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PRODUCT MEASURABILITY, PARAMETER INTEGRALS,

AND A FUBINI COUNTEREXAMPLE

by Lutz MATTNER

Negative results:

1) A convolution f g(—y)h(y) dy need not be measurable with respect to the & -algebra

generated by the translates of g.
2) There exist a Borel set A C R and two cr-finite measures /x, v such that

JJ IaQc -f y) d/a(x)dv(y) ^ JJ Ia(x + y) dv(y)dn(x).

Positive result:

A function of two variables, measurable with respect to a product cr -algebra

A®B and partially measurable with respect to Aq C A and Bq C B, is /x® v-almost
measurable with respect to Ao®B0, for fi, v cr-finite measures on A, B.

1. Introduction

Let be a a-finite measure space, let T be a set, and let

/: X x y —r [0, oo] be a function with fix, •) B -measurable for every
Then

(1) Fix) := [ f(x,y)dviy) (x G X)
Jy

defines a function F: X —# [0, oo]. Now let Aq be a a -algebra on X, and

assume that fiyy) is Ao-measurable for every y G y. Does it follow that
F is Aq -measurable Surprisingly, most books on measure and integration
ignore this question. Regrettably, the answer is no. Already Sierpinski (1920)
provided a counterexample. His construction uses the axiom of choice and the

continuum hypothesis. Without using these or similar axioms, we present below
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in paragraph 2.1 a simple example of a nonmeasurable F, with the right hand

side of (1) being of convolution type. On the other hand, Theorem 3.1 contains

a positive result, almost yielding Ao -measurability of F under additional

assumptions.
Now assume that we are also given a a-finite measure g on (X,Ao).

Let us further assume that the function F from (1) is Ao -measurable and,

similarly, that G := Jxf(x^)dg(x) is F-measurable. Does it then follow
that the "Fubini identity" fy G(y) dv(y) — fx F(x) dg(x) holds Again, the

answer is no, as Sierpinski (1920) remarked, essentially by specializing his

construction mentioned above. This counterexample has found its way into a

number of books, for example Rudin (1987) and Royden (1988), as showing
that the assumption of measurability of / with respect to the product a -algebra
Ao®B in the Fubini theorem is not superfluous. In its construction the axiom
of choice is still used. The continuum hypothesis is needed only if one insists

on specifying the measure spaces, for example as Lebesgue measure. That

something beyond the axiom of choice is really needed in the latter case has

been proved by Friedman (1980). Below we give, without using the axiom
of choice or the continuum hypothesis, a simple construction of a Borel set

A C R and of two a-finite measures g and u, defined on suitable a-algebras
on R, such that

(2)
/R

lA(x + y) dg(x) dviy)
U R

with both iterated integrals existing.

/R
1A(x + y) du(y)

J R
dg(x).

2. Nonmeasurability and a Fubini counterexample

2.1 A NONMEASURABLE CONVOLUTION

In this section, we show that a convolution

(3) F := [ g(- — y)h(y) dy,
7r

with g being a nonnegative bounded Borel function and h nonnegative
continuous with compact support, need not be measurable with respect to

(4) Ao := cr({g(- - y) : y e R}),

the a-algebra generated by the translates of g. This yields in particular a

counterexample to the measurability of F from (1), with f(x,y) g(x—y)h(y),
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x y R, a A from (4), B B(R) := Borel cr-algebra on R, and

v À := Lebesgue measure on B(R).
The construction becomes clearer if we first drop the nonnegativity and

boundedness conditions imposed on p, for which the necessary modifications

are indicated afterwards.

Remember that a set A C R is called meager [or of the first category]

if there is a sequence of closed and nowhere dense sets Fn C R with
A C UneNFn. Correspondingly, a set B C R is called comeager if its

complement Bc is meager, which is equivalent to the existence of a sequence

of dense open sets Gn C R with B 3 f\eN Gn • It is easily checked that

(5) A := {A G £>(R) : A meager or comeager}

is a cr-algebra on R. By Baire's theorem, every comeager set is dense in
R. [We have claimed in the introduction not to use the axiom of choice in

constructing this example and the one in 2.2. So we have to note here that we
are applying Baire's theorem only in R, a separable complete metric space,
where no form of the axiom of choice is needed in its proof. Compare Oxtoby
(1980), page 95.] It follows that, for example, the set [0. oo[ is neither meager
nor comeager. Hence we surely have the strict inclusion

(6) A £ B(R).

Now choose A G A meager with À(Ac) 0, for example as in Oxtoby (1980),
pages 4-5. Put

(7) g(x) := V lA(x) (x e R).

(8) h(x) := (1 - |*|)+ (x G R),
and define F as in (3) and Ao as in (4). Then

(9) Ao C A.
because every g{-—y) is Borel and vanishes on the comeager set (y+A)c, and
is hence A.-measurable. On the other hand, since A(AC) 0 and f hdy 1,

I yh(y)dy 0,

(10) F(x) f (x - y)h{y) dyx R).
JR

Hence a(F), the cr-algebra generated by is just ß(R), and by (6), (9) it
follows that F is not Aq -measurable.

To obtain that same conclusion for a nonnegative and bounded g, we may
replace g from (7) by g(x):=(tt/2 + arctanx)U(x). Instead of calculating
explicitly, we then argue that Fis still strictly increasing, and this suffices to
deduce that a(F) B{R).
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2.2 A Fubini counterexample

In this section, we give an example of (2). Let A be as in (5) and define

/'U by

0 if A is meager,
(11) MA):=

tt 1 if A is comeager.

This is possible, since no set A C R is simultaneously meager and comeager,
for otherwise 0 A n Ac would be comeager, in contradiction to Baire's
theorem. It is easy to check that p is a probability measure on (R, A).
Let again v := À := Lebesgue measure on B := B(R), and choose A e A
meager with A(AC) 0. Then lA{- +y) is A-measurable with

[ lA(x + y) dfi{x) ß(A-y) 0 (y G R).
J R

On the other hand, we have

/ lA(x + y) dv(y) À (A — x) oo (x G R).
JR

Hence (2) is obviously true in this case.

3. Measurability

Here is a positive result, having a certain measurability property of F
from (1) among its conclusions. An application of this occurs in Mattner
(1999).

3.1. THEOREM. Let (X,A,ß) and (y,B,v) be (J-finite measure spaces,
let f: X x y —>• [0, oo] be a function measurable with respect to the product
a-algebra A®B, and put

A0 :=cr({f(-,y) : y e y}),
B0:=<r( !/(>.•) :xeX}),

To := {A G A : 3 A0 A with A=A0 [yu]}

Bo:= {BeB: 350 A0 with [i/]}
To <S> Bo:= {Ce A®£> : 3 Co G To ® So C Q [yu ® f]} •

TAen / « To <E> ßo -measurable,jy/(,}')dv(y) is To and

fix, djiix) is Bq-measurable.
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Here and in what follows, we write A Ao I>] for /x(AaAo) — 0. Below

we also use the corresponding notation / [/i] for functions, meaning

M({x : fix) A g(x)}) 0.

3.2 Remarks

Let us retain the notation and assumptions of Theorem 3.1.

a) The parameter integral J / (•. v) (//'( vi need not be Ao -measurable and /
need not be Ao <8> Bo-measurable, as the example in 2.1 shows.

b) The function / need not be Ao ® So -measurable. As an example proving

this remark, we may take (X.A, /u) := := ([0,1],B([0,1]), A1)»

D := {(x,x) : xG[0,1]}, and / := Id[Wenow write \d for ri-dimen-

sional Lebesgue measure.] Then

A0 Bo{A G £>([0,1]) : A countable or cocountable}

Ao So {A G BiR). 1]) : A'(A) G {0,1}}

and we claim that / is not Ao ® S0 -measurable. To prove this, put

C := {C G B([0, l]2) : (a2(C),J lc(,v..vu/A'i.v) G {(0, 0), (1,1)}}

Then C is a <7-algebra containing [A x B : A G Ao, B G Bo}, and hence

satisfies But D ^ C, so that D ^ Aq Bo.

c) Let us write more explicitly Ao(ß) in place of Ao- From Theorem 3.1,

we may deduce the measurability of F := ff(-,y) dv(y) with respect to

the intersection being over all A and n as in the theorem.

This, however, must not be confused with the more restrictive property
of universal Ao -measurability of F [see Cohn (1980), pages 280-283,
for the definition and for illuminating facts]. Indeed, our measures fi are

supposed to be defined on some A rendering f A <g> 23-measurable,

and not merely on Ao or its fi -completion. For example, in the

situation of 2.1, one can use the measure /jl from (11) to deduce

that the a-algebra of all universally Ao -measurable sets is contained
in Ao {A c R : A meager or comeager}. Since Ao differs from
Ao only by non-Borel sets, we see that F from (3), (7), (8) is not
universally Ao -measurable. By the way, the known fact that /i from (11)
can not be extended to a measure on 23(R) [see Oxtoby (1980), page 86]
follows from our present considerations, since otherwise we would have

Ao(fji) Ao D B(R) Ao, and Theorem 3.1 would yield Ao -measurability

of F.
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3.3 Proof of Theorem 3.1

Obvious arguments show that we may assume in addition that

(12) p, v are finite and / is bounded.

The proof of the theorem splits into two parts as follows.

CLAIM 1. Under the assumptions of the theorem and (12),

(13) F \= J f(',y)dv(y)

is Ao -measurable.

Proof Let us first recall the "mean value theorem" for vector valued

integration : Let f be a topological vector space, (O, A, p) be a measure

space, and g : O —» E be a function. Then an x E E is called the weak (or
Pettis) integral of g, and we write f g dp := jc, if

(i) the dual space E' of E separates points on E,
(ii) the scalar function {y,g(-)) belongs to £l(Q,A,p) for every y G E',

and

(iii) f (y,g(uj)) {y,x)forevery y e E'.
[This is the definition adopted by Edwards (1965), p. 566, and by Rudin

(1991), p. 77.] If now E is in particular locally convex Hausdorff and p is

bounded, then the weak integral, if it exists, necessarily satisfies

with conv indicating convex closure. This "mean value theorem" is surely
well known. It follows easily from the Hahn-Banach theorem : Apply Theorem
3.4 (b) of Rudin (1991) to A := {f g dp} and B := p(Q) - conv#(Q).

We now start with the proof proper. The functions /(-,y): X —» R, as well
as F from (13), are A -measurable [by A®B -measurability off and by Fubini]
and bounded, and hence belong to CfX. A, p). Let [/*(-, y)], [F] E L1 (X, A, p)
denote their corresponding equivalence classes. We claim that

in the weak sense recalled above, applied to the Banach space E Ll(X. A, p)
with dual space L°°(X,A,p). To prove this, let h E [h] e L°°(X,A,p). An
obvious Fubini calculation, using the definition of F and the A 0 B -measurability

of /, yields

(14)

(15)
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{[h], [F]) f h(x)F(x)d/i(x) [ ([h],\f(-,y)]) dviy),
7A 7A

which confirms (15). [Actually, (15) is even true with the right hand side read

as a Bochner integral, but we do not need this fact here.] We now use that

each /(-,y) is Ao-measurable, where of course Ao C A. This implies that

the function y [/"(-, y)] takes its values in

S := {<Ê> g Ll(X7A,p) : 3 Ao--measurable <p G O}

which is easily seen to be a closed subspace of L1 (A, A. /i). The mean value

theorem (14) now yields [F] G S, which is the desired conclusion.

CLAIM 2. Under the assumptions of the theorem and (12), and assuming

the truth of Claim 1, f is Ao <8> Bo-measurable.

Proof We consider the restrictions

do := d\j0 7 ^0

and define a function r : A.q 0 £>o [0, oo] by

(16) t(C) := f [ f(x,y)lc(x,y)dV0(y)d~Fo(x) (C e A0 0 B0),
Jx Jy

and we emphasize that the right hand side has to be read as an iterated

integral. In order to show its existence, we have to check that the function

x I—* fyf(x,y)lc(,x,y)dvo(y) is Ao -measurable. For the special case C Ax B

with A G Ao and B G Bo, this follows from Claim 1, applied to Ao

in place of Ao and /(x,y)lß(y) in place of /(x,y), and using Ao Ao-
The general case follows as usual via Sierpinski's lemma [Satz 1.6.8 in
Elstrodt (1996)]. Thus r is well-defined. It is easily checked that r is a

measure, and that every set of ~p0 G) z7q -measure zero is of r -measure zero
as well. Hence the Lebesgue-Radon-Nikodym theorem yields the existence of
an Ao 0 Bo -measurable function /: X x 3^ —» [0, oo] such that

t(C) J fdji0 ®V0 (C £ Ao®

By (16) and Fubini, this implies in particular

(17) J J f(x, y)dVoiy)dß0(x) J Jf(x,
Ao Bo Ao Bo

(Ao G Ao, Bo G Bo). Since, using (12), both sides in (17) are always finite,
we may conclude for every B0 G Bo :
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[ f(',y)du0(y)= [ f(-,y)dv0(y) [ijl0].
dß0 JBo

Trivially, this remains true if [p0] is replaced by [p\, and an integration yields

(18) J J f(x, y) dv0(y) dp{x) J J /(*, y)du0(y) dp(x)
A Bo A Bo

(A G A, Bo G £>o). We now want to interchange the order of integrations.
Since / is trivially A 0 Bo -measurable, we may obviously do this on the

right hand side of (18). To do the same on the left hand side, we rewrite it
successively as

/ / y) dv(y) dfi(x) / /(*, y) d/jb(x) dviy) / fix, y) dß(x) düö(y),
J A. JBo dBo JA J Bq dA

where the last equality follows from a second application of Claim 1, with
the role of the variables interchanged. Thus (18) yields

(19) J Jf(x,y)dn(x)dV0(y) J
Bo A Bo A

(A G A, Bo G Bo). Now the argument leading from (17) to (18) can be

repeated to lead from (19) to a corresponding statement with B in place of
Bq, v in place of To, and B in place of Bo, which is equivalent to

/ fdfi^v— / fd/i<S>TJ (A G A, B G B).
dAxB dAxB

This shows that f — f [ /i v\, which yields the desired conclusion.
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