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326 D. LAKSOV

For which pair of fields k = K do we have that 1; = \'f/f for all
ideals I of R?

It was long conjectured that equality holds for all pairs of fields (at
least when the characteristics of k is zero). We shall however, in section 5,

give examples showing that one may have strict inequality I, C \’5/7 for
the two pairs k = K = Z/2Z and k = K = Q.

Before we proceed (in § 3) to prove the Hilbert K-Nullstellensatz we shall
in § 2 collect all the results that we need about the K-radicals and the poly-
nomials Pg(m) in the next section.

§ 2. SOME PROPERTIES OF THE K-RADICAL
- We shall denote by S(m) the polynomial ring k[ y,, 5, .. Vinl-

LemMA 1. Let pePg(m) and qePyn). For each polynomial
S = S(V1, V25 Vmsn) ES(Mm+n) of degree one less than ¢q, we have that,
r = p(yl *5 V28 s V-1 5, Q(ym+1> Vm+25 - ym+n)) € PK(m+n) .

Proof. 1t is clear that r is a homogeneous polynomial in S(m + n).
Let (a1,a2,...,0n.,)€EARY" be a zero of r. Since pe Px(m), we have
that g(a, 41, Gnias - Amen) = 0. However, we have that q € Pg(m) so that
a,+, = 0. Consequently r € Pg(m+n) as asserted.

PROPOSITION 2. Let A be a k-algebra and 1 an ideal of A. Then

the K-radical \'}/f of I is an ideal of A (possibly A itself) which
contains the radical of 1.

Proof. Since Pi(1) = {1,y,, y1, .~} it is clear that the set I contains

.
Let f and g be elements in \’571 . Then by the definition of the
K-radical there are positive integers m and n, polynomials p € Pg(m) and

q € Pg(n) and elements f,f,,..fn-1 and g;,9,,...9,—1 of A such that

p(fl:fZ:-"afm—l)EI and
q(g1>g27"-9 In—-1> g)el

Let h be an element of A and let d be the degree of p. Then we have that
p(hfla hf27 ey hfm—17 hf) = hdp(fla f27 ) fm—1> f) EI .
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Consequently it follows from the definition of K-radicals that h- f e\’y} :

In order to prove the Proposition it remains to prove that (f+g) € \’ﬁfl
To this end we rewrite the polynomial g(¥m=«1»> Yms2s - Vms+n) 10 the
following form

Q(ynr}- 1s Ym+2s o Ymsn—1: }‘m+n—ym) + yms(ym s Yms1s o0 ym‘vn) ’

where s is a homogeneous polynomial of S(m+#n) of degree one less than the
degree of g.
By Lemma 1 we have that

r= 7'(}"1 > ¥Yas oo .‘"m+n) = p(}l *S Y2 S s Ym—1 S, q(ym+1 s ¥Ym+2s - ym+n))

is in Pg(m+n). However, from the above form of q(Vms1s Yms2s - Ymin) s
it follows that r can be rewritten as

P S Y27 S s V1S ¥ S) + GUms1s Yms25 = Ymen—15 Yman ™ Ym)
C1(1s Yo oo Ymn) s
where t(Vy, V3, - Vm+,) 1S @ homogeneous polynomial in S(m+n) of degree
equal to (d—1) - deg(q).
From the latter form of r we obtain that, if we write [ = S(f, g1, 925 - In)s
then h = r(fi, fos o frueis f>G1>G2s - Gu_1, f +g) can be written as

Ep(fis [ fum15 f)

+ (1,92 Gno1:9) 15 Jos s fnm15 5915925 s Gn-1> [ +9) -
The latter element is in I and since re€ Pg(m+n) it follows from the
definition of the K-radical that f + g€ \{9/; . as we wanted to prove.

We shall call an ideal I of a k-algebra A4, K-radical, if \176 = [,

The next result shows that \/M}— is always K-radical.

ProrosiTioN 3. Let A be a k-algebra and I an ideal of A.
Moreover, let J = \17/? Then we have that \173 = J.

Proof. Let f be in \15/} . We shall prove that f e J. By definition of the
K-radical, there is a positive integer n, a polynomial g € Pg(n) and elements
fis fos - f,—; In A such that

g = q(fl>f2:""fn—1af)€‘]-

Now, since g € \17? , there is furthermore a positive integer n, a polynomial
p € Py(m) and elements g, g5, ... gm— 10 A such that
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p(g19927---> gm——lag)EI-
Let d be the degree of g. Then by Lemma 1 with s = y%~' we have that

r(yl bl .VZv sy ym+n)
= P v LY Ve s Vet VAT At 15 Yt 25 o Vi)

is in Pg(m+ n). However, we have that the element

r(glagza"'a Im—1> 1) flafza"'a fn~1:f)
= p(gla gas o gm~1>q(f1>f2>"'n fn—1> f)) = p(gl792)"°> gm—1>g)

is in I. Hence f is in \17— = J as we wanted to prove.
As in the traditional case, one of the two assertions of the Hilbert
K-Nullstellensatz and of its weak form is easy.

ProprosITION 4. Let I be an ideal of R and J = \Iﬁ . Then the
following assertions hold :

(i) ZK(J) = ZK(I) 5

(i) JE {feR|Zf) =2 ZD},
(iii) if Z,(I) # @ then J # R.

Proof. Since J contains I we have the inclusion Zg(J) E Zg(I). To prove
the opposite inclusion as well as assertion (i) it suffices to prove that for
each point a = (a,, a,, ..., a,) € Ay of Zg(I), we have that f(a) = O for all
f eJ. However if f e T then there exists a polynomial p in Pg(m) for
some natural number m and elements f;, f,, ..., f,,—1 in R such that

p(flafzr'“a fm—1>f)€I-

Since a is in Z(I) we obtain that

p(fl(a)a fZ(a)a RS fm— l(a)a f(a)) = 0 .

However, we have that p € Pg(m) so that f(a) = O.

The last assertion of the Proposition follows from assertion (i1).

The crucial tool in our proof of the Hilbert K-Nullstellensatz is the
following result, which certainly is well known, but for which we have no
reference.

PROPOSITION 5.  Assume that K is not algebraically closed. Then, for each
positive integer m, there is a homogeneous polynomial pek[y,,V,, s Yl
with only the trivial zero in AY¥. Thatis, Zg(p) = (0,0, ..., 0).
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Proof. For m = 1 we can use p(y;) = y;. The heart of the proof is the
case m = 2. We divide the proof for m = 2 into two cases.

Case 1. There exists an element o in k\K which is separable over k.
Let L be the normal closure of k(o) in k. Then L is a finite separable
extension of k and thus generated by one element B. That is L = k(B).
Since L is normal all the conjugates B = By, B3, .., B, of B are in L and
clearly L = k(B;) for i = 1,2,..,n. We have that L is not contained in
K because ok K. Hence, none of the roots By, B,, ... B, of the minimal
polynomial f(x)e k[x] of the element B over k, are in K. Consequently,
the homogenization.

p(isy2) = yo - frirya?)
of f, where d is the degree of f, has no non-trivial root in A%,

Case 2. All elements of k\K are purely inseparable over k. Choose an
element y € k\K. Then ¥4 = a is in k for some power g of the charac-
teristics of k and vy is the only root of the polynomial x? — a. Hence

p(yi,y2) = (y1—ayy)?

is a homogeneous polynomial without any non-trivial roots in A%,

The two cases above exhaust all possibilities for elements in K\K.
Hence we have proved the existence of homogeneous polynomials in k[y;, y,]
without any non trivial zeroes.

We now proceed by induction on m. Assume that m > 2 and that
we have proved the existence of a homogeneous polynomial p(yy, V2, - Ym)
with only the trivial zero in A¥. Let q(y;, y,) be a homogeneous polynomial
with only the trivial zero in AZ. Then, if d is the degree of p, we have

that r(yl s V25 oo Yt 1) = Q(p(yl > V25 e yrn)> y;jn+ l) iS a homogeneous pOly_

nomial with only the trivial zero in A% "', Indeed, the homogeneity is clear,

and if (a;,a,,..,a,+1) AR is a zero of r, we must have that
pla;,a,,..,a,) = 0 and a,,,; = 0 since g has no non-trivial zeroes. Then
we must have that a; = a, = ... = a,, = 0 since the same is true for p.

§ 3. PROOF OF THE HILBERT K-NULLSTELLENSATZ

There exists in the literature a great variety of proofs of the Hilbert
Nullstellensatz. Most of them start by proving the weak form and then
deducing the Nullstellensatz by localization procedures that are more or less
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