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2. Several manifestations of the specialization order

A schematic overview of the various relations of the specialization order to be

described below can be found in section 5 of this paper.

2.1. The Snapper, Liebler-Vitale, Lam, Young theorem (formerly the Snapper

conjecture). Let Sn be the group of permutations on n letters. Let k
(k15 kJ be a partition of n and let SK be the corresponding Young subgroup

SK x x SKm, where SK. is seen as the subgroup of Sn acting on the letters

k1 + + Ki_1 + 1,..., k1 + + Kj-. (If Km — 0 the factor SKm is deleted). Take
the trivial representation of Sk and induce this up to Sn. Let p(ic) denote the

resulting induced representation. It is of dimension n\fkx! kJ and it

can be easily described as follows. Take m symbols au am and consider all
associative (but non-commutative) words of length n in the symbols

au am such that at occurs precisely Kt times. Let W(k1? Km) W(k) denote
this set, then Sn acts on IT(k) by cy~ 1(s1 £„) £a(i)£a(2) - Sow Let K(k) be the

vector space with the elements of VL(k) as basis vectors. Extending the action of
Sn linearly to K(k) gives a representation of Sn and this representation is p(k).

Now the irreducible representations of Sn are also labelled by partitions. Let

[k] be the irreducible representation belonging to the partition k. Snapper [20]
proved that [k] occurs in p(k') only if k < k' and conjectured the reverse

implication. Liebler and Vitale [13] proved that k < k' implies that p(k) is a

direct summand of p(k') which, of course, implies that k < k' which in turn
implies that [k] occurs in p(k'). Another proof of the implication (via a different

generalization) is given in Lam [12]. Still another proof can be based on Young's
rule, cf. section 6 below, and a completely elementary proofcan be found in [6]. It
is probably correct to ascribe the result in the first place to Young.

2.2. The Gale-Ryser Theorem ([18]). Let p and v be two partitions of n.

Then there is a matrix consisting of zeros and ones whose columns sum to p and
whose rows sum to v iff v > p*. Here p* is the dual partition of p defined by

# 1/1 ^ '} For example, (2, 2, 1)* (3, 2).

2.3. Doubly Stochastic Matrices. A matrix M (m^) is called doubly
stochastic if ml7 ^ 0 for all i, j and if all the columns and all the rows add up to 1.

Let p and v be two partitions of n. One says that p is an average of v if there is a

doubly stochastic matrix M such that p Mv. Then there is the theorem that p
is an average of v iff p > v in the specialization order.
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2.4. Muirhead'sInequality. One of the best-known inequalities is

(xj •... ' x„)1/n «S n_1(Xi+... + x„)

A far-reaching generalization due to Muirhead [21] goes as follows. Given a

vector p {pup„),Pi> 0, one defines a symmetrical mean (of the

nonnegative variables x....., x„) by the formula

(2.5) [p] (x) («!)"1 X Xi"'1'...
CT

where the sum runs over all permutations a g Sn. Then one has Muirhead's

inequality which states that [p] (x) ^ \_q\ (x) for all nonnegative values of the

variables xl5xn iffp is an average of q, so that in case p and q are partitions of n

this happens iff p > q. The geometric mean-arithmetic mean inequality thus

arises from the specialization relation (1, 1) > (n, 0, 0).

2.6. Completely Reachable Systems. Let Lm n denote the space of all pairs
of real matrices (A, B) of sizes n x n and n x m respectively. To each pair (A, B)

one. associates a control system given by the differential equations

(2.7) x Ax + Bu, x e R", u g Rffl

where the us are the inputs or controls. The pair (A, B\ or equivalently, the

system (2.7), is said to be completely reachable if the reachability matrix R(A, B)

(B AB AnB) consisting of the n + 1 (n x m)-blocks AlB, i 0,..., n, has

maximal rank n. In system theoretic terms this is equivalent to the property that
for any two points x, x' g R" one can steer x(t) to x; in finite time starting from
x(0) x by means of suitable control functions u(t).

Let n denote the space of all completely reachable pairs of matrices (A, B).

The Lie-group F of all block lower diagonal matrices ^ ^, S e GL„(R),

Te GLJR), K an m x n matrix, acts on L% n according to the formula

(2.8) (A, Bf (SAS-*+SBTS-lK, S BT), gQ,

The "generating transformations" (A, B) -+ (SAS_1, SB) (base change in state
space), (A, B) -> (A, BT~:) (base change in input space) and (A, B) -» (A
+ BK, B) (state space feedback), occur naturally in design problems (of control
loops) in electrical engineering. It is a theorem of Brunovsky [30] and Kaiman
[9] and Wonham and Morse [31] that the orbits of F acting on „ correspond
bijectively with partitions of n. The partition belonging to (A, B) e L^r „ is found
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as follows. Let dj be the dimension of the subspace of R" spanned by the vectors

Albr, r 1,m, i ^ j where br is the r-th column of B. Let e} dj
— dj_ 1? d_ 0. The partition corresponding to (A, B) is the dual partition of
(e0, el9 e2,..., en), i.e. k(A, B) (e0, eu en)*. The numbers kx ^ ^ Km

making up k(A, B) are called the Kronecker indices of (A, B). (Because the

problem of classifying pairs (A, B) up to feedback equivalence, i.e. up to the

action of F, is a subproblem of the problem of classifying pencils of matrices
studied by Kronecker: to (A, B) one associates the pencil (A — si B). The

partition (e0,..., en) corresponds to the dimensions of the filtration of
controllability subspaces.

Let 0K be the orbit of F acting on Lcf n labeled by k. Then a second theorem,
noted by a fair number of people independently of each other (Byrnes,

Hazewinkel, Kaiman, Martin,...), but never yet published, states that 0K =5 0K, iff
k > k\ Some of the control theoretic implications of this are contained in
Martin [32].

2.9. Vectorbundles over the Riemann sphere. Let £ be a holomorphic
vectorbundle over the Riemann sphere S2 P1(C). Then according to
Grothendieck [4] E splits as a direct sum of line bundles.

(2.10) E =* L(k,) © © L(KJ

Where L{i) is the unique (up to isomorphism) line bundle over P*(C) of degree i,

L(i) L(l)®', i g Z, where L(l) is the canonical very ample bundle of PX(C).

Thus each holomorphic vectorbundle E over PX(C) defines a m-tuple of integers

k(E) (in decreasing order). The bundle is called positive if k,(£) ^ 0 for all i

1,..., m. Concerning these positive bundles there is now the following
degeneration result of Shatz [19]. Let Et be a holomorphic family of m-

dimensional vectorbundles over P^C). Then for all small enough £, k(Et)

> k(E0). And inversely if k > k' then there is a holomorphic family Et such that

k(£t) k for t small t ^ 0 and k(E0) k'.

2.11. Orbits of Nilpotent Matrices. Let Nn be the space of all n x n

complex nilpotent matrices. Consider SL„(C) or GL„(C) acting on N„ by

similarity, i.e.

As SAS-1, {A eNn, Se GL„(C)).

By the Jordan normal form theorem the orbits of this action are labelled by

partitions of n. Let 0(k) be the orbit consisting of all nilpotent matrices similar to
the one consisting of the Jordan blocks J(Kf), i 1,..., m, where J(Kf) is the vq
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x k;- matrix with l's just above the diagonal and zeros everywhere else. Then the

Gerstenhaber-Hesselink theorem says that 0(k) => O(k') iff k < k'. (Note the

reversion of the order with respect to the result on orbits described in 2.6. above.)

3. Grassmann manifolds
AND CLASSIFYING VECTORBUNDLES

In order to describe how the various manifestations of the specialization
order are connected to each other we need to define Grassmann manifolds, the

classifying vectorbundles over them and their Schubert cell decompositions (in
section 4 below).

3.1 Grassmann Manifolds. Fix two numbers m, n e N. Then the

Grassmann manifold G„(C" + m) consists of all n-dimensional subspaces of Cn + m.

Thus for example Gx(Cm + 1) is the m-dimensional complex projective space
Pm(C). Let C"fg(n + m) be the space of all complex n x (n + m) matrices of rank n.

Let GL„(C) act on this space by multiplication on the left. Then the quotient
space CJ?e*(n + m)/GL„(C) is G„(C" + m). The identification is done by associating to
M e C"fg{n + m) the subspace of Cn+m generated by the rows of M.

Gn(Cn + m) inherits a natural holomorphic manifold structure from cnX{n + m\

For a detailed description of Gn(C" + m) see e.g. [16] or [23].

3.2. The Classifying bundle. We define a holomorphic vectorbundle E,m

over G„(C" + m) as follows. For each x let the fibre over x, £m(x), be the quotient
space Cn + m/x. More precisely define the bundle r[n over G„(C" + m) by

(3.3) q,? - {(x, v) e Gn(C" + m) x Cn+m I ü g x}

with the obvious projection (x, v) ^ x. Then £m is the quotient bundle of the
trivial vectorbundle Gn(Cn + m) x Cn + m over Gn(Cn + m) by Both and q„ can
be used as universal or classifying bundles (cf. [16] for r\n as a universal bundle).
Let E be an m-dimensional vectorbundle over a complex analytic manifold M.
Let T(E) T(E, M) be the space of all holomorphic sections of E, i.e. the space
of all holomorphic maps s : M -+ E such that ps id, where p : E -> M is the
bundle projection. The universality, or classifying, property of in the setting of
complex analytic manifolds now takes the following form. Suppose V c= F(E) is
an (n 4- m)-dimensional subspace such that for each xe M the vectors s(x), se V
span £(x), the fibre of E over x. Now identify V ^ Cn + m and associate to xe M
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