5. How the Perron tree sprouts

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 29 (1983)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 28.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

thought, that we shall call *the Perron tree*, has proved to be an extraordinarily fruitful tool for the solution of certain deep problems of recent mathematical analysis.

The result is as follows: Given an arbitrary $\varepsilon > 0$ and an arbitrary triangle *ABC* of area that we denote by S(ABC), we can divide the triangle *ABC* into small triangles $T_1, T_2, ..., T_n$ as Figure 5 shows (i.e. dividing the basis *a* into a finite number of equal intervals $I_1, I_2, ..., I_n$) and one can translate appropriately the small triangles $T_1, T_2, ..., T_n$ parallelly to the basis *a* in such a way that the area of the union of the translated triangles is less than $\varepsilon S(ABC)$. (See Fig. 6.)

FIGURE 5

FIGURE 6

5. How the Perron tree sprouts

Following an idea of Rademacher (1962), the construction of the Perron tree can be easily understood as follows. Let us divide first a triangle T, MNP, of area S(T), into two triangles T_1 , T_2 , with bases J_1 , J_2 , of the same length. If we wish to move T_1 and T_2 , parallelly to NP so that the shifted triangles cover less area we can do it by pushing T_2 towards T_1 as Figure 7 shows. The area covered by T_1 and T'_2 can be easily measured by elementary geometry and is (see Fig. 7, we take 1/2 $< \alpha < 1$)

 $\alpha^2 S(T) + 2(1-\alpha)^2 S(T)$

If the triangle MNP is divided into four parts, instead of two, as Figure 8 indicates, we can first subject the pair of triangles MNL_1 and ML_1L_2 on the one hand to the above indicated operation with an α , $1/2 < \alpha < 1$, and, on the other hand we can do the same, with the same α , to the other pair of adjacent triangles ML_2L_3 , ML_3P . The result is indicated in Figure 8.

FIGURE 8

It is easy to see that the area of the figure now covered by the so translated triangles is less than

(*)
$$\alpha^2 S(T) + 2(1-\alpha)^2 S(T)$$

If we now shift in a solidary way the figure formed by the union of the two triangles T_3 and T'_4 towards the left until L_2 coincides with L'_2 , the new formed figure covered by the four triangles can be considered (see Fig. 9) as consisting of

5

a triangle HNP'' similar to the first one MNP with a similarity ratio α plus four peak triangles that overlap more than before. The area of this figure is therefore less than (*).

FIGURE 9

In the triangle HNP'' we have the basis divided into equal portions NL'_2 and L'_2P'' and so we can submit HNP'' to the initial operation, i.e. shifting the right hand triangle towards the left one with the same constant α that measures the magnitude of this shift and shifting thereby solidarily the triangles T''_3 and T''_4 that constitute the right hand portion of the triangle HNP''. The result is shown in Figure 10.

FIGURE 10

The final result is a triangle similar to the initial one with similarity ration α^2 , its area therefore being $\alpha^4 S(T)$, plus four peaks that cover an area smaller than

$$2(1-\alpha)^2 \alpha^2 S(T) + 2(1-\alpha)^2 S(T)$$

i.e. the total area now covered is not greater than

$$\alpha^4 S(T) + 2(1-\alpha)^2 (1+\alpha^2)S(T)$$

It is now not difficult to realize that if we initiate our process with 2ⁿ equal portions of the basis and we proceed in a similar way, at the end, i.e. after *n* repetitions of the process consisting of (a) a shift of the right triangle of each pair of adjacent triangles towards the left triangle (shift constant $= \alpha$), and (b) gluing together the resulting figures to compose a triangle similar to the original one with one half the number of divisions on the basis, we obtain a figure with an area not greater than

$$\alpha^{2n}S(T) + 2(1-\alpha)^{2} (1+\alpha^{2}+...+\alpha^{2n-2})S(T)$$

$$\leq \alpha^{2n}S(T) + 2(1-\alpha)^{2} (1+\alpha^{2}+...+\alpha^{2n-2}+...)S(T)$$

$$= \left(\alpha^{2n} + \frac{2(1-\alpha)^{2}}{1-\alpha^{2}}\right)S(T) \leq (\alpha^{2n}+2(1-\alpha))S(T)$$

Therefore, given $\varepsilon > 0$, we first choose α , $1/2 < \alpha < 1$ such that $1 - \alpha < \varepsilon/2$ and then *n* so that $\alpha^{2n} < \varepsilon/2$. In this way we obtain a Perron tree. Its name is justified by the fact that the final figure consists of a trunk (a triangle similar to the initial one with similarity ration α^n) plus many sharp branches that seem to rest on it. Its area is less than $\varepsilon S(T)$. (See Fig. 11.)

FIGURE 11

The reader interested in more details can consult Guzmán (1975).