells of X are simplices.
Because of our assumptions on the glueing of faces, this coincides with
the standard terminology. We say that X is cubical if the cells of X are

combinatorially equivalent to cubes.
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Let A be a cubical complex. Any combinatorial equivalence of a Euclidean

unit cube is an isometry, hence any cell P in A is endowed with a canonical

metric dP which makes it isometric to the Euclidean unit cube. This allows

to measure the lengths of finite polygonal paths in X. Let d be the associated

length pseudometric on X. Then d is actually a metric and turns X into a

complete geodesic space, see [Bl]. We call d the cubical metric.

Residues and links

For a cell complex X and a cell P in X, the residue of P, denoted resP,
consists of all cells of X containing P. The residue of a cell is a closed

subcomplex of X.
Let A be a cell complex. If P and Q are cells in X with Q G resP,

then the poset consisting of all faces R of Q with P / R D P is a poset
of a cell Qp, well defined up to combinatorial equivalence and of dimension
dim Qp dim Q — dim P. We define the link XP of a cell complex A at a

cell P as the collection of the cells QP, one for each cell Q in resP, with
the natural identifications of faces induced from A.

We will need residues and links only in the case when A is simplicial
or cubical. In both cases, the links are simplicial. In the simplicial case, the
residue of a simplex P of A is naturally homeomorphic to the simplicial
join of P and XP, in the cubical case to the cubical cone over XP times P.
(See the subsection on right angled Coxeter complexes in Section 2 for the
definition of the cubical cone.)

Galleries and chamber complexes

An n.-dimensional cell complex A is called dimensionally homogeneous if
each cell of A is contained in an n -dimensional cell. If A is dimensionally
homogeneous, then the top-dimensional cells of A will be called chambers,
the cells of codimension 1 panels.

A special case occurs when A is homeomorphic to a manifold. In this
case we say that A is a cellular manifold, speaking also about simplicial or
cubical manifolds if all the chambers are simplices or cubes respectively.

Let A be a dimensionally homogeneous cell complex. A gallery> in A is
a sequence of chambers where any two consecutive chambers have a panel
in common. We say that A is gallery connected if any two chambers of A
can be connected by a gallery. If A is gallery connected, then we say that
A is a chamber complex. Tits buildings and connected cellular manifolds are
chamber complexes.
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We say that X is locally gallery connected if the link of each cell of X
of codimension greater than 1 is gallery connected. If X is connected and

locally gallery connected, then X is gallery connected and hence a chamber

complex.

Foldings

A folding of an n -dimensional simplicial (respectively cubical) complex X
is a combinatorial map of X onto an n-simplex (respectively n-cube) which
is injective on each cell of X. A folded simplicial (respectively folded cubical)
complex is a simplicial (respectively cubical) complex together with a folding.

A simplicial (respectively cubical) complex X is foldable if it admits a

folding, locally foldable if the link of each cell of X is foldable. The following
lemma gives a criterion for foldability of a cubical complex in terms of local

properties.

LEMMA 1.1. Let X be a simply connected cubical chamber complex of
dimension n. If X is locally gallery connected and locally foldable, then X is

foldable and a folding of X is unique up to an automorphism of the n-cube.

Proof We observe that foldability (respectively gallery connectedness)
holds for the residue of a cell P of X if and only if it holds for the link
XP. Therefore the assumptions of the lemma imply that all residues in X are

foldable and gallery connected.

A curve c: [0,1] —» X is called generic if it crosses the codimension one
skeleton of X at finitely many points. We will call such points singular. Since

X is dimensionally homogeneous, generic curves are dense in the space of all

curves in X.
Let c be a generic curve connecting interior points p and q of chambers

P and Q of X. Define an isomorphism fc: Q —* P as follows. If c has no

singular point we set fc idp. If c has one singular point, let R be a cell

of X containing this singular point in its interior. Then the whole curve c is

contained in the residue of R. Since res R is foldable, there exists a folding
map /: res/? —> P which extends idp ; since resR is gallery connected, / is

unique. We set fc :=/|g- Finally, if c has more than one singular point, we cut

c into a sequence c; of curves, each of which has exactly one singular point
in its interior, and define fc to be the composition of the isomorphisms fCj.

We show now that fc id for each closed generic curve at p. Let c be

such a curve. Since X is simply connected, c can be contracted to p. Such a

contraction can be chosen to be generic, that is, it consists of generic curves
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only and singular points appear or disappear only at a finite number of times

during the contraction. At each such time, c can be cut into finitely many

pieces such that each piece is contained in the residue of a cell and such

that the appearance or disappearance of singular points occurs in (some of)

the pieces. Since residues are gallery connected and foldable, we conclude

that fc remains unchanged during the contraction. Now fp id for the point

curve p, hence fc — id.

Fix a chamber P in X and an interior point p of P. For each other

chamber Q of X choose an interior point q G Q and a generic curve c

connecting p with q. Define a map F: X — P by F\q fc. The above

considerations show that F is well defined, hence A is a folding of X. This

proves the first assertion of the lemma.

The remaining assertion that the folding is unique up to an automorphism

of the 77-cube follows immediately from gallery connectedness of A.

LEMMA 1.2. Let X be a simply connected cubical chamber complex of
dimension n. Suppose that

(1) the links at cells of X of codimension > 2 are simply connected;

(2) the links at the cells of X of codimension 2 are connected bipartite
graphs.

Then X is foldable, and a folding of X is unique up to an automorphism of
the n-cube.

Proof For the purpose of this proof a curve in X is called generic if it
misses the skeleton of codimension 2 and crosses the cells of codimension 1

transversally (note that this notion here is slightly different from the one in the

proof of the previous lemma). It is clear that any two points in the interior of
some chambers of X can be connected by a generic curve. If such a curve is

closed, it can be contracted to a point by a contraction that misses the skeleton
of codimension 3 and crosses the higher dimensional skeleta transversally.

Now we repeat the arguments of the proof of Lemma 1.1 taking only
the residues of cells of codimension 2 into account. These residues consist
of chambers arranged according to the corresponding links. Because the links
are bipartite graphs, the residues are foldable.

COROLLARY 1.3. Let X be a simply connected cubical manifold of
dimension n with the property that the number of chambers adjacent to
each face of codimension 2 in X is even. Then X is foldable, and a folding
of X is unique up to an automorphism of the n-cube.
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Nonpositive curvature

We will need some elementary facts from the theory of spaces with upper
curvature bounds. The main reference is [Ba].

Let (X, d) be a metric space. A curve in X is called a geodesic if it has

constant speed and realizes the distance locally. We say that X is geodesic if
any two points of X can be connected by a minimal geodesic. From now on

we assume that X is a complete geodesic space.
Let k G R, and let M\ be the model surface of constant Gauss curvature n.

Denote by D{n) the diameter of M\. We say that our geodesic space X is

a CAT(k) -space if any geodesic triangle in X with minimal sides and of
perimeter < D(n) is not thicker than its comparison triangle in M\. We say
that X has curvature < k if any point of X has a neighborhood that is

CAT(k) with respect to the induced metric.

For nonpositively curved spaces, that is, spaces with upper curvature
bound 0, there is the following extension of the Hadamard-Cartan Theorem.

THEOREM 1.4 (Gromov [Gr], Alexander-Bishop [AB]). Let X be a simply
connected, complete geodesic space of nonpositive curvature. Then geodesic

triangles in X are not thicker than their corresponding comparison triangles
in the Euclidean plane. In particular,

(1) for any two points x.ty G X, there is a unique geodesic axy: [0, 1] —>• X
from x to y and depends continuously on x and y ;

(2) locally convex subsets of X are globally convex;

(3) X is contractible.

We say that a cubical complex is nonpositively curved if it is nonpositively
curved with respect to the cubical metric. The lemma below presents a

necessary and sufficient condition for a cubical complex to be nonpositively
curved in terms of its combinatorics.

A simplicial complex X is a flag complex if each set of vertices of X, in
which any two vertices are connected by an edge, spans a simplex of X.

LEMMA 1.5 (Gromov [Gr]). A cubical complex is nonpositively curved if
and only if the link Xv at each vertex v of X is a flag complex.

Remark 1.6. If X is a simply connected nonpositively curved cubical

complex, then the restriction of the cubical metric to any of its cells coincides

with the standard Euclidean metric on the cell.
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