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certainly, as we shall see, an indecomposable EP / for which cp/ has a

cubic factor lies in C4 but whether this extends is unclear. More generally,
in connection with EPs two questions naturally arise.

(i) Are all indecomposable EPs over Fq semi-factorable

(ii) Are all indecomposable semi-factorable EPs C-polynomials

I would tentatively suggest that the answer to (ii) might be "yes" but
hesitate to speculate on the answer to (i).

2. The semi-factorable families

The classes Cl5 C2 and C3 are described briefly (see [8], for example).
More detail is given for C4.

Cx. Cyclic polynomials. These have the form cn(x) xn, where p J( n.

Obviously cn is factorable and is an EP (or PP) if and only if g.c.d.
(n, q— 1) 1. Trivially, of course, cn is indecomposable over if and only
if n is a prime / p).

C2. Dickson polynomials. For any n(>l) with p J( n and any a(^0)
in Fq, a typical member gn(x, a) has the shape

/ X

[ V?1 n fn~i\ T9n(x, a)y ; (-a)bc"~2'.
i o n — i \ i J

As in [13], over Fg we have

In/2]O <?gjx,y) (y-x) n
i 1

where a; Ç' + Ç ß,- C — CT being a primitive nth root of unity in
F, • Since each of the quadratic factors in (2.1) is irreducible, gn is not factorable.
Yet it is semi-factorable. Set R(x) gn{ra(x),a), where + ax"1.
Then, by equation (7.8) of [8],

R(x) ra„(c„(x))x" +
and hence

n — 1

y)PI C) -C'a).
i 0



56 S. D. COHEN

Thus R is factorable and gn semi-factorable.

From (2.1) we can easily deduce the familiar facts that gn is an EP

or PP if and only if (n, q2 — 1) 1 while the identity

9n,m(x>a)9n(gm(x, a), am)

((7.10) of [8]) yields the conclusion that gn(x9 a) is indecomposable over Fq

if and only if n is a prime ^ p).

C3. Linearised polynomials. These have degree n — p\k^ 1), a typical
specimen having the form

k

(2.2) L(x) Yj aixpl »

i 0

where a0, ake Fq with a0ak =£ 0. Because cpl(x, y) L(y-x), evidently L
is factorable and is an EP (or PP) if and only if L has no non-zero
roots in Fq. Suppose that L is given by (2.1) but that, for some

s ^ 1, at 0 unless s | i. Then, for any a e Fps and any ß e Fq9 we have

(2.3) L(ax+ß) aL(x) + ß,

and we refer to L as a ps-polynomial (cf. [8], § 3.4).

C4. Sub-linearised polynomials. These polynomials (for whom a better

title is requested) had their genesis in [1]. We construct a sub-linearised

polynomial S(x) of degree n p\k^l) as follows. Let L in C3 be a

ps-polynomial of degree pk and d(> 1) be an integer such that (p)() d\ps — 1.

Then L(x) xM(xd) for some M(x) e F^[x] and we set S(x) xM\x). Thus

S{xd) Ld{x),

or, equivalently,

(2.4) S(cd) cd(L).

The polynomial S as defined above will also be referred to as a (ps, d)-

polynomial. We note that, by (2.4) and Theorem 1.1 of [1], S(cd) is factorable
and hence S is semi-factorable.

We remarked in [1] that a (ps, ^-polynomial S(x) xMd(x) for which M
has no roots in Fq is an EP provided (d,p{s,t) — 1) 1. In fact, the last

condition is unnecessary and we state the definitive result as follows.

Theorem 2.1. Let S(x) xMd(x) be a (p\ d)-polynomial in Fg[x],
where d\ps — 1. Then
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(i) the irreducible factors of <pf over F„ all have degree d ;

(ii) Sis an EPover F„ ifand only if M has no roots in F4.

Proof, (i) Since d \ f- 1, then Ç, a primitive dth root of unity, lies

in FpS, and the non-zero roots of L(x) can be arranged in the

form lffyh,j 0,d—1, h**l,N},where N deg — 1 and

[ydh h=l,N} is the set of roots of M. By (2.3) and (2.4), we have

(p s{xd,yd)y)

U (L(y)-ÇL(x))
i 0

Pf L(y-fx)
i 0

{yd—xd)nn n l-cx-c
1 0 7 0 h= I

(2.5) (/-^) n "n n
t 0 7 0 /i l

Now, for any y in Fq, it is clear that the polynomial

d- 1 d-1
n n (o-^-y)
i=0 j=0

lies in Fg[xd, yd] and therefore may be written Py(xd, yd), where Py(x, y)

e F9[x, y] has degree d (in both x and y). We claim that Py is irreducible.
For suppose Py(x, y) has a non-constant factor Q(x, y) in F^[x, y]. Then

Q(x^,y<0 must be divisible by Qx — (jy — y for some i and j with
0 ^ i,j ^ à — 1. Q(xd, yd), however, is invariant under x Ç"x, y Çuy for

any u, v. It follows easily that Q(xd, yd) is divisible by Py(xd, yd) and we deduce

that Q Py, as required. Consequently, by (2.5),

<Ps(*>3') EI pyh(x,y)
h= 1

is the prime decomposition of (p* over Fq and (i) is proved.

(ii) Continuing with the same notation, we have

Py(xd,yd)(-l)d n (y
i 0

- l)d{~YJ2 -d(yd + (—x)d)yd(d~+.
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It follows that, if yd is a root of M and Py(x, y) lies in Fg[x, y]$ then
both yd2 and yd{d~l) are members of Fq, whence yd eFq. This means that S

is an EP unless M has a root yd in F^. The converse is clear and the
result follows.

3. Substitution polynomials with a quadratic factor

Throughout, let f(x) be an indecomposable polynomial in Fg[x] for
which cpf{xy y) is divisible by an irreducible quadratic factor Q(x, y) in
Fq[x,y]. Denote by Q* the factor of (p/? irreducible over F^ itself, that is

divisible by Q.

Lemma 3.1. Gal Q*(x, y)/Fq(x) has order deg Q* and so is regular as a

permutation group on the roots of Q*(x, y) over Fg(x) (see [72], p. 8).

Proof Let Fqd be the field generated over Fq by the coefficients of
d

Q (in Fq). Then ß* Y\ Qi> where Q:,..., Qd are the distinct conjugates
i 1

of g obtained by applying the d F^-automorphisms of Fqd to the coefficients
of g. Thus degg* 2d. But, evidently, the splitting field of g* over Fg(x)

can be constructed by adjoining the splitting field of Q to Fgd. Its Galois

group therefore has order 2d as required.
With Lemma 3.1 as a spur, we formulate some group theory in terms of

polynomials (see [2]). For an indecomposable polynomial g(x) in F^[x],
G Gal (g(y) — z/Fq(z)) is primitive. Moreover, the orbits of a point stabiliser
Gx of G correspond to the irreducible factors of <pg over F^; in particular,
when P(x, y) is such a factor of <yg so also is P(y, x) and the associated

orbits are "paired" (see [12], § 16). The following result is therefore a

(slightly weakened) version of [12], Theorem 18.6.

Lemma 3.2. With g and P as above, suppose that both Gal P(x, y)/Fq(x)
and Gal P(y, x)/Fq(x) are regular. Then Gal cp^x, y)/Fq(x) Gal P(x, y)/Fq(x).

Corollary 3.3. With f and d as in Lemma 3.1, (p* is a product
over Fq of irreducible polynomials of degree 2d, each of which is a product

of irreducible quadratics over Fq. Furthermore, all these quadratics have a

common splitting field over Fq(x).
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