3. Constructions of Chaotic Group Actions Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 41 (1995) Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: **28.04.2024** #### Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. ### Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch suppose that groups G_i , $i \in I$ act faithfully with all orbits finite on the Hausdorff spaces M_i , $i \in I$ respectively. Now to each space M_i , add an additional isolated element x_i and denote \tilde{M}_i the union $M_i \cup \{x_i\}$. Then we define an action of G_i on \tilde{M}_i by using the action of G_i on M_i and making x_i a fixed point. Clearly G_i acts faithfully with all orbits finite on \tilde{M}_i . Now let M denote the subset of the infinite product $\prod_{i \in I} \tilde{M}_i$ composed of all elements $(y_i)_{i \in I}$ for which only finitely many of the y_i are different from x_i . We equip M with the topology induced by the product topology. Then clearly the infinite direct product $\prod_{i \in I} G_i$ acts faithfully with all orbits finite on M. Finally Part (f) is similar to Part (e); suppose that a group G acts chaotically on a space M and that H is a finite group. Then there is a natural action of the wreath product GWrH on the space $M \times H$, where H is given the discrete topology (see [H]). It is easy to see that this action is chaotic. The following groups are known to be residually finite: Fuchsian groups [LS], the mapping class groups of compact Riemann surfaces [G], arithmetic groups [Se] and the group of *p*-adic integers [We]. It would be interesting to find natural chaotic actions of these groups. ### 3. Constructions of Chaotic Group Actions First recall that there are many examples of chaotic **Z**-actions; that is, chaotic homeomorphisms. Perhaps the most basic example is that of the Anosov diffeomorphisms of tori and infranilmanifolds (see [Sm], [Mann]); these maps are chaotic since their periodic points are dense [BR] and by Anosov's closing lemma (see for instance [Sh]), they are transitive on their nonwandering set. (The Anosov diffeomorphisms of tori are just the linear hyperbolic maps; that is, linear maps with no eigenvalues on the unit circle.) Similarly, the pseudo-Anosov maps of compact surfaces are also chaotic (see Exposé 9 in [FLP] and the diagrams in [Mañ], pages 111-116). Let us now give some general results. Theorem 2. Consider a Hausdorff space M and the group Hom(M) of homeomorphisms of M. Then one has: (a) If there are group inclusions $$G \leqslant H \leqslant K \leqslant \operatorname{Hom}(M)$$ then the action of H on M is chaotic if the actions of G and K on M are chaotic. - (b) If $G \le H \le \text{Hom}(M)$ and G has finite index in H and if the action of G on M is chaotic, then the action of H on M is chaotic. - (c) If M is locally compact and if Hom(M) is given the compact-open topology, then the action of G on M is chaotic if and only if the action on M of the closure \bar{G} of G in Hom(M) is chaotic. **Proof.** In Part (a), notice that if a point $x \in M$ has finite orbit under K, then x obviously has finite orbit under H. So if the action of K has finite orbits dense, then the action of H has finite orbits dense. On the other hand, if the action of G is topologically transitive, then clearly the action of H is also topologically transitive. So Part (a) holds. Part (b) is similar to Part (a). In Part (c), again if the action of \overline{G} has finite orbits dense, then the action of G has finite orbits dense. Now suppose that the action of \overline{G} is topologically transitive. Let U and V be two non-empty open subsets of M. Then there exists $g \in \overline{G}$ such that $g(U) \cap V$ is non-empty. Let X be an element of $U \cap g^{-1}(V)$ and let Θ be the open subset of \overline{G} composed of elements that send X into V. Then $g \in \Theta$ and since G is dense in \overline{G} , there exists $h \in G \cap \Theta$. So $h(U) \cap V$ is non-empty and hence the action of G is topologically transitive. Conversely, if M is locally compact, then the natural map $\operatorname{Hom}(M) \times M \to M$ is continuous. So, if a point $x \in M$ has finite orbit under G, then since G is dense in \overline{G} , one has that G(x) is dense in $\overline{G}(x)$. Hence $\overline{G}(x)$ is finite. So if the action of G has finite orbits dense, then the action of \overline{G} has finite orbits dense. Finally, if the action of G is topologically transitive, then obviously so too is the action of \overline{G} . \square ## 4. Manifolds That Admit Chaotic Group Actions Chaotic homeomorphisms of the 2-dimensional disc can be constructed as follows. Starting with any Anosov diffeomorphism of the torus T^2 , one can quotient by the map $\sigma: x \mapsto -x$, to obtain a chaotic homeomorphism on the sphere S^2 . (This map was used in [Wa], p. 140 to show that expansiveness is not preserved under semi-conjugation.) Then, by blowing up the origin to a circle, one obtains a chaotic homeomorphism on the closed disc. Unfortunately this latter homeomorphism is not the identity on the boundary. This can be rectified by making a slight modification of the above construction. Instead of starting with an Anosov diffeomorphism of T^2 , one starts with linked twist map [D1] of the torus T^2 . A linked twist map is an