4. Non solvable groups

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 35 (1989)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
products, subgroups and central extensions, so G falls in the hypothesis of Corollary 3.1. in all cases, except the one in which at least one G_{i} is the icosahedral group. This is isomorphic to A_{5}, the alternating group on five letters and this identification will be fixed from now on.

4. Non solvable groups

We will prove Theorem 2.1 case by case. We start with the Lemma:
Lemma 4.1. If G contains C_{2}, then $\operatorname{Fix}(G)$ is S^{0}.
Proof. $\operatorname{Fix}(G)=\operatorname{Fix}\left(G / C_{2} \operatorname{Fix}\left(C_{2}\right)\right)$. $\operatorname{Fix}\left(C_{2}\right)$ is a homology sphere by Smith's theorem and is zero dimensional since around the chosen fixed point the non trivial element of C_{2} acts like the matrix $-I$, which has an isolated fixed point. The action of G / C_{2} on S^{0} has to be trivial since the fixed point set is required not to be empty.

By renumbering the factors and changing basis if necessary, we may assume G_{2} equal to A_{5}, with $G_{2} \xrightarrow{i} S O(3)$ the standard representation of A_{5}. Then G_{0} is a subgroup of $G_{1} \times A_{5}$ mapping onto both factors and to study it in more detail we look at the kernel of the second projection: $G_{0} \xrightarrow{\pi_{2}} A_{5}$. This subgroup consists of elements of the form (k, I) with $k \in G_{1}$; we denote it by K_{1}.

For convenience we distinguish three cases:
Case 1. K_{1} is a non-trivial subgroup of $S O(3)$, not isomorphic to A_{5},
Case 2. K_{1} is isomorphic to A_{5},
Case 3. K_{1} is trivial.
Proof in case 1. The surjection $G \rightarrow A_{5}$ has non trivial kernel $K=j^{-1}\left(\pi^{-1}\left(K_{1}\right)\right) \subset G$, this group is solvable since K_{1} is, π is a central extension and j is an injection. By Corollary 3.1., Fix (K) is a sphere of dimension 2 and Fix (G) is the fixed point set of an A_{5} acting on it, so it is easy to see that the only actions admitting some fixed points are the trivial ones.

Proof in case 2. Since A_{5} is not properly contained in any finite subgroup of $S O(3), K_{1}$ has to be equal to the whole G_{1}.

So $G_{0} \subset A_{5} \times A_{5} \subset S O(3) \times S O(3)$ and contains $K_{1}=A_{5} \times\{I\}$, it follows that G_{0} is the whole $A_{5} \times A_{5}$. Observe that the two inclusions of A_{5} in $S O(3)$ do not necessarily agree.

We claim that G in the diagram 3.5 must contain C_{2}, for if not $j \circ \pi$ would be an isomorphism $G \rightarrow A_{5} \times A_{5}$ and its inverse would split the extension

$$
0 \rightarrow C_{2} \rightarrow \tilde{G} \rightarrow A_{5} \rightarrow A_{5} \rightarrow 0
$$

This is not possible (see the appendix). Now apply Lemma 4.1. to end the proof.

Proof in case 3. If K_{1} is trivial the projection $G_{0} \xrightarrow{\pi_{2}} A_{5}$ is an isomorphism and the composition $\phi=\pi_{1} \circ \pi_{2}^{-1}: A_{5} \rightarrow G_{1}$ is a map onto, with graph G_{0}. The homomorphic images of A_{5} are only the trivial group and A_{5} itself, since A_{5} is simple.

If $G_{1}=\phi\left(A_{5}\right)$ is trivial, G_{0} is equal to $\{I\} \times A_{5}$. As in case 2 the extension

$$
0 \rightarrow C_{2} \rightarrow G \rightarrow\{I\} \times A_{5}
$$

is not split, so G contains C_{2} and $\operatorname{Fix}(G)=S$ by 4.1. If $G_{1}=\phi\left(A_{5}\right)$ is isomorphic to $A_{5}, G_{0} \subset G_{1} \times G_{2}$ is a copy of A_{5} too, mapped into $S O$ (3) $\times S O(3)$ according to $d(x)=(h(x) ; i(x))$, where $h(x)$ is some irreducible representation and $i(x)$ is the standard one specified before. The arguments in [22] can be used to prove that there are exactly two equivalence classes of representations of A_{5} into $S O(3)$.

So there are two subcases:
a. $\quad h$ is $x \rightarrow u^{-1} i(x) u$, with $u \in S O(3)$,
b. h is conjugate to the composition $\bar{i}: A_{5} \xrightarrow{\sigma} A_{5} \xrightarrow{i} S O(3)$ and σ is conjugation by the cycle $\left(\bar{i}_{2}\right) S_{5}$ on A_{5}.
a. If the coordinate system around the fixed point chosen at the beginning is linearly changed according to some $\tilde{u} \in S O(4)$, the representation $\rho: G \rightarrow S O(4)$ becomes $\tilde{u} \rho(x) \tilde{u}^{-1}$.

If $\pi(\tilde{u})=(u ; 1) ; i$ is left unchanged and h is replaced by i. So G_{0} is contained in the diagonal and $G \in \tilde{G} \in \operatorname{Im}(O(3))$.

Recall that when G contains C_{2}, $\operatorname{Fix}(G)=S^{0}$ by Lemma 4.1.

Lemma 4.2. If $G \neq C_{2}$, $\operatorname{Fix}(G)=S^{1}$.
Proof. G is isomorphic to A_{5} and has to be contained in $\operatorname{Im}(S O(3))$ so its representation has a one dimensional fixed space, which implies Fix (G) 1-dimensional at x_{0}. Now A_{5} contains A_{4} (named tetrahedral group when sitting in $S O(3)$), so $\operatorname{Fix}\left(A_{5}\right) \in \operatorname{Fix}\left(A_{4}\right), A_{4}$ is solvable and hence

Fix $\left(A_{4}\right)$ is a sphere. It cannot be S^{2} since the representation of A_{4} in $S O(3)$ is irreducible, so it is S^{1}. The only closed 1-dimensional submanifold of S^{1} is S^{1} itself, so $\operatorname{Fix}(G)=S^{1}$.
b. As in subcase a., a linear change in coordinates allows us to assume that h is actually \tilde{i}, and as before if $G_{2} \in G$ the proposition is proved applying 4.1.

If it is not the case, let α correspond to the cycle (12345) $\in A_{5}, \beta$ to (123) and γ to (345). We observe that β and γ generate A_{5} and so:

1. $\operatorname{Fix}\left(A_{5}\right)=\operatorname{Fix}(\beta) \cap \operatorname{Fix}(\gamma)$,
2. $\operatorname{Fix}\left(A_{5}\right) \subset \operatorname{Fix}(\alpha)$.

We claim that Fix (α) is S^{0}. According to Smith's theorem it is enough to prove that the representation of α around x_{0} has an isolated fixed point, i.e. is the sum of two irreducible complex ones.

If not by Lemma $3.3(\bar{i}(\alpha) ; i(\alpha))$ would be conjugate in $S O(3) \times S O(3)$ to an element on the diagonal. From the explicit description of i and \bar{i} (see the end of section 7.1 of [22]), it follows that they send all the five cycles to non conjugate elements in $S O(3)$, so this is impossible, and Fix $(\alpha)=S^{0}$.

As for β and γ, their images under (\bar{i}, i) are conjugate to elements on the diagonal, by 3.3 and 3.4 their fixed point sets have two-dimensional components, and so by Smith's theorem they are copies of S^{2}.

So Fix (G) is the intersection of a couple of $S^{2} s$ and is contained in Fix (α) which is S^{0}. If this set is empty or equal to S^{0}, the proposition follows. If it were a single point, it would be a transverse intersection, by local linearity, but it is not possible since a homology S^{4} does not contain any two cycles with intersection number odd. This ends the proof.

5. Locally linear representation

Let's now consider the case of G acting on a homology S^{4} with two fixed points, P_{0} and P_{1}.

Theorem 5.1. The unoriented representations of G around P_{0} and P_{1} are linearly equivalent. ${ }^{1}$)

Proof. It will suffice to show that the characters associated to the representations around the P_{i} s agree on every cyclic subgroup C_{k} of G.

[^0]
[^0]: ${ }^{1}$) See the note in the introduction.

