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suppose that groups G;,i e I act faithfully with all orbits finite on the
Hausdorff spaces M;,i € I respectively. Now to each space M;, add an
additional isolated element x; and denote M ; the union M; U {x;}. Then we
define an action of G; on M ; by using the action of G; on M; and m~aking X;
a fixed point. Clearly G; acts faithfully with all orbits finite on M;. Now
let M denote the subset of the infinite product [J,_,M; composed of all
elements (y;); < ; for which only finitely many of the y; are different from x;.
We equip M with the topology induced by the product topology. Then clearly
the infinite direct product IJ,_,G; acts faithfully with all orbits finite on M.
Finally Part (f) is similar to Part (e); suppose that a group G acts
chaotically on a space M and that H is a finite group. Then there is a natural
action of the wreath product GWrH on the space M X H, where H is given
the discrete topology (see [H]). It is easy to see that this action is chaotic. [

The following groups are known to be residually finite: Fuchsian
groups [LS], the mapping class groups of compact Riemann surfaces [G],
arithmetic groups [Se] and the group of p-adic integers [We]. It would be
interesting to find natural chaotic actions of these groups.

3. CONSTRUCTIONS OF CHAOTIC GROUP ACTIONS

First recall that there are many examples of chaotic Z-actions; that is,
chaotic homeomorphisms. Perhaps the most basic example is that of the
Anosov diffeomorphisms of tori and infranilmanifolds (see [Sm], [Mann]);
these maps are chaotic since their periodic points are dense [BR] and by
Anosov’s closing lemma (see for instance [Sh]), they are transitive on their
nonwandering set. (The Anosov diffeomorphisms of tori are just the linear
hyperbolic maps; that is, linear maps with no eigenvalues on the unit circle.)
Similarly, the pseudo-Anosov maps of compact surfaces are also chaotic
(see Exposé 9 in [FLP] and the diagrams in [Mafi], pages 111-116).

Let us now give some general results.

THEOREM 2. Consider a Hausdorff space M and the group Hom (M)
of homeomorphisms of M. Then one has:

(a) If there are group inclusions
G < H< K< HomWM)

then the action of H on M is chaotic if the actions of G and K
on M are chaotic.
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(b) If G< H<HomWM) and G has finite index in H and if the action
of G on M is chaotic, then the action of H on M is chaotic.

(c) If M is locally compact and if Hom(M) is given the compact-open
topology, then the action of G_ on M is chaotic if and only if the
action on M of the closure G of G in Hom(M) is chaotic.

Proof. In Part (a), notice that if a point x € M has finite orbit under K,
then x obviously has finite orbit under H. So if the action of K has finite orbits
dense, then the action of H has finite orbits dense. On the other hand, if the
action of G is topologically transitive, then clearly the action of H is also
topologically transitive. So Part (a) holds. Part (b) is similar to Part (a).

In Part (c), again if the action of G has finite orbits dense, then the
action of G has finite orbits dense. Now suppose that the action of G is
topologically transitive. Let U and V be two non-empty open subsets of M.
Then there exists g € G such that g(U) n V is non-empty. Let x be an
element of Un g~-1(V) and let ® be the open subset of G composed of
elements that send x into V. Then g € ® and since G is dense in G, there
exists h € G N ®. So h(U) n V is non-empty and hence the action of G is
topologically transitive.

Conversely, if M is locally compact, then the natural map Hom (M) x M— M
is continuous. So, if a point x € M has finite orbit under G, then since G is
dense in G, one has that G (x) is dense in G(x). Hence é(x) is finite. So if
the action of G has finite orbits dense, then the action of G has finite orbits
dense. Finally, if the action of G is topologically transitive, then obviously so
too is the action of G. [

4. MANIFOLDS THAT ADMIT CHAOTIC GROUP ACTIONS

Chaotic homeomorphisms of the 2-dimensional disc can be constructed as
follows. Starting with any Anosov diffeomorphism of the torus T2, one can
quotient by the map o6:xH — x, to obtain a chaotic homeomorphism on
the sphere S2. (This map was used in [Wa], p. 140 to show that expansiveness
is not preserved under semi-conjugation.) Then, by blowing up the origin
to a circle, one obtains a chaotic homeomorphism on the closed disc.
Unfortunately this latter homeomorphism is not the identity on the boundary.
This can be rectified by making a slight modification of the above
construction. Instead of starting with an Anosov diffeomorphism of T2, one
starts with linked twist map [D1] of the torus T2. A linked twist map is an
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