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26 Y. FELIX, S. HALPERIN AND J.-C. THOMAS

or else

(1) There are constants K >1 and NeN such that

Y dimH(QX;F,) =K', nx=N.
i=0

In case (1) the loop space homology grows at most polynomially, and X
is Z,-elliptic in the sense of [6]. If (i) holds for all p then X is elliptic. The
main theorems of [6] assert that if X is elliptic then X is a Poincaré complex
and that H,(QX; Z) is a finitely generated left noetherian ring.

In case (ii) above the loop space homology grows at least semi-
exponentially. However, when p = 0 [2] or p > dim X [8], it can be shown that
even the primitive subspace of H4(QX;F,) grows exponentially (implying
the same result for H,(QX; F,)), and we conjecture that this should hold
true for all p.

In the dichotomy of Theorem A, the generic situation is (ii): elliptic spaces
are rare within the class of all simply connected finite CW complexes. However
a number of geometrically interesting spaces are elliptic, and our second
objective in this note is to show that these include the following classes of
spaces (provided they are simply connected):

finite H-spaces,

homogeneous spaces,

spaces admitting a fibration F = X — B with F, B elliptic,

Poincaré complexes X such that for each p, the algebra H*(X;F,) is
generated by two elements,

Dupin hypersurfaces in S”*1,

closed manifolds admitting a smooth action by a compact Lie group, with
a simply connected codimension one orbit,

connected sums M # N with the algebras H*(M; Z) and H*(N; Z) each
generated by a single class.
This note is sequel to ‘‘Elliptic Spaces’’ [6]. In particular, it supersedes the
preprint ‘‘Dupin hypersurfaces are elliptic’’ referred to in [6].

2. THE DICHOTOMY
Consider first any simply connected space X with each H;(X; F,) finite

dimensional. Then G = H,(QX;F,) is a graded cocommutative Hopf
algebra satisfying G, = F, and each G; is finite dimensional. The depth of G
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is the least integer m such that Extg(F,; G) # 0; if Extg(F,; G) = 0 we say
G has infinite depth. In [3: Theorem A] it is shown that

depth H,(QX;F,) < LScat X .

Thus the depth is finite when X has the weak homotopy type of a finite CW
complex.

On the other hand suppose G is any graded cocommutative Hopf algebra
with Gy = F, and each G; finite dimensional. We call G elliptic [7] if G is a
finitely generated nilpotent Hopf algebra. According to [4; Theorem A] this
is equivalent to the condition:

dim G; < Cn’ (fixed C, r, all n) .

0

depthG < o0 and

IlM:

i

In view of these remarks, Theorem A follows from

THEOREM 2.1. Let G be a cocommutative Hopf algebra of finite depth
such that G, =F, and each G; is finite dimensional. Then there are
exactly two possibilities:

(1) G is elliptic, and for some r e N there are positive constants
Ci, Cy such that

n
Cin'< ), dmG, <GCn’, n>1;

i=0

(2) For some constants K> 1,Ne N
ZdlmG>KV" n>=N.

Proof. Consider the formal power series G(z) = Z dim G;z’, and for
i=0

two formal power series f = E a;z' and g = E b;z! write f < gif
i=0 i=0

@.1) i Coalln.

“M*

i

We shall first show that there are exactly two possibilities:

(2.2) For some r e N there are positive constants Ci, C, such that

n

Cin"< ), dimG, < Gn', n>1;

i=0
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(2.3) For some k € N.

G(z) > H [1+ (917 .

i=1

Indeed, suppose Z dim G; < G,n’ for all n, some C, and r. Then by

i=0
[4; Theorem B], G is elliptic and hence [7; Prop. 3.6] the formal power series
G(2) has the form

S
II A+zki+ - 4 z0-1K)
Jj=1

G(2) =

H(I—Z)

i=1

It follows at once that (2.2) is satisfied.

n

Conversely, we assume there is no C,r for which Z dim G; < Cn’,
i=0

all n, and prove (2.3). Let x;,x,,... be a sequence of generators of the
algebra G with degx, < degx, < ---. The subalgebra G(i) generated by
Xi, ..., X; is then a sub Hopf algebra. Now according to [4; Prop. 3.1] there
is some g such that G(7) has finite depth, i > g. Moreover by [7; Prop. 3.5]
G (/) is not elliptic for some / > g. Set H = G(/); it is a finitely generated
non-elliptic Hopf algebra of finite depth, and dim G; > dim H,.

Next, let R be the sum of the solvable normal sub Hopf algebras of H.
Then [3; Theorem C] R is elliptic. Hence [7; Prop. 3.1] and [3; Prop. 3.1]
the quotient Hopf algebra H / R has finite depth, but [7; Prop. 3.3] H / R
is not elliptic. Clearly, however, H // R is finitely generated and has no central
primitive elements. Now by [4; Prop. 3] there is an integer n, and an infinite
sequence of non zero primitive elements y; € H / R such that for all i,
degy; < degy;. < degy; + ny. A linear embedding

,.®1 F,[»1/y} > H/ R

is then defined by ' ® -+ ® y;» = yi' --- y,;7, and so

(oo}

[I G+z%) < H/R) @) < HR@) < GR) .

i=1

Since degy;, < iny + degy; it is sufficient to take k = max(degy;, ng) to
achieve (2.3).
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It remains to deduce the inequality (2) from (2.3). If the inequality (2)

holds for some power series A(z) it will also hold for A(z*), at the cost of
1

replacing K by K 5;. By (2.3) we are thus reduced to showing that the power
series

(o]

Y qgzi=[] A+29)

i=0 i=0
satisfies (2). But this is an immediate consequence of a theorem of Hardy and
Ramanujan [10]. [J

COROLLARY OF PROOF. If G satisfies the hypotheses of Theorem 2.1
(2) then for some k € N,

o> [ n+@H1. D

i=1

‘3. ELLIPTIC SPACES

In this section we establish the ellipticity of the spaces listed in the
introduction.

3.1. Finite simply connected H-spaces, X.

Because X is an H-space, H.(Q.X; F,) is commutative, all p. Since it has
finite depth [3; Theorem A] it is elliptic [7; Prop. 3.2]. Hence X is elliptic.

- 3.2. Simply connected homogeneous spaces, G /| H.

We may suppose that G is simply connected, and hence elliptic by §3. The
fibration G — G/H — BH loops to the fibration QG - Q(G/H) —» H in
which m; (H) acts trivially in H«(QG; F,) [1; Lemma 5.1]. Thus we can use
the Serre spectral sequence to deduce polynomial growth for
H.(Q(G/H);F,) from the same property for H4(QG;F,).

3.3. Fibrations F > X — B with F, B elliptic.

Here all spaces are simply connected and we can apply the Serre spectral
sequence to deduce that H 4 (X; Z) is concentrated in finitely many degrees, and
finitely generated in each. Hence X has the weak homotopy type of a finite
CW complex. Loop the fibration F— X — B and use the fact that
Hy,(QF;F,) and H.(QB;F,) grow polynomially to deduce the same
property for H4(QX;F,).
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