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276 J. MCCARTHY AND A. PAPADOPOULOS

classification. For a complete exposition of Thurston's theory, we refer the

reader to [4], and for more information on Teichmüller space, to [1].
Finally, in section 4, we prove the theorem on the type of the product of
two involutions.

The problem of studying the types of products of involutions in the

mapping class group was suggested to the second author by François
Laudenbach. The theorem on the subgroup generated by involutions arose out
of an attempt to obtain more precise information about the mapping classes

which occur as products of two involutions.
The first author acknowledges partial support from Université René

Descartes (Strasbourg), and the second author acknowledges support from
CNRS (France) and Universidad Nacional Autônoma de México.

2. The subgroup generated by involutions

Let M(Fg) denote the mapping class group of a closed orientable surface

Fg of genus g ^ 2. Let I(Fg) denote the subgroup of M(Fg) which is

generated by involutions. We wish to describe I(Fg) as a subgroup of

M(Fg). Clearly I{Fg) is a normal subgroup of M(Fg). Hence, we shall give

our description in terms of the quotient, M(Fg)/I(Fg).
We begin by recalling some algebraic facts about M(Fg). For a general

introduction to the algebraic structure of M(Fg), we refer the reader to [2].
It is a classical fact that M(Fg) is generated by Dehn twists about

nonseparating simple closed curves on M. In fact, M(Fg) is generated by a

finite number of such twists. The minimum number of twists which is

required to generate M(Fg) was given by Humphries [5].

Figure 1.
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Theorem (Humphries). M(Fg) is generated by the Dehn twists about the

curves al9...,a2g and b offigure 1.

Let us denote the Dehn twist about a curve, a, by ta. (We remind the

reader that the sense, right or left, of a Dehn twist is not dependent upon
an orientation of the curve a, but rather upon the orientation of the surface;

ta denotes a right Dehn twist with respect to the given orientation on F.)

Given any element of M(Fg), h, we have the following identity:

(1) htah~l** tHa).

It follows that any two Dehn twists about nonseparating simple closed

curves on F are conjugate in M(Fg). As a consequence, JT1(M(F^)) is cyclic.
The order of H1(M(Fg)) was computed by Powell [8] :

(2) Hl(M(F2)) Z10

(3) H,{M(Fg))1 if 3

Due to the peculiar nature of genus 2, we shall need more precise
information concerning involutions in M(F2). It is a consequence of a theorem
of Nielsen (cf. [7]) that every involution in M(F2) is represented by an
involution of F2. Hence, we need only describe involutions of F2.

There are two obvious such involutions. First, there is the hyperelliptic
involution, i, with six fixed points which is depicted in figure 2 as a rotation
by 180 degrees about the horizontal axis.

Let us denote the Dehn twist along at by tt. From equation (1), we
see that icommutes with f,, t2,t3, t4 and t„. Hence, i is a central element
of M(F2).
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(4)

The following identity was established by Birman [2] :

i 1113tä.tht4-t2tAll2L3L4-L bi4-i3i2il •

Secondly, there is the involution, s, with two fixed points, obtained by a

rotation about the vertical axis as in figure 3.

We shall also need to express 5 as a product of Dehn twists. We thank
Roger Tchangang Tambekou for explaining the technique used below for
finding such an expression.

Lemma 1. We have

Proof. Since s commutes with i, it induces a map, s\ on the quotient
orbifold of F2 by the action of i, N. N is a sphere with six distinguished
points of index 2, as in figure 4.

The map, s', is again a rotation. In particular, it fixes the point P
which is indicated in figure 4. Hence, we can isotope 5' in a neighborhood
of the disk D (again indicated in figure 4). This isotopy lifts, in an obvious

way, to M2. Hence, we may assume that s' fixes the disc D pointwise.
Therefore, we may consider s' as a map of a six-punctured disc fixing the

boundary. In other words, s' is a braid. It is easy to see that the

corresponding geometric braid is that depicted in figure 5.

Figure 3

s — kiLW.iLVi tht2tAt^t2ti'3t2t4.t3t2t4t1tbt2t4t3t2t4.t1tb.
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Hence, in terms of the standard braid generators, we have

(5) s' S2S4.S2S4_S$S2S4.S2S4.S$

As explained in [3], the braid generators s1, s2, s3, s4 and s5 lift to

t1,t2,t3,t4 and tb respectively. Hence, we see that h is a lift of s'. It

Figure 5.
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follows that s is equal to h or hoi. Since i acts on Hl{F2,Z) as — Id,
we may decide which of the two inequalities holds by considering the action
of s and of h on H1(JF2,Z). We leave it to the reader to verify that s

and h have the same action on HfF^^Z). This completes the proof of
lemma 1.

We shall now show that every involution of F2 is equivalent to either i

or 5.

Lemma 2. There are exactly two conjugacy classes of involutions in

M(F2 the classes of i and of s.

Proof By equation (1) above, st^'1 tb.

Hence, s is not in the center of M(F2). Since i is central, i and s

represent distinct conjugacy classes in M(F2).
It remains to see that all involutions in M(F2) are conjugate to either i

or 5.

Hence, suppose t is an involution in M(F2). Let t also denote a

representative involution of F2. Of course, the orbit space of F2 under the

action of gp(t), N, is the base space of a branched covering with total space

F2. Hence, by the Riemann-Hurewicz formula, we have the following identity :

(6) 2(X(N)-b)) X(F2) - V

where X denotes Euler characteristic,

b number of branch points in N,

and b' number of branch points in F2

Since this is a two-fold branched cover, we know that b' is equal to b.

Hence, if we denote the genus of N by g, we obtain the formula :

(7) 6 4g Fb

From this, we obtain precisely two solutions :

(8) (0 0, b 6) or (g= 1,6 2).

Now, we know that the branched cover is a regular branched cover.

Hence, it is determined by a representation of 7r1(iV\a) onto Z2, where a
is the set of branch points.

By the definition of a branch point, we know that the representation
must be nontrivial on loops encircling a branch point.

Suppose that g is zero. Since nfN^) is generated by such loops, there

is only one such representation. Hence, t must be topologically conjugate to i.



MAPPING CLASS GROUPS 281

Now suppose that g is one. N\<j is a twice-punctured torus. The

representation of the group 7t1(iV\a) onto Z2 factors through H1(Ar\a, Z2)

which is a free Z2-module with basis fx, y, z) given by the loops depicted

in figure 6.

Hence, there are four possible representations, given the previous
restrictions :

(9) (i) (x, y,z) - (0,0,1)

(ii) (x, z) - (1,0,1)

(iii) {x, z) - (0,1,1)

(iv) (x, y, z) - (1,1,1)

It suffices to show that these representations are topologically equivalent.
There is an homeomorphism, /, as depicted in figure 7, which acts as

follows :

(10) f:{x,y,z)-»•

Figure 7.
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Hence, (i) and (iii) are equivalent representations, and (i) and (iv) are

equivalent representations. In a similar manner, by "pulling x over the

puncture z", we see that (i) and (ii) are equivalent. Hence, all four
representations are topologically equivalent.

It follows, as in the genus zero case, that t must be topologically
conjugate to s. This completes the proof of lemma 2.

Let p be the abelianization map given by Powell's result :

(11) p : M(F2) -, Z10

td -> 1 d nonseparating.

From equation (4) and lemme 1, it follows that

(12) p(i) 1 p(s) 5

From lemma 2, it follows that p(l(F2)) is the subgroup of Z10 which is

generated by Z5.

For surfaces of even genus, s will continue to denote an involution
with two fixed points as in figure 8. For surfaces of odd genus, s will
denote an involution with four fixed points as in figure 9.
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C / s

Figure 9.

We are now prepared to give the promised description of I(Fg).

Theorem 1.

(a) I(Fg is normally generated by s for all g ^ 2.

(b) M(F2)/I(F2) z5.
(c) M(Fg)/I(Fg) 1, for all g » 3.

Proof Let c denote the curve depicted in figure 8 or in figure 9,

depending upon the genus, g. Let E be the normal closure of s. We begin
by showing that M(Fg)/H is cyclic.

Let tt denote as before the Dehn twist along the curve at.
By equation (1), we conclude that :

(13) tctïx (sfiS-1)^1 j"l),

and this is an element of E.

For any j with 3 ^ j ^ 2g, we may construct a homeomorphism, h,

which takes (al5 c) to (ai? a,). By applying equation (1), we conclude that:

(14) tjt i
1

g E for all 3 ^ j ^ 2g



284 J. MCCARTHY AND A. PAPADOPOULOS

By the same reasoning, we deduce that :

(15)

(16)

Hence, Humphries' generators are all conjugate modulo Z. This implies
that M(Fg)/H is cyclic.

If the genus is greater than 2, equation (3) implies that E M(Fg).
Since Z is contained in I(Fg), we see that Z I(Fg) M(Fg). Hence,
theorem 1 is true for genus greater than two.

Now suppose that the genus is two. By equation (12), we conclude that i
belongs to Z. By lemma 2, it follows that Z /(F2). On the other hand,
by equation (12), we conclude that

This establishes theorem 1 for genus two.
This completes the proof of theorem 1.

3. Thurston's classification of mapping classes

The Teichmüller space of F, denoted by T, is the space of hyperbolic
metrics on F up to isometry. It has a natural topology and is homeo-

morphic to an open ball of dimension 6g — 6Fib, where g is the genus of F
and b the number of its boundary components.

Thurston's boundary of T is the space of projective classes of measured

foliations on F.

A measured foliation is a foliation with isolated singularities of a special

type (p-prong singularities, where p is any integer > 2, see' figure 10),

with a measure on transverse segments which is a Lebesgue-measure, and

which is invariant by isotopy of the segment keeping each point on the

same leaf.

There's an equivalence relation between measured foliations, generated by

isotopy and the operation of collapsing a leaf connecting two singular
points. MF denotes the space of equivalence classes.

There's a natural action on MF by the positive reals; PMF is the

quotient projective space. PMF is homeomorphic to a sphere of dimension

6g — 7 + 2b which constitutes, by Thurston's work, a natural boundary for
Teichmüller space. M(F), The mapping class group of F, acts continuously

M(F2)/Z z5.
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