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Proof: Since n > 1, if T C Tn is a circle subgroup then %(X/T) 0.

Applying Theorem 4.5 to the bundle T X-+ X/T yields the

conclusion.

Corollary 4.8. If n > 1 then %i(Tn): Zn 7/1 is zero.

5. A HIGHER ANALOG OF GOTTLIEB'S THEOREM

Let G be a group of type JC Gottlieb's theorem (see Propositions 1.3

and 2.4) asserts that if %(G) ± 0 then Z(G), the center of G, is trivial. We

prove an analogous theorem for %i(G; Q): if %i(G; Q) ^ 0 then the center

of G is infinite cyclic provided G satisfies an extra hypothesis (explained below)

related to the Bass Conjecture; see Proposition 5.2 and Theorem 5.4.

Throughout this section R will be a commutative ground ring. Let S be

any associative R-algebra with unit. The Hochschild homology group
HHq(S) is the R-module S/[S,S] where [S, S] is the R-submodule of S

generated by {ab - ba \ a, b e S}; see §2. Recall that K0(S) is the abelian

group F/A where F is the free abelian group generated by the set of
all isomorphism classes [.M] of finitely generated projective right S-modules

MC ©°°= i S and A is the subgroup of F generated by relations of the form

[Mi © M2] - [Mi] - [M2]. Since a finitely generated projective module is

the image of a finitely generated free module under an idempotent
homomorphism, each element of K0(S) can be represented by an idempotent
matrix over S. The Hattori-Stallings trace T0: K0(S) HH0(S) is defined
as follows. Let A : M -> M be an idempotent endomorphism of a free, finitely
generated right S-module M representing x e K0(S). If [A] is the matrix
of A with respect to a given basis for M then T0(x) is defined to be

T0([A]) eHHo(S).
Consider the groupring, RG, of a group G over R. Then HH0(RG)

is naturally isomorphic to the free TGmodule generated by Gi, the set

of conjugacy classes of G (see §2 for an explanation in the case R Z).
Recall that for g e G we write C(g) e Gi for the conjugacy class of g,
HH0(RG)c(g) for the summand of HH0(RG) corresponding to C(g)
and xC(g) for the C(g)-component of a e HH0(RG). Also write HH0(RG)

HH0(RG)c(l) © HH0(RG)' where 1 e G is the identity element of G,
and HHq(RG)' is the direct sum of the remaining summands. The
augmentation homomorphism s: RG -> R induces a homomorphism
s* : HH0(.RG) -> HH0(R) R.
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Strong Bass Property. We say that the group G has the Strong Bass

Property over R, abbreviated to "SBP over R", if the image of the homo-
morphism T0: K0(RG) -» HH0(RG) lies in the HH0(RG)C(p summand.

Weak Bass Property. We say that the group G has the Weak Bass

Property over R, abbreviated to "WBP over R", if the composite

Tq projection e*
K0(RG) HH0(RG) HH0(RG)' R

is zero.

Clearly, if G has the SBP over R then it also has WBP over R. There are
well-known conjectures concerning the SBP and the WBP (see [Bass], [DV]
and [St, §4.1]):

Strong Bass Conjecture. Every group has the SBP over Z.

Weak Bass Conjecture. Every group has the WBP over Z.

The corresponding conjectures are false over Q for a group which has

nontrivial torsion; instead, one could conjecture:

Strong Bass Conjecture over Q. Every torsion free group has the SBP

over Q.

Weak Bass Conjecture over Q. Every torsion free group has the WBP
over Q.

Each element of the center of G, Z(G), makes up its own conjugacy class.

Given a subgroup N of Z(G), let HH0(RG)N ®c(g) e c{N)HHo(RG)C{g)
where c(N) is the set of conjugacy classes in G represented by elements

of N. Then HH0(RG) HH0(RG)N © HH0(RG)'N where HH0(RG)'N is

the direct sum of the summands corresponding to the conjugacy classes

not in c(N).

Property C. We say that the group G has Property C over R if there exists

a non-empty subset N of Z(G) such that the composite

fo projection s*
K0(RG) - HH0(RG) HHo(RG)'n-^R

is zero.

By taking N to be the trivial subgroup of Z(G) we see that if G has the

WBP over R then it also has Property C over R.
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Recall that a group G is said to have finite cohomological dimension over

the commutative ground ring R if there exists an integer N such that

Hk(G, M)0 for all i?G-modules M and for all k > N. Also, G is said to

be of type FP„ over R if the trivial i?G-module R has a resolution by finitely

generated projective PG-modules.
The following proposition is derived from the techniques of [St, §3].

Proposition 5.1. Let R be a principal ideal domain of characteristic

p^ 0. Suppose that G is of type FPœ over R and has finite cohomological

dimension over R. Suppose also that G has a subgroup H of
finite index which has Property C over R; furthermore, if p > 0 assume

that p does not divide [G:H]. If the Euler characteristic %(G;R)

Er>ö(~ l)'rankÄi//(G, R) is non-zero modulo p then the center

of G is finite.

Proof. Since H is of finite index in G, H is also of type FP& over R

([Bi, Proposition 2.5]) and has finite cohomological dimension over R

([Bi, Corollary 5.10]). Furthermore, %(H; R) [G : H] %(G;R) and so

%{H\ R) ± 0 mod p.
We show that the center of H, Z(H), is finite. It then follows that

the center of G, Z(G), is finite because there is an exact sequence
1 -+ Z(G) n H~+Z(G) Ng(H)/H, where NG(H) is the normalizer
of H in G, and the groups NG(H)/H and Z(G) n H C Z(H) are finite.

Since H is of type FPo, over R and has finite cohomological dimension
over R, it follows that R has a finite resolution, 0 - Pn -> * * • -> P0

R -> 0, where each Pj is a finitely generated projective R//-module
(combine [Bi, Proposition 4.1(b)] and [Bi, Proposition 1.5])). Let s: RH -> R
be the augmentation homomorphism. Consider the commutative square:

K0(RH)LHH0(RH)

£* 1 S* >1

^o(^) ^ HHo (JR.) R

Let a Y,n^0(- l)"[Pn] e K0(RH). Then s*(T0(a)) r0(s*(a))
X(H;R) - 1 where 1 e R is the unity in R. The second equality is

the classical Hopf trace formula over the principal ideal domain R.
(Stallings ([St]) calls T0(a) e HH0(RH) the Euler characteristic of the
projective RH-complex P* Since H is assumed to have Property C over R,
there is a non-empty subset N of Z{H) such that 8^(^(01)) £* (^(oOtv).
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Since %(H;R)^0 mod p, it follows that T0(a)C(h) ^ 0 for some
h g N C Z(H). Recall that the group Z{H) acts on HH0(RH) by
(rC(h))co rC(/jco-1) where r e R, h e H, and co e Z(H). By
[St, Theorem 3.4] (compare (2.3) above), r0(a)co r0(a) for all co e Z(H).
Since an element of HHQ(RH) is a finite linear combination of conjugacy
classes, it follows that the condition T0(a)C(h) ^ 0 with h as above is

impossible unless Z(H) is finite.

We will be interested in groups with the property that certain of their
central quotients have Property C "virtually":

Property D. Let p ^ 0 be the characteristic of R. We say that the

group G has Property D over R if the following condition holds. Given

any element t in the center of G with the property that the extension

class eR e H2(G/( u > ; R) is zero (where <t> is the cyclic subgroup
generated by t), there is a finite index subgroup H C G/ < t > such that H
has Property C over R; moreover, if p > 0 we require that p does not
divide [G : H].

The next Proposition is our "higher" analog of Gottlieb's theorem over

a field of arbitrary characteristic; Theorem 5.4, below, is a more usable

version over Q.

Proposition 5.2. Let F be a field. Suppose G is a group of
type -9r suchthat G has Property D over F. If %i(G;F) =£ 0, then

the center of G is infinite cyclic.

Proof. Let t be any element in Z(G), the center of G, such that

%i(G;F)(t) ^ 0. Since G is necessarily torsion free, the group T <t> is

infinite cyclic. By [Bi, Proposition 2.7] G/T is of type FPœ over Z (and
hence over any commutative ring). Since T is central, the Serre fibration
S1 - K(T, 1) - K(G, 1) K(G/T, 1) is orientable. By Theorem 4.2,

eF 0 e H2(G/T\ F), and %{G/T; F) exists and is non-zero mod p where

p ^ 0 is the characteristic of F. Consider the following portion of the

cohomology Gysin sequence of the fibration Sl K(G, 1) - K(G/T, 1),

with coefficients in an arbitrary FG/J-module M:

H'-1 (G/T-, M) U-+T H'(G/ T;M-*H'(G; M)

Since eF 0, Hl(G/T;M) H1 (G', M) is injective and so Hl{G/T,M) 0

for i > dimW where X is a finite complex homotopy equivalent to K(G, 1).

In particular, Proposition 5.1 applies to G/T and so the center of G/T is
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finite. Since the image of Z(G) in G/T is central, it follows that Z(G) is

an extension of T by a finite group. Thus Z(G) is infinite cyclic since G

is torsion free.

Property D may be hard to verify for an arbitrary coefficient ring R.

However, when R - Q we have:

Proposition 5.3. Let G be a finitely generated group which has the

WBP over Q. Then G has Property D over Q.

Proof. Suppose t e Z(G) is such that the extension class eQ e H2(G/T; Q)
is zero where T is the cyclic subgroup of G generated by t. Consider the

following portion of the long exact sequence in cohomology associated to
the short exact sequence of coefficients, 0->Z->Q->Q/Z-»0:

H1(G/T; Q/Z) L H2(G/T;Z)^ H2{G/T; Q)

By exactness, j* (ez) eQ 0 implies ez 8(w) for some u e H1 (G/T, Q/Z).
Let H=kev(u) where we regard u as an element of Hom(G/T, Q/Z)

Hl (G/T, Q/Z). Since G is finitely generated, H U G/T is of finite
index. Let H' — n ~ 1 (H) where n: G ^ G/T is the quotient homomorphism.
Then H' is isomorphic to H x T because i* (ez) 0. In particular, H is

isomorphic to a subgroup of G. Let G be a monomorphem. The
commutative diagram

^o(Q^) ^ HH0(QH)

i i
K0(QG) - HH0(QG)

and the observation that p.# (HH0(QH))C(i) C HH0(QG)C(d and

\i* (HHq(QH)') C HHq(QG)' imply that H has the WBP over Q (and
thus Property C over Q).

Combining Propositions 5.2 and 5.3 we get:

Theorem 5.4. Suppose that G is a group of type /F and has the
WBP over Q. If Xi(G;Q)*0, then the center of G is infinite
cyclic.

Groups of type ^ are a very special class of torsion free groups; one would
hope that all groups of type F have the WBP over Q. There are special classes
of groups of type which are known to have the WBP over Q. We recall
two such classes.
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A group G is a linear group if it is a subgroup of GL(n, K) where K
is a field of characteristic zero. Bass [Bass, Theorem 9.6] proved that a torsion
free linear group has the SBP over C (and thus has the WBP over Q);
also see [Eck].

Corollary 5.5. Suppose G is a linear group of type 3r. if
Xi(G; Q) =£ 0, then the center of G is infinite cyclic.

Eckmann [Eck] proved that a group of cohomological dimension 2

over Q has the SBP over Q. Consequently:

Corollary 5.6. Suppose G is of type IF and has cohomological
dimension 2 over Q. If %\(G; Q) ^ 0, then the center of G is infinite
cyclic.

There is a sense in which we can say that %fG; Q) is an integer. Denote

the composite homomorphism Z(G) ^ G ^ HfG; Z) HfG; Q) by

Aq:Z(G)^H1(G;Q).

Theorem 5.7. Let G be a group of type IF which has the WBP

over Q. Then there exists an integer nG (depending only on G) such

that xi (G; Q) nGAQ.

Proof. If Xi (G; Q) 0 take nG 0. If Xi (G; Q) 0 then by Theorem 5.4

the center of G is infinite cyclic. Let i e Z(G) generate Z(G). Since

%i(G;Q)^0 we have %i(G; Q) (t) * 0. By Theorem 4.2, Xi(G;Q)(t)
- x(G/<t); Q){t}. Then for any integer r: Xi(G; Q)(tO rxi(G; Q)(t)
- r%(G/<t > ; Q) {t} - %(G/(x) ; Q)AQ(xr). Thus Xi (G; Q) nGAQ

with nG — %(G/<x > ; Q).

Remarks.

1. All integers occur as nG for some G. Given ne Z, there is a group H
of type J7" with x{H) - n (e.g. take H to be an appropriate Cartesian
product of free groups). Let G H x T where T is infinite cyclic. Clearly,

X(G/<t>;Q) x(H) where t is a generator of (1) x T C G and so

Xi(G; Q) nAq (alternatively, see Example 6.15).

2. Theorem 5.7 remains true without the hypothesis that G has the WBP

over Q although the proof is considerably more lengthy. To prove this

strengthened result, one shows that for any group G of type
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(a) The restriction of %i(G; Q) to Z(G) n [G, G] is zero.

(b) If Xi(G; Q) * 0 then dimQAQ(Z(G)) 1.

The desired conclusion follows easily from (a), (b) and Theorem 4.2.

Theorem 5.7 raises the question: For what groups G of type T is

%\ (G, Q) ^ 0? We give a necessary condition. Recall that a group H has type

SP2 if there is a finitely dominated K(H, 1) (i.e. K(H, 1) is a homotopy

retract of a finite complex).

Proposition 5.8. If %i(G, Q)^0 then G is isomorphic to a

semidirect product (H, 11 tht~1 0(/z) for all h e H) where H
has type IF2).

Proof Let t e Z(G) be such that %i (G, Q)(t) =£ 0. By Theorem 4.2,

it follows that {x} e HfG) Gab is of infinite order. Thus there is an

epimorphism p: G Z with p(x) n for some n > 0. Let H kerQ?).

Since x e Z(G), p~l(nZ) H x Z and has finite index in G. Thus H x Z
has type ^ and so H has type F2).

Thus it is worthwhile to compute %i(G, Q) in terms of such a semidirect

product structure. The geometric problem underlying this is the study of
%\(X) where X is a mapping torus. We study this next, returning to the

group theoretic case in §7.

6. Mapping Tori

In this section, we consider %\{X) and %\(X) when X is the mapping
torus of a map /: Z - Z. The main results are Theorems 6.3, 6.13, 6.14, 6.16

and Corollary 6.18. Applications to the aspherical case will be given in §7.

Suppose Z is a path connected space and has a basepoint u e Z. Given

a continuous map /:Z->Z, its mapping torus, denoted by T(Z, /), is

the space obtained from Z X [0, 1] by identifying (z, 1) with (/(z), 0) for
each zeZ. The image of (z, u) e Z x [0, 1] in T(Z, /) will be denoted

by [z, w]. Choose a basepath o from v to f(v) and let 0 ://-// be the
self homomorphism of H nx (Z,u) determined by / and o.

Let A 7(Z,/). Choose w= [i>, 0] as a basepoint for X and let
G 7ti (AT, w). There is a canonical map of X to the standard circle S1

(realized as complex numbers of unit modulus) given by: pf:X-^Sl,
P/([z, s]) elnis. Let i.Z X be the inclusion z^ [z, 0].
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