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HURWITZ-RADON MATRICES AND PERIODICITY MODULO 8

by Beno Eckmann

0. Introduction

0.1. We consider complex n x n — matrices AlfA2, -, As, either all unitary

(case U) or all orthogonal (case 0) ; they are called Hurwitz-Radon matrices,

in short HR-matrices, if

(1) Aj — E, AjAk + AkAj 0, j,k 1, 2,..., s j # Jc ;

E or En denotes the unit matrix. Such matrices are well-known to exist,

even with entries 0, ± 1, ± i (case U) or 0, ± 1 (case O). The possible

values of n are multiples mn0 ,m= 1, 2, 3,... where in case U, n0 2s/2

if s is even, n0 2(s_1)/2 if s is odd. In case O, n0 2(s_1)/2 if s 7 mod 8;

n0 2S/2 if s 0, 6; n0 2(s+1)/2 if 5 1, 3, 5; and n0 2(s + 2)/2 il
5 2, 4 mod 8.

If we put A0 E the relations (1) are equivalent to

s

/5(x0,xi,...,xs) £xj-4,
0

being a unitary, or orthogonal respectively, matrix for all real Xj with
s

£ x2 1. Thus /s can be considered as a map Ss U via U(n), or
o

Ss ^ O via O(n) where U — lim U(/c) and O lim 0(/c) are the infinite

unitary and orthogonal groups. We also write fs for the homotopy class

of that map, fsens(U) or tts(0). We recall that by the Bott periodicity
theorems these groups are cyclic or 0.

Theorem A. If A1, A2,..., As are HR-matrices ofminimal size n n0(s)
then fs is a generator of ns(U), or ns(0) respectively, s 0, 1, 2,...

Remark 1. For 5 0 (empty set of HR-matrices) we have f0(x0) x0(l),
x2 1; i.e., /0(1) (1), /0(-l) (-1), f0:S° ^ 0(1) -> O. For s > 0,

f0:Ss->O clearly factors through SO(n) -> SO (U being connected, the
analogue is irrelevant in the unitary case).
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Remark 2. The problem originally solved by Hurwitz [H] and Radon [R]
refers to the case 0 : One asks for complex bilinear forms z f(x, y)

s

(S XjAj)y, where z (zltz„), y(y1,yn), such that
0

z\ + + zl (xo+- + xs2) (y\ + + yl)

s n

This means that Y xjAj is orthogonal, i.e. leaves invariant Y y] except for
o o

s

the factor Y x) ; and thus, since we may assume A0 E, that A1,..., As
0

is a set of orthogonal HR-matrices in the sense of (1).

The case U refers to the analogous problem for the identity

1 z112 + + I zn 12 (xq + ...+xs2) (bil2 + ••• + \yn\2)

where y and z are complex, and x real.

0.2. The symplectic case: It is also of interest to consider HR-matrices,
1.e. matrices fulfilling (1), which are symplectic. A linear combination

s

Y xjAj of In x 2n-matrices with A0 E is symplectic up to the factor
o
s

Yxj if and only if >^AS is a set of symplectic HR-matrices (Pro-
o

position 4.1).

We restrict attention to unitary symplectic matrices, i.e., to the group
Sp(n) e= U(2n), and write Sp for the infinite symplectic group lim Sp(k).

With a set A1,...,AS of unitary symplectic HR-matrices, and A0 E, we
s s

associate the map fs{x0, xl9xs) Yxj^j>Yxj ^ °f into Sp via
o o

Spin); we also write fs for the corresponding element of ns(Sp% known to
be 0 or cyclic.

Theorem A'. If Ax,..., As are unitary symplectic HR-matrices of minimal

size 2no then fs is a generator of ns(Sp).

0.3. The paper is organized as follows. We first recall (Section 1) that the

HR-matrix problem can be formulated in terms of representations of certain

finite group Gs,s 0,1,2,... introduced by the author [E], and discuss

these representations using the elegant description of [LS]. In Section 2

the "reduced" Grothendieck groups of representations and Ef are
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computed; they turn out to be isomorphic to ns(U) and ns(0) respectively.

Moreover a product is defined in the direct sum of the (E°) turning

it into a graded ring The claim of Theorem A is proved in

Section 3; we show that the maps c\>:E^ -> ns(U), y\f : Ef ns(0) given

by the fs of 0.1 are isomorphisms. Using the product structure in n*(U)
and 71^(0) known from K-theory the proof reduces to simple verifications

in low dimensions. The symplectic case is dealt with in Section 4. In

Section 5 we make a remark concerning the "linearization phenomenon"

for the homotopy groups of U, 0 and Sp.

1. The groups Gs and their representations

1.1. We will denote throughout by Gs the group given by the presentation

Gs <8,a1,..., as I s2 1, a) 8, a-}ak sakap j, k 1, 2,..., sJ / k>

Clearly any set A1,...,AS of HR-matrices yields a (unitary or orthogonal)
representation of Gs of degree n by s i—> — £, ajt-^Ajj j 1, 2,..., s.

Conversely a representation of Gs with s i-> — E, in short an s-representation,

yields a set of 5 HR-matrices. For the elementary properties of Gs and

its representations we refer to [E]. We just recall that the order of Gs

is 2s + 1, that 8 is central, and that the irreducible unitary s-representations
of Gs are of degree 2S/1 if 5 is even (one equivalence class), of degree
2(s-i)/2 jf s js (two equivalence classes). These degrees are the minimal
values n0 in case U. As for the case 0, one has to recall that a
representation is equivalent to an orthogonal one if and only if it is equivalent
to a real (and orthogonal) one. Thus, unless an irreducible unitary 8-repre-
sentation is already real, one has to add its conjugate-complex representation,
and the discussion of the various cases depending on s yields the minimal
values n0 (case 0) mentioned in the introduction ; in other words, the degrees
of the irreducible orthogonal s-representations of Gs.

1.2. A very simple and useful scheme for studying the groups Gs and their
s-representations (and many other things) has been deviced by T. Y. Lam
and T. Smith [LS]. They have expressed the Gs as products of very small
and well-known groups. Namely C G1§ the cyclic group of order 4;
Q G2, the quaternionic group of order 8; K, the Klein 4-group; and
D, the dihedral group of order 8. Although K and D do not belong to the
family Gs, they are of a similar nature and contain a distinguished central
element s of order 2 (distinguished arbitrarily in K). "Product" here means
the central product obtained from the direct product by identifying the
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two s's. The expression for the Gs then is as follows, displaying a
fundamental periodicity modulo 8 :

5" 0 1 2 3 4 5 6 7 8 9

Gs Z/2 C Q QK QD D2C D3 D3K D4 D4C

and Gs + 8 D4Gs

The tensor product of 8-representations of two of the groups Gs, K, D
is an e-representation of their product above, and all s-representations of
the Gs can be obtained in that explicit way from those of C, Q, K, D,

which are well-known. This yields, in particular, the characters % and the

Schur indices I of the irreducible unitary s-representation (the Schur index

I 1 if the representation is equivalent to a real one; if it is not,
I — 1 if it is equivalent to the conjugate-complex one, 1 0 otherwise).
Both % and I behave multiplicatively with respect to the central product.

1.3. The Schur indices of the irreducible s-representations are: 0 for
C G1, — 1 for Q G2, and 1 for K and D (two equivalence classes

for K, one for £>). This yields the Schur indices Is of the irreducible

s-representations of the Gs, as listed in (2) below; we further list the

numbers vf of inequivalent unitary, and vf of inequivalent orthogonal
irreducible s-representations, and the respective degrees ,d°. Note that Is

is periodic with period 8, and d° is periodic with period 8 in the sense

that df+8 16df. Finally we include in the same table the Grothendieck

groups Ds and D° of (equivalence classes of) irreducible s-representations
of Gs, with respect to the direct sum of representations.

5 0 1 2 3 4 5 6 7 8 9

If 1 0 -1 -1 -1 0 1 1 1 0

vuv s
1 2 1 2 1 2 1 2 1 2

V°v s
1 1 1 2 1 1 1 2 1 1

duu s
1 1 2 2 4 4 8 8 16 16

d°s 1 2 4 4 8 8 8 8 16 32

DVs Z z©z Z z©z Z z©z Z z©z Z z©z
D°s Z z Z z©z z z Z z©z z z
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The values of d° follow immediately from the Is and the d^. The values

n0 for the case 0, as given in the Introduction, are the df.

2. The reduced s-representation ring

2.1. For all s ^ 0 the group Gs is the subgroup of Gs + 1 obtained by

omitting the generator as+1; let hs: Gs Gs+1 be the embedding homo-

morphism. Via hs we can restrict an s-representation of Gs + 1 to Gs, which

in terms of HR-matrices means omitting As+1.
Let hf:Ds+l^>Ds be the corresponding homomorphism of Gro-

thendieck groups, and Ff D^/hfDus+ 1 the "reduced" groups; similarly
Ef Df/hf D°+1. They can easily be computed by means of the characters

of s-representations, as follows.

For Q and D the character of an irreducible unitary s-representation
is 0 except on 1 and s. For C and K it is ^ 0 on all 4 elements; on the

essential generator (^s) of C it is + i or — i for the two inequivalent
representations, and + 1 or — 1 in the case of K. For Gs, s even, we
infer from the table (2) that the character is 0 except on 1, s. For Gs,

s odd, the character is 0 except on 1, s and two further elements z, sz;
on these the two inequivalent s-representations differ just by the sign of the
character.

If 5 is even, d^+1 df 2s/2; thus the restriction of an irreducible
s-representation must be irreducible, whence hf D^+1 Ef 0. If s is

odd, d^+i 2dvs 2(s+1)/2; thus the restriction is the sum of two irreducible
s-representations, and since the character is 0 (except on 1, s) these two
must be inequivalent. Therefore hfD^+1 is the "diagonal" of Z © Z,
and Ef Z; its generator ps is represented by either of the two inequivalent
irreducible s-representations of Gs, — ps by the other one.

In the orthogonal case the Ef are computed similarly from (3). Since
d° 2 and d° - 1, the restriction from D° to D% yields twice the
generator, and E% Z/2; the same argument holds for s 0 mod 8,

df+1 2d°. Since d°2 4 and d° 2, we get E° Z/2. From
^3 d2 4 we get E2 0. As for 5 3, the character argument shows
that h*D° diagonal of D?( Z®Z), and E% Z. For s 4, 5, 6 the
dimensions d°+1 df show that E% E° E° 0. For s 7, the
character argument yields D% diagonal of £>^( Z®Z), and Z.
Finally one has, for all s, Ef+8 Ef.
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These results are summarized in the table

(4) 5 0 1 2 3 4 5 6 7 8 9

0 Z 0 z 0 z 0 z 0 z

E? Z/2 Z/2 0 z 0 0 0 z Z/2 Z/2

According to the Bott periodicity theorems the above table is just that
of the ns(U) and ns(0\ s 0,1, 2,.... Before studying the relation as stated
in Theorem A we establish product structures in the reduced Grothendieck

groups of s-representations, i.e., of HR-matrices.

2.2. We consider HR-matrices A1,A2,As e U(n) and put, for

x (x0, x1,..., xs) eRs+1

and A0 En (n x n unit matrix)

fix)X XJAJ
0

For all x with |x| 1, /(x) is a unitary matrix: this is, as mentioned
in the Introduction, precisely the meaning of the HR-matrix relations (1).

Let further B1,B2,..., Bt e U(m) be HR-matrices, and for

y (y0,yi, -,yt)e r,+1, b0

tg(y)X ykBk ;

0

g(y) e U(m) for all y with | y | 1. We define F by

m /W ® Em En® g{y)
F(x, y)

En ® g(y) T f(x) T

One immediately checks that F(x, y)FT(x, y) (|x|2 + |y|2)F2nm- Thus F(x, y)

e U(2nm) for all (xj)eRs+t + 2 with |x|2 + |y|2 l. Since the coefficient
matrix of x0 is E2nm the coefficient matrices of xl5..., xs, y0,..., yt constitute
a set of s + t + 1 HR-matrices e U(2nm). They are, explicitly,

(5)
Aj®Em 0 WO Enm\ 0 En

0 — Aj (g) EmJ \- Enm 0 J \En <g) Bk 0

with j 1,..., s and km 1,..., t. In other words, we have a product of
s-representations of Gs and Gt
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Since addition in is by the direct sum of s-representations this product
is clearly distributive. Associativity (up to equivalence) is easily checked. We

00

thus get a ring structure in D ^ © D f ; we have added the term DlL1 — Z
-1

generated by the ring unit. The ring is graded if the grading is by
s + 1 for Ds.

From the HR-matrices (5) of the product one notes that if one of the two
factors is restricted from so is the product; i.e., h*D% is a (graded)
ideal in and we get a (graded) ring structure in D^/h^D^ E%.

The same procedure yields, of course, a (graded) ring structure in
00

E° © Ef, with grading 5+1 for Ef. In 2.3 and 2.4 below these
S — 1

rings are described explicitly.

Remark 2.1. An easy computation shows that the rings E| and E J

are anticommutative with respect to the grading, i.e., commutative except for
the factor (— l)(s+1) (r + 1). This will not really be used since the E% and
Ef are all 0, Z or Z/2. We just note that in the case Z, with generator
ps, — ps is given by the other equivalence class of irreducible ^representations,

see 2.1.

2.3. The ring E^.
The generator ps of E given by an irreducible unitary 8-representation

of Gs, has degree 2S/1 if 5 is even, 2(s_1)/2 if 5 is odd. The product
psp has degree

2(s+t+2)/2 jf s and t are even

2(s + f+ l)/2 s js eyen? t or yiCe_yersa

2(s+t)/2 ft s and t are odd

Thus, unless both s and t are even, the product is irreducible, i.e.,
PsPr i Ps+f + i- After choice of pj e E\ we can choose p3 p2?
P5 P1P3 P3P1 Pi, -, and for all odd 5 2r - 1, ps p\; for even

Evs 0.

Proposition 2.2. The product with p^E" is an isomorphism Evs
E%+ 2 for all 5. For odd s 21 — 1 we choose

P21-1 — Pi, I 1, 2, 3,...
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Theorem 2.3. E^ is the polynomial ring Z[p1].

2.4. The ring E°.
We denote by gs the generator of Ef 0 if s 2, 4, 5, 6 modulo 8;

determined up to sign if s 3, 7 modulo 8 where Ef Z).
The generator p7 p*) e E% can be given by a real s-representation

of degree 8 which we can use as generator a7 e E°. The ring homo-
morphism ®: E° -> induced by the embedding 0 -> U, 0(a7) p79 is

thus an isomorphism F7 F7. In F J the degree of a7aseEs°+8 is

16J f d?+8. Hence g7gs is irreducible, i.e., + gs + 8 for all s. In particular

we can choose a15 a7, a23 cr7,..., u8r-1 a7.

Proposition 2.4. The isomorphism E° Ef+8 can be given by the

product with a7 e E °.

Proposition 2.5. a7E£7 generates a subring of EJ which is the

polynomial ring Z[a7].
We further note that <j3<=E° is mapped by <D to 2p3e£3. From

0(a3) 4p3 4p7 0(4a7) we infer that a3 4a7. As for g0eE%,
it is of degree 1 and order 2, and aje£f is of degree 2 and order 2,

i.e., Qq g1. Of course g I 0.

In summary :

Theorem 2.6. E° is the commutative ring, graded by s + 1 for
generated by a0,a3,a7 with the only relations 2g0 0, g I 0,

cr§ 4ct7

3. The homotopy groups of U and 0

3.1. We will deal explicitly with the unitary case. The orthogonal case

can be treated in almost exactly the same way; any additional arguments
will be mentioned wherever necessary.

In the Introduction 0.1 we associated with a set of s unitary n x n

HR-matrices, i.e., with an s-representation of Gs, a map / : Ss -> U of the

s-sphere Ss c= Rs+1 into the infinite unitary group U via U(n). Since

conjugation is homo topic to the identity, equivalent representations yield homo-

topic maps / (in the orthogonal case, we have to observe that conjugation
can be made with a matrix from the identity component). The map
(j>: Ds ns(U) thus obtained is a homomorphism; indeed, homotopy group
addition of / and /' in ns(U(n)) can be replaced by multiplication in
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U(n); this is homotopic in U(2n) to the map ^fJ, and on the other

hand addition in is defined through the direct sum of representations.

If the s-representation is restricted from D^+1, i.e., if the set of HR-matrices

belongs to a set of s + 1 HR-matrices, / extends to a map Ss+1 — U and
is thus nullhomotopic. The homomorphism § therefore induces a homo-
morphism E% -> ns(U), again written 4>. The analogue Ef -> ns(0) will be

denoted by \|/. The groups and £s° are 0 or cyclic generated by
irreducible s-representations, i.e., by HR-matrices of minimal size. Our claim,
Theorem A, can therefore be reformulated as follows.

Theorem B. The homomorphisms 4> : -> ns(U) and v|/: Ef — ns(0)
are isomorphisms, s 0, 1, 2,...

3.2. For small values of s the claim is easily checked.

Case U

s 1 : E J7 can be generated by one HR-matrix A1 i). Thus

f(x0,x i) (xo + ixje 1/(1)

if Xq + x\ 1. This is a generator of tt1(T/(1)) n^U) Z.

5 3: E 3 is generated by 3 HR-matrices

Al-i)'Al(-1 )'
Thus

/V \ f X0 + iX 1 X2 + OC3\
/(x0,x1,x2,x3) e 5(7(2)

\-x2 + ix3 x0-ixj
3

if Xxj This is a generator of n3(SU(2)) [ 7u3(S3)] %3(U) Z.

Case 0

s 0: Empty set of HR-matrices, f(x0)(x0) e 0(1) if 1, x0 ± 1.
This is a generator of 7t0(0(l)) n0(O) Z/2.

s 1 : is generated by one HR-matrix A1 f 1

j. Thus

/(*<>, *r) *°Xl)eSO(2)

\ X1 xo)
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if Xq + x\ 1. This is a generator of 7i1(50(2)) Z; as a map 51 -> 50(3)
it is a generator of 71^50(3)) nfO) Z/2.

s 3: E 3 is generated by three 4x4 HR-matrices which yield

X0 Xj.

f(x0, xl9 x2, x3) =1 -x1 x0 x3 -x2 \eS0(4)
x2 x3 x0

-x3 X2 -Xi
3

if Y xj 1- This is a map 5 3 50(4) which is well-known to become,
o

under 50(4) 50(5), a generator of 7i3(50(5)) n3(0) Z.

3.3. The proof of Theorem B becomes very simple if (j) and v|/ are turned
00

into ring homomorphisms k%(U) © ns(U) (tc^ Z generated by
- 1

the ring unit) and E° -» 7ü#(0). For this purpose we have to define a

product in 71^(0) and tc^(O), graded by s + 1 for ns. This is done by
extending the product introduced in 2.2 from linear maps / : 5s -> U or 0
to arbitrary continuous maps.

Given a continuous map / : 5s -> U via U(n),

Ss {x (x0, xl5..., xs) g Rs+1 with I x I 1}

we extend it to /0: Rs + 1
-+ Mn(C) by /0(x) |x]/^^j, °'

Similarly for g: 5< -* U via l/(m), 5' {y g R+1 with | y | 1}. Then

m x /oM ® Em En ® gfoO?)
F(x, y)

® 0oG>) /oW ® ek

is a unitary 2wn x 2nm matrix for all (x, y) e Rs+t + 2 with | x |
2 + | y |

2 1

and thus defines a map F : Ss+t + 1 U via U(2nm). Homo topic maps /,
or g respectively, yield homotopic F and we obtain a product F f u g

j ns(U) x nt(U)^ns+t + 1(U).

iFrom the description of homotopy group addition in ns(U) as given above

jin 3.1 one easily checks that fug is distributive. Thus 7z%(U) is a ring,
Sand so is n%(0), graded by s + 1 for ns(U) or 7ts(0).

3.4. Bott periodicity is usually expressed in terms of complex and real

;K-theory. We thus use the isomorphisms
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n,(V) KC(SS+1) and n,(0)

We recall that tcs(I7) KC(SS + 1)is obtained through nJU) KC{BS+1, Ss

where Bs+1 is the unit ball {x e Rs+1, | x | < 1}; the element corresponding

to f ens(U) is given by two (trivial) C-vector bundles over identifiée

on Ss by means of /. It will not come as a surprise that above

corresponds to the u-product

KC(BS + \SS) x Kc(Bt+1,S')->
given by the external tensor product of bundles. Indeed the map / u

F:Ss+t+1 -> U via U(2nm) can be interpreted as follows: One decom

poses Ss+t+1 c Rs+, + 2 (coordinates x0, y0, yt y,with |x|'

+ I y I 2= 1) into {| x |
2 < 1, | y |

2 ^ 1} homeomorphic to Bs + 1 x S' anc

{I x I2 Ss -, I y I
2 ^ ^-} homeomorphic to 5s x ; the map F is

(fix) ® Em 0 \
on ss y ^ e y. 0; I x I

^

V 0 f(x)T®EmJ

° En®g(y)\
on (0) x i.e. X 0,1 y I 1

\-En<g) g(y)T 0 /
Under KC(BS + 1, Ss) KC(SS + 1) one then has a graded ring structure ii

°° ~
0 Kc(Ss + i) isomorphic to According to the Bott periodicity theoren
-1
(see [K], p. 123) this ring is the polynomial ring Z[a] generated by th<

generator of KC(S2); i.e., n^(U) is the polynomial ring generated by th<

generator a of n^U).
Similarly, 7t*(0) is the commutative ring with generators b0 e n0(O

b3en3(0\ b7 e tt7(0) with relations 2b0 0, bo 0, b\ 4b7 ([K~

p. 156-157).

To prove Theorem B we therefore only have to show:

Case U. p1 e is mapped by <j) to a e n^U).
Case O. a0 e Eq is mapped by \|/ to b0 & n0(O) and a3 e E3 to b3e n3(0

This has already been done in 3.2.
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4. Symplectic HR-matrices

4.1. Symplectic matrices A leave invariant the bilinear form with coefficient

matrix J J ; i.e., ATJA J. With respect to the HR-matrix
-En

relations (1) they behave exactly like orthogonal or unitary matrices:

Proposition 4.1. Let Al9 A2,—, As be 2n x 2n-matrices, and Ao — E2n •

s 1

Then 15 symplectic up to the factor ^ xj for all x0,xl9...9 xs
o o

if and only if Al9 A2, -, As is a set of symplectic HR-matrices.

Proof. X XjAj Jiï XjA X XJ

+ Y,xoXj(AjJ + JAj) + X Xj#
1 j,k= 1

Assume AjJAj J,j 0,..., s; and

Ay — E, AjAk + AfcAy 0, y, k 1,..., 5,7 ^ k

Then — AjJ JAy, and AjJAk + AjJAy — J(AjAk +AkAj) 0. Thus

the whole expression reduces to \ Y xj \j. The argument is plainly reversible.

4.2. In the following, "symplectic" will mean unitary symplectic; i.e., we
consider matrices from the compact group Sp(n) c= U(2n). A set of symplectic
HR-matrices A1,A2,..., As is thus an e-representation of Gs in Sp(n); we
continue to call its degree In. The notations dssp, Dssp, Essp have the

same meaning as before for U and for 0.
All elements of Gs have square 1 or 8 ; a matrix e U(2n) of square ± E

is symplectic if and only if it is of the form
ß ^ — B,

ÄT A in the case of square E, and Bf B, A1 — A in the case of

square — E. Symplectic representations of Gs are sums of irreducible unitary
representations; if an irreducible unitary e-representation is not (equivalent
to a) symplectic, we have to add its conjugate-complex in order to obtain

an irreducible symplectic e-representation. Due to the description (2) of the

Gs the following observations yield the complete list of degrees etc.
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4.3. (a) The tensor product of a unitary representation V of even degree

and an orthogonal representation (of any degree) is symplectic if and only
if V is.

(b) Since Sp( 1) SU(2), the irreducible unitary s-representations (of degree 2)

of G2 Q are symplectic.

(c) The irreducible s-representations of D dihedral group of order 8)

are not symplectic, but orthogonal; the same holds for Dj and DjK,
K Klein 4-group.

(d) The tensor product of any representation with the irreducible s-repre-
sentation (of degree 1) of Gx C is not symplectic.

The periodicity modulo 8, Gs + 8 G8GS D4GS, with d% d g 16,

yields d^l8 16d^p and vf£8 vfp. For s 2,3,4 modulo 8 the
irreducible unitary s-representations of Gs are symplectic, dssp d^ and
vsP vs j f°r the other s they are not, thus d^p 2d^. For s 1, 5 modulo 8

the conjugate-complex representations are inequivalent, thus 1; for
s 0, 6, 7 we combine two equivalent representations, thus vf, i.e.,

VsP 1 for s 0, 6 and 2 for s 7. The restriction arguments from
Gs+1 to Gs are as before and yield the which are periodic modulo 8.

We summarize the results in the following table

5 0 1 2 3 4 5 6 7 8 9

V? 1 1 1 2 1 1 1 2 1 1

2 2 2 2 4 8 16 16 32 32

Z Z Z z©z Z Z Z z©z Z Z

0 0 0 z Z/2 Z/2 0 z 0 0

4.4. Comparing with (3) one notes that Df Ds/+4 and Ef ^ The
isomorphisms can be made explicit in terms of the u-product introduced
in 2.2, as follows.

Let P3GD3 D\p be one of the generators, p3 p3, and oteD?
one of the generators. The product p3uateDfH has degree 2.2.d?\
this is precisely the degree of a generator of Dff4. We check that p3 u ot
is indeed in D?l4 and thus a generator: this is clear for t 0,6,7,
t + 4 2, 3, 4 modulo 8 where Dff4 D?+4; for t 1,2, 3, 4, 5 we know
that at pt + pt, whence p3 u af p3 u pf 4- p3 u p?, i.e., it is one of the
generators of Df£4.
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Theorem 4.1. The product of the generator p3 e £3 E\p with £f
is an isomorphism Ef £fÇ4 /or o// s ^ 0.

4.5. We now consider the homomorphism 0: Essp -> ns(Sp), analogous to c|)

and v|/ before.

Let A1, A2,As be a set of s symplectic 2n x 2n HR-matrices, and

A0 E. Then
s

fs(x0,Xt ,...,XS)E
0

5

x (x0 xx,..., xs) e Rs + 1, £ Xj 1, is symplectic. We consider / as a map
0

Ss -> Sp via Sp(n); as in the cases U and 0 this yields a homomorphism
0: Essp -> ns(Sp), s ^ 0. The 7ts(Sp) are known to be 0 or cyclic. Theorem A'
can now be reformulated as follows.

Theorem B'. 0 is an isomorphism Essp 7ts(Sp), s ^ 0.

For s 3 this is clear: since E%p E3 and Tu3(,Sp) n3(Sp(l))

n3(SU{2j) n3(U), c 0(p3) is a generator of 1i3(Sp) Z.
To complete the proof of Theorem B' we use, as for Theorem B,

the u-product and results of K-theory relating KR with KH, the quaternionic
or symplectic K-theory. The product c u b, b e ns(0), can be expressed in
terms of linear maps S3 Sp( 1) SU(2), Ss - O(m), Ss + 4 U(4m). As seen

in 4.3, it lies in fact in Sp(2m) a U(4m) and can thus be regarded as an
element of ns + 4(Sp). The map c u — : ns(0) -» ns + 4(Sp) corresponds, under

ns(0) Kr(Ss + 1) and nt(Sp) KH(St+1), to the isomorphism KR(SS+1)

Kh(Ss + 5) given by the external tensor product of bundles with the

generating bundles of K^S*) Z (see [K], p. 154). Hence cu— is an

isomorphism 7ts(0) ns + 4(Sp).

Moreover, since everything is described by linear maps the diagram

E? - n,{0)

P3W- I I ~-

ESsP+4^rcs+4(Sp)

is commutative. The upper and the two vertical maps being isomorphisms,
so is 0.
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5. Linearization

5.1. The groups Eus can be viewed, through the homomorphism c|>: Eus

-> ks(U) in 3.1, as "linear homotopy groups" of U. This means that we

consider maps of Ss into U via some U(ri) which are linear in the

coordinates x0,x1}...,xs of Rs + 1
=3 Ss; and linear nullhomotopies, i.e.,

extensions to Ss+1 -> U(n) linear in x0, x1,..., xs+1. It is an immediate

corollary of Theorem B that these linear homotopy groups n\ln(U) are

isomorphic to the ns(U) by the obvious imbedding n\in(U) ns(U). In
other words :

Any map Ss -> U is homotopic to a linear map, and if a linear map
Ss -> U is nullhomotopic then it admits a linear nullhomotopy.

Similar statements hold, of course, for tus(0) and ns(Sp).

5.2.If these linearization phenomena could be established directly (by some

approximation procedure) one would obtain a very transparent proof of the

Bott periodicity theorems for ns(U), ns(0), and ns(Sp), in the sense that they
would be reduced to the algebraic computation of Ef, and Essp as

carried out here.

5.3. Linear maps Ss -> U via U(n), etc., are given explicitly in terms of
HR-matrices ; thus the coefficients involve 0, ± 1, + i only. Such maps have

a meaning over very general fields instead of R and C, and one should

compare the corresponding linear homotopy groups with homotopy groups
defined by means of algebraic maps.
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