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AN ALGEBRAIC PROOF OF VAN DER WAERDEN'S THEOREM

by Vitaly Bergelson, Hillel Furstenberg, Neil Hindman,
and Yitzhak Katznelson x)

0. Introduction. In 1927 van der Waerden [9] proved that if the

natural numbers N are partitioned into finitely many classes in any way
whatever, one of these classes contains arbitrarily long arithmetic progressions.
Since then several different proofs have been given, most of them of a

combinatorial nature ([5], [7], and [8]), and one proof [4] based on ideas

of dynamics. We present here yet another proof whose basic idea is algebraic
and which makes essential use of the Stone-Cech compactification of the

natural numbers. While the proof is not elementary it is a conceptual proof
which presents in a simple context algebraic and topological machinery
which is useful in dealing with a variety of combinatorial questions. In
particular it confirms that the Stone-Cech compactification which has shown

up in a number of other questions in Ramsey Theory plays a significant
role also for one of the best known results in Ramsey Theory — van der
Waerden's Theorem.

To underscore the algebraic ingredients of the proof, let us state a
theorem regarding finite semigroups which embodies the kernel of our
argument. So let S be a finite semigroup whose operation will be denoted
by multiplication. We say J is a (two-sided) ideal in S if SJ ç J and
JS ç J. If S is a semigroup denote by Sl the /-fold cartesian product
of S with itself. SlA will denote the diagonal of Sl, i.e. SlA {(x, x,..., x):xe 5}.
Then SlA and Sl are themselves semigroups with the coordinatewise
operations.

0.1 Theorem. Assume S is a finite semigroup. If R is a semigroup
in Sl with SlA ç R and if J is any two-sided ideal of R, then J
must meet SlA.
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In general this result does not hold for infinite semigroups. We invite
the reader to find a counterexample for S (Z, + However it does hold for
compact semigroups as we will show implicitly in the proof of Theorem 3.3.

(Of course the finite version is then a special case.)

We intend to apply this theorem to the natural numbers N by compac-
tifying N in such a way so as to obtain a compact semigroup; this is the

role of the Stone-Cech compactification ßN of N. We obtain a theorem
about ßN which when unraveled becomes exactly van der Waerden's
Theorem.

We warn the reader that in the compactification of N the operation of
addition will be extended with the usual notation +. However the semigroup
will not be commutative and so one has to accustom oneself to non-
commutative addition.

1. Semigroup properties of ßN

Any completely regular Hausdorff space has a maximal compactification,
the Stone-Cech compactification. In particular the discrete space N of
positive integers has a Stone-Cech compactification ßN which is characterized

by: (1) ßN is a compact Hausdorff space; (2) N is a dense subset of ßN;
and (3) given any compact Hausdorff space Y and any / : N - Y there is a

continuous extension /ß : ßN -> Y, (that is /ß |

N — /).
Our proof of van der Waerden's Theorem is based on the fact that the

operation of ordinary addition extends to ßN as an operation which we

denote by +. ßN under this operation will be a semigroup in which the

operation of addition is continuous in a restricted way. Namely let (S, +)
be a semigroup with S a topological space and define functions px and Xx

for each x e S by px(j/) y + x and Xx(y) x + y. If one requires only
that px be continuous, S is called a right topological semigroup.

1.1 Lemma. There is an operation + on ßN such that ßN is a

compact right topological semigroup, + extends ordinary addition on N,
and Xn is continuous for each ne N.

Proof We extend + in stages, starting with + defined on N x N.

Given ne N, consider fn: N ßN defined by fn{m) n + m. Then each fn

has a continuous extension /ß: ßN -» ßN. For ne N and pe ßN\N define
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n + p f ß (p). (Then for ne N and any p e ßN, n + p — f J(p) since if

pe n, /ß(p) fn(p) n + p.) Now + is defined on N x ßN. Given

p g ßN define gp : N —> ßN by pp(n) n + p. Then each pp has a continuous

extension g\ : ßN -> ßN. Then for p g ßN and q e ßN\N define q + p pß(p).

(Again if p, p are any points in ßN we have q + p pß(p).)

Since for any n e N, Xn fl and for any p g ßN, pp g\> the

continuity assumptions are immediate. Thus we need only check that the

operation is associative. To this end let p, q, r e ßN. Observe that p + (q + r)

Pq + r(p) while (p + q) + r (Pr° pq)(p) so continuity it suffices to show

pq+r and pr ° pq agree on the dense subset N of ßN. Let ne N. Then

pq+r(n) n + (q + r) (Xn ° pr) (q)

and (pr o pq) (n) (n + q) + r (pr ° Xn) (q).

Again by continuity, it suffices to show Xn ° pr and pr ° Xn agree on N.

Let me N. Then

(Xn o pr) (m) n + (m + r) (Xn o X.J (r)

while

(p, o (m) (n + m) + r Xn + m(r)

Thus it finally suffices to show Xn°Xm and Xn + m agree on N. Let te N.

Then (X„ o Xm) (t) n + (m + t) (n + m) + t Xn+m(t) as required.

The main fact about ßN making it useful for van der Waerden's
Theorem and similar results is the content of the following lemma.

1.2 Lemma. If {A1, A2, -, Am} is a finite partition of N,
then [cl A1, cl A2, -, cl Am} is a partition of ßN such that for each

i e {1, 2,..., m}, cl At is open.

Proof Let Y {1,2,..., m} with the discrete topology and define

/: N -> Y by f(n) i if and only if ne At. For each i e {1, 2,..., m}, let
Bi {p g ßN: /ß(p) i}. Then immediately {B1, J32, -, Bm} is a partition of
ßN. Further, given i e {1, 2,..., m}, Bt (/ß)_1[{/}]- Since {i} is open and
closed in Y and /ß is continuous, Bt is open and closed. Since At ^ Bt,
one has cl At ç Bt. To see that Bt ^ cl At$ let x e Bt and let U be a

neighborhood of x. Since X is dense in ßN, pick yeNnCUnBfi. Since

y e Bt, f(y) i so y e At. Thus U n At ^ 0 as required.
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2. Minimal left ideals in right topological semigroups

We present in this section several well known facts which are not usually
seen in early graduate courses.

2.1 Lemma (Ellis [2]). Let S be a compact Hausdorff right topological
semigroup. Then S has an idempotent, that is there exists x e S with
X + X X.

Proof. Let sé {A ç S : A / 0, A is compact, and A + A ç A}. Now
sé A 0 since S g sé. Let ^ be a chain in A. Then ^ is a collection of
closed subsets of S with the finite intersection property so cé A 0
and rA is compact. Trivially {ré) + (n^7) ç nPick by Zorn's Lemma a

minimal member A of sé.

Pick x e A and let B A + x. Now B px[A] {px(y): y^A}) so, as

the continuous image of a compact set, B is compact (and trivially non-empty).
Also BaB AAxAAAx^AaAaAAx^AAx B. Thus
B e sé. Since B A-\-x^A-\-A^A and A is minimal, B A so

x e B A -\- x. That is, there exists y e A with x y + x.
Let C {y e A : x y + x}. px is continuous so p

~ 1[{^c}] is closed.

Thus C is closed, hence compact. To see that C + C ç C, let y, z e C.

Then y + z e A and (y + z) + x y + (z + x) y + x x so y + zeC.
Thus Ces/. Since C ç A and A is minimal, C A. Then x e C and
hence x -f x x.

A non-empty subset / of a semigroup S is a left ideal if S + I C /,
a right ideal if J + S ^ /, and a two-sided ideal if it is both a left ideal
and a right ideal. It is a fact (which we will not need) that any right ideal
in a compact right topological semigroup contains a minimal right ideal,
which need not be closed. (For this and other interesting facts see [1].) We
do need a similar fact about left ideals.

2.2 Lemma. Let S be a compact Hausdorff right topological semigroup.

Any left ideal contains a minimal left ideal and minimal left ideals are closed.

Proof. Let L be a left ideal of S. Let sé — {A L : A is a left ideal
and A is compact}. Choose xe L. Then S A x px[S], the continuous image
of a compact space. Also S + (S + x) (S + S) + x ^ 5 + x so S + x is a

left ideal. Since SA-x^S + L^L, we have s/ A 0. One easily sees

that the intersection of a chain in sé is again in sé. Choose by Zorn's
Lemma a minimal member A of sé.
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To see that A is in fact a minimal left ideal, assume we have a left

ideal B <= A and pick x e B. Then as above S + x g sé while S + x ç; S

+ B^.B^AsoS + x AsoB A

2.3 Definition. Let S be a semigroup. Then M(S) u {L : L is a minimal
left ideal of S}.

It is a fact (which we will not need) that if S is a compact Hausdörff

right topological semigroup, then M(S) is a two-sided ideal of S.

2.4 Lemma. Let S be a compact Hausdorff right topological semigroup

and let I be a two-sided ideal of S. Then M(S) # 0 and M(S) ÉS I.

Proof. Since S is a left ideal of S it contains by Lemma 2.2 a minimal
left ideal so M(S) =£ 0- So see that M(S) <= I, let x g M(S). There is a

minimal left ideal L of S with x e L. Also choose some y e I. Then

y + x e L n I (since I is a right ideal) so L n I ^ 0. Thus L n / is a

left ideal contained in L so that L n I L.

The proof of the following lemma is an easy exercise and we omit it.

2.5 Lemma. Let S1 and S2 be compact right topological semigroups
and let S1 x S2 have the product topology and coordinatewise operations.
Then x S2 is a compact right topological semigroup. Given x e
and y e S2,Xx and Xy may or may not be continuous (where Xx(t) x + l

If Xx:S1-*S1 and Xy: S2S2 are continuous, then X{x^y):S1 x S2

— Sx x iS2 is continuous.

3. Van der Waerden's Theorem

We let leN be fixed throughout and show that given any finite
partition of N some one cell contains a length I arithmetic progression.

3.1 Definition, (a) Let Y (ßN)z with the product topology and
coordinatewise operations.

(b) £* {(a, a + d, a + 2d,..., a + (J- l)d): a e N and d e N u {0}}.
(c) /* {(a, a + d, a + 2d,..., a + (Z~ 1 )d) : a, d e N}.
(d) E clY E*

(e) I Cly I*.
Note that by Lemmas 1.1 and 2.5, Y is a compact Hausdorff right

topological semigroup and whenever x (x1,x2,..., xfi e Nz, is
continuous.
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3.2 Lemma. E is a compact Hausdorff right topological semigroup
and I is a two sided ideal of E.

Proof Compactness is immediate and the Hausdorff property and

right continuity are inherited from Y. We let p (p1, p29... pt) and

Q — (tfi be members of E and show that p + q g £. We show

further that if either p or q is in I, then p + q g L
To see that p + q g £, let U be a neighborhood of p + q. By the

continuity of pq, pick a neighborhood V of p with V + q pq[F] ç U.

Since p g c/ £* we may pick a e N and de N u {0} with

(a, a + d, a + 2d,..., a + (I — 1 )d) g V.

If p g I we may presume d =£ 0. Let x (a,a + d, a-\-2d,..., a + (l— l)d). Then

x g V so x + q g U. By the continuity of Xx, pick a neighborhood W of q

with x + W Xff_W] ci U. Since q g cl L*, pick be N and cgNu{0}
(with c^O if q el) such that (b, b + c, b + 2c,..., b + (l— l)c) g W. Let

y (b, b + c, b-\-2c,..., b + (l—l)c). Then x + y g U n E*. If either d + 0 or
c + 0, then c-j-d^Osox + yeUnl*.

3.3 Theorem. Let p e M(ßN) and let p (p, p,..., p). Then p e L

Proof We first show that p e E. Let U1 x U2 x x Ul be a basic

neighborhood of p. Then Ufi n l/2 n n is a neighborhood of p in
ßN. Since N is dense, pick a e N n (L1nl/2n...nl/i). Then (a, a,..., a) e £*
n (U1 x U2 x x I/z). Thus p g d £* E.

Since p e M(ßN), there is a minimal left ideal L of ßN with p e L.

Since £ + p is a left ideal of E, pick by Lemma 2.2 a minimal left
ideal £* of £ with £* c= £ + p. Since £* is closed, hence compact, pick
by Lemma 2.1 an idempotent q (q1 ,q2,..., qi) in L*. Now q g L* ç £ + p

so pick some s (sx, 52,..., Sj) in £ with q s + p.

We show that p + q p. To this end let i g {1, 2,..., /}. Now qt st

+ p e L so ßN + ^ ^ ßN + £ ^ £. Thus ßN + qt is a left ideal contained

in the minimal left ideal L so that ßN + qt L. Thus since p e L there
exists tt e ßN with tt + qt p. But then p + qt tt + qt + qt tt

+ qt p as required.

Since p g £ and q g £*, a left ideal of £, we have p p + q g £*
so that p g M(£). Thus by Lemma 2.4, p g £

3.4 Corollary (van der Waerden). Let me N and let {A^, A2,..., Am)

be a partition of N. There exist i e {1, 2,..., m} and a, d e N with

|ö, a T d, a T 2d,..., a T (/— 1)^} — Ai.
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Proof. By Lemma 2.4 M(ßN) / 0 so pick p e M(ßN) and let

p (p,p, ...,p). By Lemma 1.2 pick i e {1, 2,..., m} such that cZ ^ is a

neighborhood of p and let U — cl At. Then U x U x x U is a

neighborhood of p while, by Theorem 2.3, pel cl /*. Pick a, d g N with

(fl,a + J,a + 2J,...,a + (/-l)J)eh x U x x U. Then

{$, a + J, a + 2J,..., a + (Z — l)d} Ç [/ n N (dij n 4;.

We remark that if one starts with the free semigroup on I letters in

place of N, essentially the same proof yields the Hales-Jewett Theorem.

See [3] for the details.
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