4. Proof of Mordell's conjecture
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LEMMA 3.3.3. Suppose A is an Abelian scheme over S such that
(W45l = H})R(A/S) and g:C — A is a non-constant morphism over S.
Fix seC(S). Then the set T ={teC(S):(g*u)(s,t)=0 for all
w e PF(A/S)} is of bounded height.

Proof. Let A’ denote the smallest Abelian subscheme of A over S
containing g(C). Since the map g*:PF(A/S) = PF(A'/S) is surjective and
[(Wa4ss] = H})R(A/S), it follows from Proposition 2.1.2 that g(7) is contained
in a translation of the group of constant sections of A'/S. Hence, g(7) is a
set of bounded heigt. Finally, since C — g(C) is a finite morphism, it follows
that 7 is a set of bounded height. [

In particular,

COROLLARY 3.3.4. Suppose A is an Abelian scheme over S such that
Kass IS an isomorphism and g:C — A is a non-constant morphism over
S. Fix seC(S). Then the set {te C(S):(g*uy,)(s,t) =0 for all
W € Wy,s} Iis of bounded height.

4. PROOF OF MORDELL’S CONJECTURE

PROPOSITION 3.4.1. Suppose the kernel of the «xc,s has rank at
least 2 over KIS], then the points of C(S) have bounded height.

Proof. Suppose C(S) contains points of arbitrarily large height. Fix
s € C(S). By shrinking S, if necessary, we may suppose that there exists a func-
tion z € K[S] such that Qg = K[S]dz and there exists a finite covering % of
C by affine opens U and functions vy € Z(U) such that s € U(S), and
Q‘C(U) is spanned by dz and dvy. We may also suppose that s*v, = 0 by
replacing vy with vy — (so f)*vy if necessary. For Ue £ ,u € Z-(U) we
define 0y .u and 9y ,u by the equation |

du = 9y ,udz + Oy, ,udvy .
Then 9y . is a lifting of 0 = :0/0z. We set u(¢) = u(s, ¢) for
uw e PF =:PF(C/S)

and ¢t e C(S).
Let ®; and ®, be two independent elements in the kernel of x.,5. It
follows that there exist ®; and ®, € w¢, s such that

Olo;] = [w;] .
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Hence 1, =0 ® w;— 1 ® o/ is in PF. For Ue % let wy,; and uy,; be
elements of _#~(U) such that

Oy, ; — (DI-' = dc/sWu,i s

s*wy ;and ; = uy ;dessvy on U. Let T denote the set of £ € C(S) such that
tnU=% @ and t*vy # 0 for all U in %£. This is the complement of a finite
subset. For t e T

(4.1) wi(@) = t*(wy,1) + 1% (uy,:) 0% (Vy)

for all U € %, by Corollary 2.2.4.
Forte T, Ue ¥ let

hy.: = Uy 01 (f) — uy 1 W2 (F) — (Uy,2Wu,1 — Uy, 1 Wu,2) -

We deduce from (4.1) that t*4y , = 0. On the other hand, by Lemma 3.3.2,
the set of functions 4y, lies in a subspace of _Z-(U) of finite dimension over
K. It follows from Lemma 3.1.1 that Ay, = 0 for all 7 in in a subset 7" of
T of unbounded height. Fix 7, € 77, and set ¢; = : u;(%), then it follows that

uy, (L1 () — 1) — uy 1 (2(t) — 1) = 0

for all r € T'. Now since ®, and m, are independent over K[S], uy,; and uy >
are independent over K(S) and so we must have

wi(f) = ¢

for all t e T'. Let zy,; = u{,,ll-(c,'— wu.1). Let zy; = ul},lf(c,-— wy. ;). Let T
denote the subset of T’ such that r*uy , # 0 and t*uy, # 0 for all U e Z.
This is the complement of a finite subset of 77. For t € T’

(42) Z‘*ZU)[ = 62‘*UU

for all Ue %. This implies that zy, = zy, since T’ is infinite. Set
iu = Zu,1-
Set uy = uy,, and wy = wy ;. On U NV,

dvy = gy vdz + fu vduy
for some gy, € Z¢(U) and fy v € Z-(Un V)*. It follows that
Uy = fu vy, Ou,v&u, v = aV,sz,V and Wy = Wy + Upgu. vy .

Hence

Zv= fuvz, — &uv .
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Hence, we may define a divisor Y which on U is the polar divisor of
zZy. (It is clear that the support of Y is contained in the intersection of
the supports of the divisors of ®; and w,.) Let C'=C—-Y, U’ = Un C’ for
Ue Z, vy = vy lu' etc. Then the above implies that we may define a lifting
9 of d to I'(Derc k) such that on U’,

aUU' = Zy’r .

If Y= J, this implies that ks is zero and hence that C/S is isoconstant.
This contradicts de Franchis’ theorem. Thus Y = .

It follows from (4.2) that t " Y = & for all t € T"'. In particular, Y has
no vertical components. But this contradicts the function field analogue of
Siegel’s theorem [L-IP] since 7" is a set of unbounded height. This completes
the proof of the proposition. [

Remark. In the appendix we will present Manin’s original proof of this
proposition which uses Theorem 2.1.0 and does not use Siegel’s theorem. To
this end, we point out that it follows from (4.2) that

(4.3) £*0x = 9(1*x)
forall xe K[C'] and r e T".

We will now complete the proof of the function field Mordell conjecture.
The argument here is essentially the same as that in Manin’s paper except that
we found it necessary to be more careful about the choice of base points.
Suppose C/S is a curve over S such that C(S) contains points of arbitrarily
large height. Let ({C,},{/. »}) be the projective system as described in §3.2
such that C; = C and C,(S) contains points of arbitrarily large height. From
the previous proposition, we know that the rank of the kernel of the x¢ /5 is
at most one. Since these ranks grow with n, by replacing C with C, for
appropriate n, we may suppose these ranks are all equal. Set h, = A, | .

By shrinking S, we may suppose that there exists a z € K[S] such that dz
spans Qg over k[S]. Let d = 8/0z.

Let J, denote the Jacobian of C, and 4, = J,/h}}J,. It follows that x4 /s
is an isomorphism. We identify w4, ¢ with its image via an Albanese
pullback in ¢, ,s. Recall that in these circumstances we have a Picard-Fuchs
equation W, = : U, attached to ® € w, /5.

Fix an s € C(S). By shrinking S if necessary, we may suppose there is an
affine open U of C such that s € U(S) and there exists an element v of
Z(U) such that Q,4(U) is spanned by dc/sv over Z(U) and, s*v = 0.
Recall, for u € Z(U) we defined d,u and 8,u by
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du = d,udz + 0,udv .

Now suppose # > 1 and S’ is an étale (not necessarily finite) connected
open of S such that C/(S’) contains a point r lying overs s. Let C, = C, X §’
and A/ = A, x S’. We will abuse notation for the moment and let z and v
denote their pullbacks to S’ and C;, respectively. Let 4,: C, = C| denote the
pullback of #,. Let U’ denote the inverse image of U in C;. We set
U, = h,”"(U"). Then since 4/ is unramified, dz and dv span QIC’;(U,T), In
these circumstances we have a K-linear map L, , ,: ® arsst = K(C,)* described
in Corollaries 2.2.4 and 2.2.5.

Let n, S’, r be such that the dimension of the K(C,)-span of the image of
L., ,is maximal over all such triples. Call that dimension R. Now fix m > n
and replace S with an étale open of S’ such that, C,, is Galois over C, with
Galois group G and there exists an r' € C,(S) above r. Let
w=h*,h="h,,and let Y =C, and X = C,,. Our hypotheses imply, in
particular, that X(S) is of unbounded height. Let B = J,,/h*J,. Then, Kp,g
is an isomorphism. The module, wg, s injects naturally into wy,s and we
identify it with its image.

Let Ny, ...,m, be a K(S)-basis for wp,s. Let L =L, jxy,,. As LOA*
= L - our maximality hypothesis implies that L(h*w,4 /s) C L(wa:/s)K(X)
and so there exist elements ®, ..., Wz € W4,/s and elements z;; € K(X) such
that

L(m;) = E zi;L(h*w;) .
Let
T={teXS):tnU,+J,t*w+#0}.

The complement of 7 in X(S) is finite. In particular, in the notation of
Corollary 2.2.5, since Vpu(?) = V, w(h(2)),t € T and L(h*w) = L. ,, (o)
for w € w,4,/5, by Corollary 2.2.5

Wo (r',8) = ), ERZi jWhs o, (F'y 1) = Y t*Zi,choj(r: h(z)) .
for t € T. Let
Fii = w0 0) = X 2,0, (r, A(D)) .
We see that *f;, = 0 and Lemma 3.3.2 implies that the set
{fi:0<i<k,teT)

is contained in a finite dimensional X subspace of K(X). Hence by
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Lemma 3.1.1, using the fact that height is stable under the action of G, the
subset 7 of T consisting of elements ¢ for which there exists a ¢ € G and an
I,0 < i< n, such that f;, # 0 is of bounded height.

Let T, = T — T;. Clearly, T, is stable under G. Moreover, f;, = 0 for all
t € T,. That is,

o', 0) = X zi b (7, h(2))
In particular, p,,(r’,2°) = p, (r’,¢) for f € T, and 6 € G. On the other hand,

o (P 1%) = Wy, (7, 77°) + By, (770, ) = P (75 77°) + a0 (s 1)
by (II, 1.1) and Lemma 3.3.1. It follows that

uw—wc(rla t) = Hm(r',’”'c)

for all w € wp,5,0 € Gal(X/Y) and t e T,. Let t, e T,. By (11, 1.1) we
conclude that P, _oe(f,2) = 0 for all ® € wp,5, 0 € Gal(X/Y) and ¢ € T5.
But {® — ®0°:® € wp/s, 6 € Gal(X/Y)} spans wg,s over K by the definition
of B. Corollary 3.3.4, applied to the morphism X — B, implies 75 is a set of
bounded height. But this implies that X(S) is a set of points of bounded height.
This contradiction completes the proof of Mordell’s conjecture for function
fields. [

APPENDIX: CHAI’S PROOF OF THE THEOREM OF THE KERNEL

In this appendix, we give Chai’s proof of Manin’s Theorem of the Kernel,
Theorem 2.1.0 above and explain how Manin used it to prove the function
field Mordell conjecture. Let notation be as in Section II. As explained in that
Section, the theorem follows from the assertion:

(A1) N(e,s) =0 iff woN(es) =0.

Let H = H.,(4/S). For a subconnection D of H, let D denote the
pullback of H,,(A/S, Z) to D. As (Al) is stable under fiber products and
isogenies (see Proposition 1.3.2), (Al) is a consequence of the following
theorem, taking D = [W].

PROPOSITION Al.l. (Chai). Suppose A/S is irreducible and not
isotrivial. Let D be a non-trivial subconnection of H. Then the
extension H of H of connections splits iff the extension D of D does.
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