3. Zeta-function and carrousel monodromies

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 39 (1993)
Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
28.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
(b) a set defined as in (4) or - if case - a similar one in a carrousel disc of order 1 , or
(c) a centre of a carrousel disc of order 1 inside A_{i}, for some $i \in P^{(1)}$, or
(d) the centre $(0, \eta)$ of the big carrousel disc.
2.6. Definition. Let $\mathscr{I}^{(1)}$ be a maximal set of indices $i \in P^{(1)}$ such that, if $i_{1}, i_{2} \in \mathscr{I}^{(1)}$, then $\hat{C}_{i_{1}}^{(1)} \neq \hat{C}_{i_{2}}^{(1)}$.

For any $i \in \mathscr{I}^{(1)}$, denote by $\delta(i)$ the carrousel disc of order 1 centred at the point $c(i):=\hat{C}_{i}^{(1)} \cap\left(D_{\alpha} \times\{\eta\}\right)$. Let $a(i)$ be an arbitrarily chosen point on the boundary $\partial \bar{\delta}(i)$; it is, by definition, a regular value for l_{α}.

Definition. Let $a \in\left(D_{\alpha} \backslash 0\right) \times\{\eta\}$ and let F_{a}^{\prime} be the fibre of l_{α} over a. If a is fixed by the carrousel, then the monodromy h_{f} restricts to an action on $H^{\bullet}\left(F_{a}^{\prime}\right)$, denoted by h_{a}^{\prime}.

With these notations, we may formulate the following:
2.7. Theorem. If $f \in \mathbf{m}_{\mathbf{x}, 0}$ and $l \in \Omega_{f}$, then:

$$
\Lambda(f)=\Lambda\left(f_{\mid\{l=0\}}\right)+\sum_{i \in \mathscr{I}^{(1)}}\left[\Lambda\left(h_{c(i)}^{\prime}\right)-\Lambda\left(h_{a(i)}^{\prime}\right)\right]
$$

Proof. The Lefschetz number $\Lambda(f)$ splits into a sum, following the decomposition of the set of fixed points into connected components, see 2.5 . We use a suitable open covering of a set defined as in (4) and then apply the Mayer-Vietoris exact sequence. The reason of considering the set $\mathscr{I}^{(1)}$ relies on the above discution. By a straightforward computation, using also Lemma 2.1, we get our formula.

Notice that carrousel discs of order $\geqslant 2$ do not enter in the above formula. For the computation of $\Lambda\left(h_{c(i)}^{\prime}\right), \Lambda\left(h_{a(i)}^{\prime}\right)$, we refer to Remarks 3.6. There will be an example at the end.

3. ZETA-FUNCTION AND CARROUSEL MONODROMIES

3.1. Loosely speaking, each "important point" of the carrousel disc is fixed after a finite number of turns of the carrousel. We have seen that the set of fixed points after one turn determines the Lefschetz number $\Lambda\left(h_{f}\right)$. So the set of fixed points after k turns is the one responsible for the number $\Lambda\left(h_{f}^{k}\right)$. It may contain a finite number of circles consisting of regular values for the map l_{α}. Actually, these circles do not count, as shown by Lemma 2.1 (where
h_{f} has to be replaced by h_{f}^{k}). By examining the proof of Theorem 2.1, we get a slightly more general result:

Proposition. Let $k \geqslant 1$. If $n_{i, 1} \nmid k, \forall i \in\{1, \ldots, r\}$, then $\Lambda\left(h_{f}^{k}\right)$ $=\Lambda\left(h_{f\{\{l=0\}}^{k}\right)$.
3.2. Definition. Let $U \subset D_{\alpha} \times\{\eta\}$ and let $k_{U}:=\min \{k \mid U$ is globally fixed by the $k^{\text {th }}$ iteration of the carrousel $\}$. Then $k_{f}^{k_{U}}$ restricts to an action on $H^{\bullet}\left(l_{\alpha}^{-1}(U)\right)$, which we denote by h_{U}^{\prime}. We call such actions carrousel monodromies.
3.3. The zeta-function is determined by the set of Lefschetz numbers $\Lambda\left(h_{f}^{k}\right), k \geqslant 1$, as follows (see e.g. [Mi, p. 77], [A’C-2, p. 234]). If the integers s_{1}, s_{2}, \ldots are inductively defined by $\Lambda\left(h_{f}^{k}\right)=\Sigma_{i \mid k} s_{i}, k \geqslant 1$, then the zeta-function of f is given by:

$$
\begin{equation*}
\xi_{f}(t)=\prod_{i \geqslant 1}\left(1-t^{i}\right)^{-s_{i} / i} \tag{5}
\end{equation*}
$$

On the other hand, if $\mathscr{B}^{(k)}$ denotes some small enough neighbourhood of the set of fixed points of the $k^{\text {th }}$ power of the carrousel, then h_{f}^{k} acts on the cohomology $H^{\bullet}\left(l_{\alpha}^{-1}\left(\mathscr{B}^{(k)}\right)\right)$ and, with the definition above, we get $\Lambda\left(h_{f}^{k}\right)$ $=\Lambda\left(h_{\mathscr{B}(k)}^{\prime}\right)$.

Let's consider the annulus A_{i}, as before, in the big carrousel disc. Denote by $h_{A_{i}}$ the restriction of h_{f} to $H^{\bullet}\left(l_{\alpha}^{-1}\left(A_{i}\right)\right)$.

If $x \in A_{i}$ is fixed by some power k of the carrousel, then this power has to be a multiple of $n_{i, 1}$. This remark and formula (5) yield the relation:

$$
\begin{equation*}
\left[\zeta_{h_{A_{i}}}(t)\right]^{n_{i, 1}}=\zeta_{h_{A_{i}}^{n_{i, 1}}}\left(t^{n_{i, 1}}\right) . \tag{6}
\end{equation*}
$$

Definition. For any $i \in\{1, \ldots, r\}$, denote by $\delta(i)^{(1)}$ the carrousel disc of order 1 centred at an arbitrarily chosen point of $\hat{C}_{i}^{(1)} \cap\left(D_{\alpha} \times\{\eta\}\right)$, but fixed once and for all.

Let $\mathscr{L}^{(1)}:=\left\{\delta=\delta(i)^{(1)} \mid i \in\{1, \ldots, r\}, \delta(i)^{(1)}\right.$ is not contained in any other carrousel disc of order 1$\}$. For $\delta \in \mathscr{L}^{(1)}$, denote by $a(\delta)$ an arbitrarily chosen point on the boundary $\partial \bar{\delta}$.
Then we have the next recursive formula:
3.4. THEOREM. $\zeta_{f}(t)=\zeta_{f_{\mid\{1=0\}}}(t) \cdot \prod_{\delta \in \mathscr{L}^{(1)}} \zeta_{h_{s}^{\prime}}\left(t^{n_{i, 1}}\right) \cdot \zeta_{h_{\alpha}(\delta)}^{-1}\left(t^{n_{i, 1}}\right)$.

Proof. We apply Mayer-Vietoris exact sequences to the covering of the carrousel disc described before. Since the fixed circles do not count for the

Lefschetz numbers, we get that the zeta-function is a product over all different annuli, each factor being of the form $\zeta_{h_{A_{i}}}(t)$.

We employ the notations in 2.5 . Notice that the set $\mathscr{K}_{i}^{(1)}$ is well defined for any $i \in\{1, \ldots, r\}$. One can easily show that A_{i} retracts to the subset $\mathscr{R}_{i}:=S_{i} \cup \cup_{\delta \in \mathscr{K}_{i}^{(1)}} \delta$, hence $\zeta_{h_{A_{i}}^{n_{i, 1}}}(t)=\zeta_{h^{\prime} \mathscr{T}_{i}}(t)$.

If $\delta \in \mathscr{K}_{i}^{(1)}$, then notice that there are $n_{i, 1}$ carrousel discs in A_{i} of the same radius as δ; if δ_{1}, δ_{2} are any two of them, then $\zeta_{h_{\delta_{1}}^{\prime}}(t)=\zeta_{h_{\delta_{2}}^{\prime}}(t)$.

An open covering of \mathscr{R}_{i} and a Mayer-Vietoris argument lead to the conclusion:

$$
\begin{equation*}
\zeta_{h_{\mathscr{R}_{i}}^{\prime}}(t)=\prod_{\delta \in \mathscr{L}^{(1)}}\left[\zeta_{h_{\delta}^{\prime}}(t)\right]^{n_{i, 1}} \cdot\left[\zeta_{h_{a}^{\prime}(\delta)}(t)\right]^{n_{i, 1}} . \tag{t}
\end{equation*}
$$

Using (6), our formula is now proved. Notice that the factor $\zeta_{f \mid\{l=0\}}(t)$ corresponds to the disc A_{0} defined in 1.8.

It is not hard to figure out how the process started in the proof above may continue. We apply Theorem 3.4 with h_{f} replaced by h_{δ}^{\prime} and get a formula for the zeta-function $\zeta_{h_{\delta}^{\prime}}(t)$, for any $\delta \in \mathscr{L}^{(1)}$. In a finite number of steps, going through the carrousel discs of order $1,2, \ldots, m$, where $m:=\max \left\{g_{i} \mid i \in\{1, \ldots, r\}\right\}$, we get a formula for $\zeta_{f}(t)$. To write it down, we need just the following notations.

Definition. Let $\delta(i)^{(k)}$ denote the carrousel disc of order k centred at a fixed (arbitrarily chosen) point of the set $\hat{C}_{i}^{(k)} \cap\left(D_{\alpha} \times\{\eta\}\right)$. (This later set contains exactly $n_{i, 1} \cdots n_{i, k}$ points). Denote $\mathscr{C}\left(\Delta^{\prime}\right):=\left\{\delta(i)^{(k)} \mid i\right.$ $\in\{1, \ldots, r\}, k \in\{1, \ldots, m\}\}$.

For any $\delta \in \mathscr{C}\left(\Delta^{\prime}\right)$, denote by $c(\delta)$ its centre and by $a(\delta)$ an arbitrarily chosen point on $\partial \bar{\delta}$.

Let $\delta \in \mathscr{C}\left(\Delta^{\prime}\right)$, where $\delta=\delta(i)^{(k)}$, for some indices i and k as above. Then define $n(\delta):=n_{i, 1} \cdots n_{i, k}$.
Thus we get the following general zeta-function formula:
3.5. THEOREM. $\zeta_{f}(t)=\zeta_{f_{\mid\{l=0\}}}(t) \cdot \prod_{\delta \in \mathscr{C}\left(\Delta^{\prime}\right)} \zeta_{h_{c}^{\prime}(\delta)}\left(t^{n(\delta)}\right) \cdot \zeta_{h_{a}^{\prime}(\delta)}^{-1}\left(t^{n(\delta)}\right)$.

By using a decreasing induction, $\zeta_{f}(t)$ will become finally a product of integer powers of cyclotomic polynomials.
3.6. Remarks. (a) The points $a(\delta), \delta \in \mathscr{C}\left(\Delta^{\prime}\right)$ may also be defined as follows (the precise details are left to the reader):

Let $\delta=\delta(i)^{(k)}$ and let $\hat{C}_{i}^{(k)}$ be (formally) defined by the equation (see (3)): $u_{i}=a_{k_{i}} \lambda^{m_{i, 1} / n_{i, 1}}+\cdots+\sum_{l=1}^{l_{k}} b_{k, l} \lambda\left(m_{k}+l\right) / n_{i, 1} \cdots n_{i, k}$. Then define a curve $G_{i, k}$, by slightly perturbing in this equation just the last coefficient $b_{k, l_{k}}$, such that $G_{i, k} \neq \hat{C}_{j}^{(k)}, \forall j \in\{1, \ldots, r\}$. For $k=g_{i}$, we cut the Puiseux expansion at a sufficiently high power of λ and modify the last coefficient. It follows that $a\left(\delta(i)^{(k)}\right)$ may be identified to the point in $G_{i, k} \cap\left(D_{\alpha} \times\{\eta\}\right)$ which is in the closest neighbourhood of $c\left(\delta(i)^{(k)}\right)$.
(b) Let $\delta:=\delta(i)^{(k)}$. Then $c(\delta)$ is a regular value for the map l_{α} if and only if, for any $j \in\{1, \ldots, r\}$ such that $\hat{C}_{j}^{(k)}=\hat{C}_{i}^{(k)}$, we have $g_{j}>k$. It is possible that $a(\delta)$ cannot be chosen arbitrarily close to $c(\delta)$, see also Remark 1.6.
(c) The carrousel monodromies $h_{c(\delta)}^{\prime}, h_{a(\delta)}^{\prime}$ may be defined as monodromies of functions. This remark was used by Lê in his proof of the Monodromy Theorem [Lê-1], see also [Lo]. For instance, if $\delta=\delta(i)^{(k)}$ and $\left(u_{i}^{(k)}(t), \lambda(t)\right)$ is the parametrization of $\hat{C}_{i}^{(k)}$ defined in 1.5 , then the pull-back diagram:

$$
\begin{array}{ccc}
\left(\mathbf{X}_{i}^{(k)}, 0\right) & \rightarrow & (\mathbf{X}, 0) \\
f_{i}^{(k)} \downarrow & & \downarrow \Phi \tag{7}\\
(\mathbf{C}, 0) & \stackrel{\left(u_{i}^{(k)}, \lambda\right)}{ } & \left(\mathbf{C}^{2}, 0\right)
\end{array}
$$

defines a space $\left(\mathbf{X}_{i}^{(k)}, 0\right)$ and a function $f_{i}^{(k)}$ on it. Then $h_{c(\delta)}^{\prime}$ is the monodromy of $f_{i}^{(k)}$.
3.7. We illustrate the formula on the following particular case: any component Δ_{i} has just one Puiseux pair, i.e. $g_{i}=1, \forall i \in\{1, \ldots, r\}$. We assume, for the sake of simplicity, that the sets of components of $\Gamma(l, f)$ and $\Delta(l, f)$ are in one-to-one correspondence.

In this case, we have $\hat{C}_{i}^{(1)}=\Delta_{i}$ and a carrousel disc $\delta(i)^{(1)}$ is an arbitrarily small disc centred at $c\left(\delta(i)^{(1)}\right) \in \Delta_{i} \cap\left(D_{\alpha} \times\{\eta\}\right)$, which is pointwise fixed by the $n_{i, 1}{ }^{\text {th }}$ iterate of the big carrousel. It follows that the point $a\left(\delta(i)^{(1)}\right)$ can be chosen arbitrarily close to $c\left(\delta(i)^{(1)}\right)$. The centres $c(\delta), \delta \in \mathscr{C}\left(\Delta^{\prime}\right)$ are critical values for the map l_{α}. Let $c(i)$ denote a fixed, arbitrarily chosen point of the set $\Delta_{i} \cap\left(D_{\alpha} \times\{\eta\}\right)$. Then $\mathscr{C}\left(\Delta^{\prime}\right)$ can be identified to the set $\{c(i) \mid i \in\{1, \ldots, r\}\}$. With these notations, the zeta-function formula becomes

$$
\begin{equation*}
\zeta_{f}(t)=\zeta_{f_{\{\{l=0\}}}(t) \cdot \prod_{i \in\{1, \ldots, r\}} \zeta_{h_{c(i)}}^{\text {rel }}\left(t^{n_{i, 1}}\right), \tag{8}
\end{equation*}
$$

where $h_{c(i)}^{\text {rel }}: H^{\bullet}\left(l_{\alpha}^{-1}(c(\delta)), l_{\alpha}^{-1}(a(\delta))\right)$ क is the relative monodromy and its zeta-function is $\zeta_{h_{c(i)} \mathrm{rel}}(t)=\zeta_{h_{c}^{\prime}(\delta)}(t) \zeta_{h_{a}^{\prime}(\delta)}^{-1}(t)$. One also gets $\Lambda(f)=\Lambda\left(f_{\{\{l=0\}}\right)$ $+\sum_{i \in\{1, \ldots, r\}, n_{i, 1}=1} \Lambda\left(h_{c(i)}^{\mathrm{rel}}\right)$.

By standard arguments, $H^{\bullet}\left(l_{\alpha}^{-1}(c(\delta)), l_{\alpha}^{-1}(a(\delta))\right)$ is isomorphic to the direct sum of reduced cohomologies $\oplus_{v \in l_{a}^{-1}(c(\delta)) \cap \Gamma} \tilde{H}^{\bullet-1}\left(F_{v}^{\prime}\right)$, where $F_{v}^{\prime}:=B_{v, \varepsilon} \cap l_{\alpha}^{-1}(a(\delta))$ is the local Milnor fibre and $B_{v, \varepsilon}$ is a Milnor ball of the isolated singularity at v. Let $d_{i}:=\# l_{\alpha}^{-1}(c(i)) \cap \Gamma$.

A point $v \in l_{\alpha}^{-1}(c(i)) \cap \Gamma$ goes, after $n_{i, 1}$ complete turns of the carrousel, to $v^{\prime} \in l_{\alpha}^{-1}(c(i)) \cap \Gamma$ and $v^{\prime} \neq v$ if $n_{i, 1} \geqslant 2$. After exactly $n_{i, 1} d_{i}$ turns, the point v is fixed.

It becomes clear how the relative monodromy acts on the above direct sum; by similar arguments as those in [Si, p. 192], one shows that the matrix of $h_{c(i)}^{\mathrm{rel}}$ may be assumed to have the following block decomposition

$$
\left[\begin{array}{ccccccc}
0 & 0 & . & . & . & 0 & \mathbf{V}_{i} \mathbf{T}_{i}^{n_{i, 1} d_{i}} \\
\mathbf{I} & 0 & . & . & . & 0 & 0 \\
0 & \mathbf{I} & . & & & 0 \\
. & & . & & & 0 & . \\
. & & & . & & . & . \\
. & & & . & 0 & . \\
0 & . & . & . & 0 & \mathbf{I} & 0
\end{array}\right],
$$

where, at some fixed $v(i) \in l_{\alpha}^{-1}(c(i))$, \mathbf{I} is the identity matrix on $H^{\bullet}\left(F_{v(i)}^{\prime}\right)$, \mathbf{T}_{i} is the horizontal monodromy of the transversal singularity and \mathbf{V}_{i} is the vertical monodromy of the local system on $\Gamma_{i} \backslash\{0\}$, with fibre $\tilde{H}^{\bullet}\left(F_{v(i)}^{\prime}\right)$. Then $\zeta_{h_{c(i)}^{\text {rel }}}(t)=\Pi_{j \geqslant 0} \operatorname{det}\left[\mathbf{I}-t^{d_{i}} \mathbf{V}_{i} \mathbf{T}_{i}^{n_{i}, d_{i}} ; \quad \tilde{H}^{j}\left(F_{v(i)}^{\prime}\right)\right]^{(-1)^{j}}$. Finally, our formula looks as follows:

$$
\zeta_{f}(t)
$$

$$
\begin{equation*}
=\zeta_{f \mid\{l=0\}}(t) \cdot \prod_{i \in\{1, \ldots, r\}} \prod_{j \geqslant 0} \operatorname{det}\left[\mathbf{I}-t^{n_{i, 1} d_{i}} \mathbf{V}_{i} \mathbf{T}_{i}^{n_{i, 1} d_{i}} ; \tilde{H}^{j}\left(F_{v(i)}^{\prime}\right)\right]^{(-1) j} . \tag{9}
\end{equation*}
$$

3.8. This latter one may be easily specialized to the Siersma's formula [loc. cit.]. Let A_{m} be the most exterior annulus and assume that the components of Δ which cut A_{m} are $\Delta_{1}, \ldots, \Delta_{s}$ and they have just one Puiseux pair. Denote $D_{m-1}:=D_{\alpha} \times\{\eta\} \backslash A_{m}$. By our approach we get $\zeta_{f}(t)$ $=\zeta_{h_{D_{m-1}}}(t) \cdot \Pi_{i \in\{1, \ldots, s\}} \zeta_{h_{c(i)}^{\mathrm{rel}}}\left(t^{n_{i, 1}}\right)$.

Let then g be a function with 1-dimensional singular locus $\Sigma=\cup_{i \in\{1, \ldots, s\}} \Sigma_{i}$ and let $f:=g+l^{K}$, for some $l \in \Omega_{g}$, with $K \in \mathbf{N}$ large enough. Then f is an isolated singularity and, as shown in [Si], one may identify the monodromy of the Milnor fibre F_{g} to $h_{D_{m-1}}$. The degree of the covering $\Sigma_{i} \backslash\{0\} \rightarrow \Delta_{i} \backslash\{0\}$ is d_{i}. Then one gets [$\mathrm{Si}, \mathrm{p} .183$]:

$$
\begin{equation*}
\zeta_{f}(t)=\zeta_{g}(t) \cdot \prod_{i \in\{1, \ldots, s\}} \operatorname{det}\left[\mathbf{I}-t^{K d_{i}} V_{i} \cdot T_{i}^{K d_{i}}\right](-1)^{\operatorname{dim}(\mathbf{x}, 0)} . \tag{10}
\end{equation*}
$$

3.9. Example. Let $\mathbf{X}:=\left\{x^{3}+y^{4}+z^{3}=0\right\} \subset \mathbf{C}^{3}$ and let $f \in \mathbf{m}_{\mathbf{x}, 0}$ be the function induced by $\tilde{f} \in \mathbf{m}_{\mathrm{C}^{3}, 0}, \tilde{f}=x$. Consider the linear function l induced by $\tilde{l}=y$. Then $l \in \Omega_{f}$. We get that $\Delta(l, f)$ is irreducible and has the Puiseux parametrization: $l=\alpha \nu^{3}, \lambda=v^{4}$, where α is a nonzero constant, easy to determine.

Let $c \in \Delta(l, f) \cap\left(D_{\alpha} \times\{\eta\}\right)$ and let $a \notin \Delta(l, f) \cap\left(D_{\alpha} \times\{\eta\}\right)$ be a neighbour point of c.

The monodromy h_{a}^{\prime} can be identified to the monodromy of the function $f_{a}:\left(\mathbf{X}_{a}, 0\right) \rightarrow(\mathbf{C}, 0)$ induced by $\tilde{f}_{a}=v$, where $\mathbf{X}_{a}:=\left\{x=v^{4}, y=v^{3}\right.$, $\left.z=\sqrt[3]{2} \gamma v^{4}\right\}$ and γ is a 3 -root of -1 . We get $\zeta_{h_{a}^{\prime}}(t)=(1-t)^{-3}$, hence $\zeta_{h_{c}^{\text {rel }}}=(1-t)^{2}$.

By using (8), the final result is $\zeta_{f}(t)=(1-t)^{-3}\left(1-t^{4}\right)^{2}$. We also get $\Lambda(f)=3$.

Notice that there is another way of computing the zeta function in this example, by using the usual \mathbf{C}^{*}-action on \mathbf{X}, which fixes the zero set $\{\tilde{f}=0\}$. It follows that the monodromy h_{f} of f is equal to the $3^{\text {rd }}$ power of the monodromy h_{g} of the function $g:\left(\mathbf{C}^{2}, 0\right) \rightarrow(\mathbf{C}, 0)$, $g=y^{4}+z^{3}$ and $\zeta_{h_{g}^{3}}(t)$ can be computed from the eigenvalues of h_{g}. If we change the above function \tilde{f} into $\tilde{f}_{1}:=x+y$, then the set $\left\{\tilde{f}_{1}=0\right\}$ is no more invariant under the above-mentioned \mathbf{C}^{*}-action. The computations for the zeta-function of $h_{f_{1}}$ are slightly more complicated, since we get two Puiseux pairs, with $n_{1,1}=1, n_{1,2}=3$. This time, the result is $\zeta_{f_{1}}(t)=(1-t)^{-1}\left(1-t^{3}\right)^{-1}\left(1-t^{9}\right)$.

REFERENCES

[BK] Brieskorn, E und H. Knörer. Ebene algebraische Kurven. Birkhäuser Verlag, 1981.
[A'C-1] A'Campo, N. Le nombre de Lefschetz d'une monodromie. Indag. Math. 35 (1973), 113-118.
[A'C-2] —— La fonction zêta d'une monodromie. Comment. Math. Helvetici 50 (1975), 233-248.
[EN] Eisenbud, D. and W. Neumann. Three-dimensional link theory and invariants of plane curve singularities. Annals of Math. Studies 110 (1985), Princeton Univ. Press.
[Lê-1] LÊ, D.T. The geometry of the monodromy theorem. C.P. Ramanujam a tribute, Tata Institute, Springer-Verlag.
[Lê-2] -- Some remarks on the relative monodromy. Real and Complex Singularities Oslo 1976, Sijhoff en Nordhoff, Alphen a.d. Rijn 1977, 397-403.
[Lê-3] —— La théorème de monodromie singulière. C.R. Acad. Sci. Paris t. 288, III (1979), 985-988.

