83. Proof of the Hilbert K-Nullstellensatz

Objekttyp:  Chapter

Zeitschrift:  L'Enseignement Mathématique

Band (Jahr): 33 (1987)

Heft 1-2: L'ENSEIGNEMENT MATHEMATIQUE

PDF erstellt am: 01.06.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



HILBERT NULLSTELLENSATZ 329

Proof. For m = 1 we can use p(y;) = y;. The heart of the proof is the
case m = 2. We divide the proof for m = 2 into two cases.

Case 1. There exists an element o in k\K which is separable over k.
Let L be the normal closure of k(o) in k. Then L is a finite separable
extension of k and thus generated by one element B. That is L = k(B).
Since L is normal all the conjugates B = By, B3, .., B, of B are in L and
clearly L = k(B;) for i = 1,2,..,n. We have that L is not contained in
K because ok K. Hence, none of the roots By, B,, ... B, of the minimal
polynomial f(x)e k[x] of the element B over k, are in K. Consequently,
the homogenization.

p(isy2) = yo - frirya?)
of f, where d is the degree of f, has no non-trivial root in A%,

Case 2. All elements of k\K are purely inseparable over k. Choose an
element y € k\K. Then ¥4 = a is in k for some power g of the charac-
teristics of k and vy is the only root of the polynomial x? — a. Hence

p(yi,y2) = (y1—ayy)?

is a homogeneous polynomial without any non-trivial roots in A%,

The two cases above exhaust all possibilities for elements in K\K.
Hence we have proved the existence of homogeneous polynomials in k[y;, y,]
without any non trivial zeroes.

We now proceed by induction on m. Assume that m > 2 and that
we have proved the existence of a homogeneous polynomial p(yy, V2, - Ym)
with only the trivial zero in A¥. Let q(y;, y,) be a homogeneous polynomial
with only the trivial zero in AZ. Then, if d is the degree of p, we have

that r(yl s V25 oo Yt 1) = Q(p(yl > V25 e yrn)> y;jn+ l) iS a homogeneous pOly_

nomial with only the trivial zero in A% "', Indeed, the homogeneity is clear,

and if (a;,a,,..,a,+1) AR is a zero of r, we must have that
pla;,a,,..,a,) = 0 and a,,,; = 0 since g has no non-trivial zeroes. Then
we must have that a; = a, = ... = a,, = 0 since the same is true for p.

§ 3. PROOF OF THE HILBERT K-NULLSTELLENSATZ

There exists in the literature a great variety of proofs of the Hilbert
Nullstellensatz. Most of them start by proving the weak form and then
deducing the Nullstellensatz by localization procedures that are more or less
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related to a method called Rabinowitz trick. We shall next show that
Rabinowitz trick also can be used to deduce the Hilbert K-Nullstellensatz
from its weak form.

PROPOSITION 6.  We have that the Hilbert K-Nullstellensatz follows from its
weak form.

Proof. 1t follows from Proposition 3 (i) that it suffices to prove that, if
the weak Nullstellensatz holds, then we have an inclusion

(fER| Zy(f) 2 ZD} € H1

for all ideals I in R.

Let f in R be an element that vanishes on Zg(I). Choose generators
hi,hy,..,h, of I and let J be the ideal, in the polynomial ring R[x]
in the variable x over R, which is generated by the elements

hy hyywh,, 1 — xf

of R[x]. Since f vanishes on the common zeroes of hy, h,,.., h, in A%,
it follows that the subset Z (J) of A% is empty. It then follows from

the weak K-Nullstellensatz that /J = R[x]. Hence there is a polynomial
p € Pg(m) for some natural number m and elements f;, f,, .., f,,—1 in R[x]
such that

p(fi, f2s o fu—1,1)EJ.
That is, there are polynomials ¢, g5, ..., gn, g In R[x] such that

P foson fuis D) = Y gy + o(1=P).

We substitute x = y~! in the latter equation and obtain, after multiplying
by a sufficiently high power yV of y and using the homogeneity of p, an
equation

P oo S ¥ = 2 g + 90— )
in R[y]. If we substitute f for y in the latter equation we obtain that

pley, esy e epmy, fNel

where ¢; = fixy, X5, .., X,_1, f) for i = 1,2,..,m — 1. Consequently we
have that f~ ¢ \’fq . However, by Proposition 3 we have that \’ﬁ is K-radical
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and hence radical by Proposition 2. We conclude that f e\’ﬁ/f as was to
be proved.

To prove the Hilbert K-Nullstellensatz we must now prove it in the
weak form. We shall here give a proof that emphasizes the difference
between the case when K is not algebraically closed, which is the main
theme of this article, and the traditional case when K is algebraically closed,
for which there exists at least as many presentations as there are textbooks in
algebra or geometry.

Proof of the weak Hilbert K-Nullstellensatz when K is not algebraically
closed
From Proposition 4 (iii) it follows that it suffices to prove that, if I is

and ideal of R such that Z,(I) = (@, then we have that 1 e % .

To this end we choose generators h,,h,, .., h, of the ideal I. By
Proposition 5, there is a homogeneous polynomial p € k[y,, v5, ..., V,n] With
only the trivial zero in A%. Since the polynomials h; have no common zero
we see that the polynomial

g(xl 5 X205 s X,.) = p(hl s hZ 3 00y hm)

in R has no zeroes in A%. We homogenize g by substituting x; = y; -y, .}
for i = 1,2 ..,r and multiplying by y{,,, where d is the degree of g. The

resulting polynomial g(y,, y,, ... ¥,+ ) is then in Pg(r+ 1). Moreover, we have
the equalities

Q(xl > X2, ey Xpy 1) = g(xl s Xz, oivy xr) = p(hl b h2 s hm)

Since p is homogeneous and the h; are in I, all the members of the latter

equalities are in I. Since g € Pi(r+1) we conclude that 1 e \’ﬁq as we wanted
to prove.

Proof of the weak Hilbert Nullstellensatz

For completeness we give one of the many short proofs of the weak
Nullstellensatz. It is based upon the following two elementary results

(@) Let L[x] be a polynomial ring in the variable x over a field I
and f a non-zero element of L[x]. Then L[x] r1s not a field.

(b) Let A be an integral domain and x an element that is integral over
A. If A[x] is a field, then A is a field.

Of these results the second is trivial and the first follows immediately
from the existence of infinitely many irreducible polynomials over L.
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The weak Nullstellensatz is a consequence of the following more general
result.

PRroOPOSITION 7. The following two assertions hold.

() Let P be a prime ideal in R. If (R/P), is a field for some
element g in R/P, then P is maximal.

(1) Let M be a maximal ideal in R. Denote by S the polynomial ring
k[x{,%x5, ., x,_1] andlet Q = M nS. Then Q isa maximal ideal in
S and the class x of x, in R/M is algebraic over S/Q.

Proof. We shall prove the two assertions of the Proposition simulta-
neously by induction on r. For r = 1 the Proposition is assertion (a) above.
Assume that the assertions of the Proposition hold for S. We shall prove
that they hold for R.

Let P be a prime ideal of R and let ge R/P. We let Q = Pn S
and denote by L the field of fractions of S/Q.

Assume that (R/P), 1s a field. If x denotes the class of x, in R/P
we then obtain that

(R/P), = (8/Q[x]), = L[x], .

From assertion (a) above it follows that x is algebraic over L. Hence L[Xx]
is a field and in particular L[x] = L[x],.
We obtain on the one hand a relation

g ' = a YNag+a;x+..+a,x")

with a and g; in S/Q for i = 0, 1, ..., m and consequently equalities
(R/P), = (R/P), = (S/Q).Lx] -

On the other hand we obtain a relation
bx" + b,_ 1 X" '+ ..+ by =0

with b and b; in S/Q for i = 0, 1, .., n and consequently that x is integral
over (S/0),, - Since (S/Q),[x] = (S/Q).[x] is a field it follows from assertion (b)
above that (S/0),, is a field. By the induction assumption we then have
that Q is maximal. In particular we have that a is invertible in (S/Q) = L,
so that (R/P), = (R/P), = R/P. Hence the ideal P is maximal. This proves
assertion (i) of the Proposition. However, the above proof applied to M
gives assertion (ii) so that we have proved the Proposition.
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To prove that, if K = k and I is a proper ideal of R, we have that
ZI) # @, we choose a maximal ideal M containing I. By repeated
application of assertion (ii) of Proposition 7 we see that there is a k-homo-
morphism

a:R/M - k = K

Hence, if o,,0d,,.., o are the classes of x;,Xx,,..,x, in R/M we have
that (a(,), a(0ty), ., a(et,)) € Z (M) S Zi(I) and Zg(I) # @ as we wanted to
prove.

§ 4. CONNECTIONS WITH PREVIOUS RESULTS

A less elegant form of the Hilbert K-Nullstellensatz, that do not involve
the K-radical explicitely, is the following:

Let J be an ideal of R. The following two assertions are equivalent :
(i) If f e R wvanishes on Zg(J), then felJ.

G) If fi, fs. fn are polynomials in R such that p(fi, f2, - fm)€J
for some p in Pg(m), then f,€eJ.

From Proposition 4 (ii) it follows that assertion (1) can be stated as

J = {feR|Z(f) 2 Z(J)}

and from the definition of the K-radical assertion (i) can be stated as

J = \% . Hence the equivalence of the two assertions is the Hilbert
K-Nullstellensatz for K-radical ideals. However, if I is any ideal of R,

we have that J = \7? 1s K-radical by Proposition 3 and that Z (1) = Z(J)
by Proposition 4 (1). Hence, the above result is equivalent to the Hilbert
K-Nullstellensatz

BT = {feR| Z(f) 2 Z(D)

for I.

The sets Pg(m) in the particular case k = K, were introduced by Adkins,
Gianni and Tognoli [1] in order to prove the above result when k = K.
As a consequence they obtained the Hilbert Nullstellensatz in the particular
case k = K = k. The reason for introducing the sets Pg(m) in general is
to formulate the above more general result, that is a true generalization
of the Hilbert Nullstellensatz.
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