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STRUCTURED vs GENERAL MODELS
IN COMPUTATIONAL COMPLEXITY *

by A. Borodin

I. Introduction and Conclusion

The goal of this expository paper is to make explicit a certain viewpoint
of computational complexity, indeed a viewpoint of computation itself.
Since I am calling attention to distinctions which are (at least, intuitively)
recognized by most logicians and computer scientists, I feel obliged to

immediately draw some conclusions about the usefulness of these

distinctions. I will devote the remaining sections to some evidence regarding
the conclusions.

I use the term structured model of computation in almost the same sense

as Pippenger and Valiant [76] (who say "conservative" rather than
"structured") to mean that a computation in such a model can only proceed
within a fixed, well-defined, mathematical structure; that is, it uses only the
relations and operations within that structure for the computation. Hence
all intermediate results as well as the inputs and the outputs are from the

underlying domain. Two well studied examples are:

51. Comparison trees (also called pure comparison trees, computation
trees) where the structure is [D; <] with D a partially ordered set,

{<,>} or {<,*%>} predicates, and no operations. Linear
comparison trees extend this model by allowing linear functions
of the inputs.

52. Arithmetic circuits (also called arithmetic straight line programs)
where the usual domains are F [xt, xn], F [[xu xj] or
F(xu xn), there are no predicates, and the operations are
+ -, x,

In contrast, a general model of computation can be viewed as a string
(over a finite alphabet) processing machine. While the input and output
strings for a given problem may arise as a "natural encoding" of a set of

* This article has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Zürich, February 1980. Monographie de
L'Enseignement Mathématique N° 30, Genève 1982.

L'Enseignement mathém., t. XXVIII fasc. 3-4. 12



172 A. BORODIN

elements from the domain of a particular mathematical structure, there is

no obligation to process these objects in any prescribed way relating to the
intended mathematical structure. The main criterion for a general model
is that we can "get at" the encoding; that is, we can access and arbitrarily
manipulate the individual characters (or bits, since we usually consider

binary encoding) of all the inputs and intermediate results. As common
examples of such models we have:

Gl. Boolean circuits.

G2. Turing machines (TM) in all styles, sizes and colours.

Surely, this distinction between structured and general is quite intuitive.
Moreover, similar distinctions have already been made explicit in computer
science (and, of course, mathematical logic) in the context of programming
language semantics ; in particular, the theory of program schemes compares
language features by having uninterpreted predicate and function symbols.

(Indeed, perhaps the first structured TIME-SPACE tradeoff result for
simulating linear recursion schemes by flowchart schemes originates from
Paterson and Hewitt's [70] seminal paper—see Chandra [73] and Savage

[79].) And we should also note some analogy with the distinction between

the first order theory of the reals (or complex numbers) under +, x in
contrast to the first order theory of integers (or rationals). In the latter, we

can (via the Gödel function) get at the encoding of a domain element,
which is precisely why we get undecidability. In the former, we get
decidability (see Specker and Strassen [76] for a discussion of the complexity of
such decision problems and how we can get at the expressibility and thus

encoding of "small" integers).

My purpose here is to argue for the importance of this distinction in
the study of computational complexity. I am particularly interested in
lower bounds. As a point of reference, let me review the somewhat
embarrassing state of affairs in computational complexity with regard to the

"general" or string processing viewpoint. If we ignore "diagonalization
based results", the following barriers are well recognized:

GBl. The inability to establish a nonlinear lower bound on sequential
Time or circuit SIZE.

GB2. The inability to establish a non-logarithmic (i.e. co (log nj) lower
bound on Space.

GB3. The inability to establish a non-logarithmic lower bound on

Parallel Time or circuit Depth.



MODELS IN COMPUTATIONAL COMPLEXITY 173

Although our concepts of "Parallel Time" are still evolving, we should at

least note that GB2 and 3 are quite related by the Parallel Time-Space

simulations (see Cook's [80] paper in this conference).

For the general viewpoint, one measures complexity as a function of

the length of the encoding of the inputs and outputs. In contrast, one

measures complexity in the structured viewpoint as a function of the

number of inputs and outputs. In either case we can refer to the size of the

problem. In the structured setting, the barriers are a little less precise yet

the analogies do persist.

SB1. We do have some important Q (n log n) lower bounds for algebraic

complexity based on degree (Strassen [73]) and for pure and

linear comparison trees based on information theoretic arguments

(e.g. sorting and related problems—see Reingold [72]). There are

even some Q (n2) lower bounds for linear comparison trees

(also based on information theoretic arguments—Dobkin and

Lipton [78]).

SB2. I do not know of any non-logarithmic Space bounds except
for the result of Cook and Rackoff [80]—see section IV.

SB3. Again, I do not know of any non-logarithmic Depth bounds

except for some trivial arguments in algebraic complexity based

on degree.

We should note that a general model may be considered from a structured

point of view in the context of a specific problem and complexity measure.
This is the case for the recent result on sorting (see Paul's [80] paper in this
conference).

This also seems like an appropriate place to comment on two other

concepts, uniformity and restricted models which relate to our theme.
Circuits (arithmetic or Boolean) and Comparison trees or Branching
Programs (see Tompa [78]) are non-uniform models in that for each size n,
we have a different solution. The derivation of these solutions may be

completely unrelated (for different n) and arbitrarily complex. In contrast,
Turing machines are uniform. It turns out that known lower bounds
(except for "on-line" computations—see Tarjan [77]) in the structured
setting are achieved with respect to non-uniform models. Non-uniformity
makes the lower bounds results stronger, but it also reflects the fact that
we don't know how to take advantage of uniformity. But the point here is

that uniformity considerations are appropriate in either of our settings. We
call a model, structured or general, restrictive (for a particular class of



174 A. BORODIN

problems or for all computable problems) if there is some "reasonable"

or "natural" model which can (seemingly) solve the intended problems more
efficiently. For example, a one tape TM is provably restrictive and there

are senses (on-line computation—see Hennie [66]) in which multitape and

multidimensional Turing machines are also restrictive. Valiant [79c]
demonstrates that monotone +, x arithmetic circuits are restrictive. Comparison

trees which use only { # } tests are also provably restrictive in
the structured setting (Reingold [72]). I would resist the temptation to
think of structured models as being a-priori restricted general devices

because the relevant computational domain used need not be finitely
encodeable.

Given the barriers GBl, 2, 3, we can see why the following conjectures
remain fundamental challenges (for notation, see Hopcroft and Ullman
[79]).

GC1. P -jf~ NP. I use this to represent all the associated issues, like
completeness, # P problems (Valiant [79a]), etc.

GC2. DSPACE(S) ^ NSPACE(S) for reasonable constructible)
bounds S.

GC3. P $ DSPACE (logk) for any k (and, in particular, for k= 1).

Indeed P $ u DSPACE (logk). (This is implied by GC3.)
k

GC4. P $ DEPTH (logk) for any k (uniform or non-uniform circuit
depth). And again, k 1 is of special interest.

GC5. P n u DSPACE (logk) (or P n DSPACE (log2)) is not equal to
k

the class of problems which can be computed simultaneously
in small Time (polynomial) and Space u logk). The latter

k

class lacks a good notation (Cook [79] calls it PLOPS) so I'll
add nothing to the confusion and either call it Polytimelogspace

or "SC" (for reasons explained below).

GC6. P n u DEPTH (logk) is not equal to Polysizelogdepth. (The
k

last term is a test to see if anyone skipped GC5—Cook refers

to this class as "NC", referring to (Nick) Pippenger [79]. If
NC takes hold, we would have to use SC for Polytimelogspace.)

Referring back to our barriers, we could add insult GB4: "The

inability to prove a SIZE • DEPTH lower bound of co (n log «)"
to the injury of GBl and GB3.



MODELS IN COMPUTATIONAL COMPLEXITY 175

I would argue that these barriers and many of these same conjectures

are of fundamental importance in the structured setting although here one
has to look at each specific model to formulate appropriate questions. But
this is precisely my main, albeit obvious, conclusion—namely, that it is

important and productive to formulate and study the analogous barriers
and conjectures in reasonably natural structured settings. Of course,
I should admit that my perspective may distort the fact that specific instances

of these questions were studied in structured settings before the issues were
formulated generally. But in the general framework these issues have come
into clearer focus. There are several reasons why these issues should also
be pursued in structured settings.

1. The issues are usually of significant independent interest in the
different settings, especially when the model represents the "natural"
model.

2. Some structured models have the property, often by design, that
they are sufficiently "general with respect to a specific complexity
issue" that results in such a setting will yield a direct corollary for the
general theory.

3. A structured model may not be sufficiently general to yield direct
corollaries but nevertheless the proof techniques which are developed
may become paradigms for the general model.

In the following sections I would like to substantiate these points by
primarily considering the two structured models, SI (comparison based
models) and S2 (arithmetic models) mentioned initially. We will then
discuss a few other examples outside of these models to further emphasize
the utility of this viewpoint.

II. Comparison Based Models

I want to concentrate on a few examples of models which hopefully
will exemplify the utility of the structured viewpoint. The first model, or
rather class of models, is the comparison tree (see Knuth [73]). In a pure
comparison tree, we label the nodes of a tree by questions of the form
xi ^ xj • The model then can only solve problems dealing with "searching

and sorting". It is also sufficient to consider the input domain to be
{1,2, 77} for a problem of size n. On a given input, the computation
follows an appropriate path to a leaf, where the output takes place. Since
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every problem under consideration is completely determined by the
permutation of the input, and since we can sort in « log « + o («) comparisons,
this simple model cannot address itself to many of the "larger issues"

(e.g. P vs NP). Yet, we do get an Q(nlogn) lower bound not only for
sorting but for set recognition problems like "X distinct ?", "X YT\
The sorting argument simply observes that we need at least one leaf for
each of the possible « permutations and hence the depth of the tree number

of comparisons Time in this model) must be at least [log«!]
« log « + o («). As simple as this argument is, it provides a paradigm

for asking and answering the same complexity question in a more interesting
setting, namely for Random Access Machines (see Paul [80]) with +, —, x

as unit cost operations. The same questions apparently remain open if
integer division is also allowed as a unit cost operation.

One way to establish the set recognition lower bounds can be obtained

by considering an extension of the model, namely linear comparison trees
n

where nodes are labelled " £ cpy > cn+1 ?", with {q} in some under-
i 1

lying field (say Q for definiteness). For linear comparison trees, we can
consider the input domain to be Q". It is easily seen that the set of inputs
leading to any leaf is a convex subset of Qn. Dobkin and Lipton [78] then
observe that if a subset A (of Q") which is being recognized is the disjoint
union of k open sets, we must have at least one leaf (in the linear comparison
tree) for each such open set (by convexity). Again, it follows that [ log k ]
time is required. For example, if A ={< xl9 x„ > | xt # xy} it
follows that k Q (n\) and hence the Q (« log«) lower bound. By the

same proof technique, Dobkin and Lipton show that the knapsack problem
({ < xl9 x„ > I 3A, ir : Yj°ij * }) requires Q (;n2) comparisons.

The linear tree model allows us to pose more challenging questions;
that is, beyond what can be done with a pure comparison tree. Although
we can view linear trees as an extension of the pure model, I would claim

that, relative to its scope of intended problems, this model is in a sense

more structured. This will become clearer if we enlarge our discussion to
Space considerations (where it is possible to force larger Time bounds).
Each node of a comparison tree can be thought of as representing a state

(or I.D.) of the computation. In order to introduce Space complexity, we
should coalesce identical states (that is, those with identical subtrees) and

let outputs take place at any step of the computation. We are then led to
Pippenger's comparison branching programs (see Tompa [78]), which are
directed acyclic graphs (rather than trees) whose nodes are labelled as in
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comparison trees and whose edges are labelled to denote possible outputs.

The Space used by a branching program is defined as log ^ nodes or states),

which is precisely Cobham's [66] notion of capacity which was defined

for general models. (We should also note that a general version of branching

programs was also studied by Masek [76] prior to their introduction into

a structured setting).
We can construct branching programs for any set of predicates, in

particular we can have {<?>}? or linear comparisons. And

now we can try to clarify why linear branching programs appear to be more

structured. Cook, and Tompa [78] observe that { <, > } (or { # })
branching programs are "general with respect to Space and Time (within
a factor of n) complexity" in the following sense:

Suppose we have a problem for which we can establish that any branching

program which works correctly for problem size n must have Space

Q(S («)) (or for which we can establish a Time-Space tradeoff of the

form / (Time, Space) Q (P («))—e.g. Space O (1ogkn) => Time
Q (?ilog ")). Then a corresponding result will hold for a general model

because the structured model can simulate the general model on a

"representative set of inputs". Suppose the { <, > } (respectively, { A })
comparison problem is to compute (xl9 xn), ...,/r (xl5 xn); the

analogous general problem is to output fx (x, xn), ...,/r (xl5 xn)

given xl9..., xn where y denotes a binary encoding of the integer y. (Note,
the model insures that each fj (xu xn) x. for some index ij). We

only assume that the general model has a read-only input (not necessarily
a tape), with a fixed number of reading heads. In fact, since we are permitting
random access on the input we can assume that there is only one input
head. Now suppose the general model solves this analogous general problem

in Space (- Capacity) S («), and Time # of steps or just read instructions)

T (n). In particular, the general machine must work on a special class

of inputs, those that satisfy the property that xt is the rank of xf in
{xl5 xn} (resp. xt is the smallest index j(i) < i such that xt xJ{i)).
But now the structured comparison program can simulate the behaviour
of the general machine on this class of inputs in the following way: we need

to simulate a move 8 : (present state, input bit being read) i-> (new state,
new head position). But we can use the { <, > } (resp. { ^ }) tests
to determine any xt (and hence any bit of xt) using at most n - 1 (resp.

/-I) comparisons so that the branching program has Time complexity
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T <wT, and increasing the number of states by a factor of n2 (resp. n)

so that the Space S of the branching program is O (S) since Space > log n

(whenever the output depends on all n inputs). The bounds S and T then

apply as upper bounds within the structured model for the original problem.
This is the sense in which we mean that such a model is "general relative

to a particular issue". The model is not general (in that it cannot always get
at the encoding), but it can simulate the general machine on a "representative

set of inputs". Savitch [73], and Cook and Rackoff [80] have made
such observations before with respect to conjecture GC2 (see section IV).

The question then arises as to whether or not linear tree or linear
branching programs may be sufficiently general in this same sense. But now
it is not clear whether or not there exists an appropriate representative set

of inputs for the type of problems we would like to consider. I want to
mention one such problem, the shortest path problem, relating to conjecture
GC5. The problem can be formulated as a set recognition problem or as a

function ; given A (awhere aij is the distance (or cost) associated with
edge < ij >, compute D (du), where d{j is the distance (or the path
itself) of the shortest (i.e. of least cumulative cost) path from node i to
node j. This problem has received considerable attention from the point
of view of Time complexity. The most structured model for the problem is a

straight-line program or circuit (i.e. no predicates) with operations "min"
and +. Kerr [70] showed that such "oblivious (the sequence of operations
is independent of the inputs) programs require Q (,n3), where n is the number
of nodes and hence n2 is the size of the problem. A more challenging setting
is provided by linear tree programs. In this setting Fredman [76]

demonstrates an O (n2'5) method (which can be used as the basis for a

O (n3 (log log n)1/3/(log n)1/3) o (n3) uniform algorithm). With regard
to lower bounds, we only have a negative result by Rivest and Yao [78]

that a particularly appealing approach cannot yield a sought after
Q (in2 log n) lower bound. I am interested in Time-Space bounds for this

problem in the context of linear branching programs. It seems necessary to
extend the model to allow assignments yt : linear combination of
previously defined {j/} and inputs Then Space is defined as Capacity
plus the number of extra variables yt. The shortest path problem is an
excellent example of a problem which is in P n u DSPACE (logfc) but

k

not, apparently, in Polytimelogspace. (Here I use these terms to have the

obvious meaning for a structured setting like linear branching programs as

well as their more standard meaning in the general setting). It is con-
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ceivable to me that ideas from linear geometry may enable someone (apparently,

not me) to establish an co (log n) lower bound on Space, and even

more generally establish the structured analogue of conjecture GC5.

But I don't see how this would directly yield a corollary for the general

theory. It seems fair to augment the Space measure by the precision of the

coefficients used in the program to reflect the fact that such coefficients

would have to be represented. Now given bounds on Space and Time,

we can put bounds on the precision of the inputs needed for a potentially

representative input set. Unfortunately, the bound, which clearly exists

given the decision procedure for the first order theory of Q under + (see

Specker and Strassen [76]), would be exponential in t, the Time bound

for the branching program; hence we do not readily obtain a representative

set as for the pure branching models since it appears to take time t to decode

each input.
But still the problem is of enough independent interest that it is worth

pursuing. And, moreover, this gives me an opportunity to argue that even

if a direct corollary does not follow, the proof method may generalize. The

case in point is the Time-Space Q (n2) lower bound established by
Borodin, et al. [79] for sorting on comparison branching programs. This
result is "too low-level" to employ the previously discussed simulation
for inferring a meaningful lower bound in the general setting. Yet, in this
case Borodin and Cook [80] were able to show that the proof method does

generalize and a bound of Q(n2j\ogn) was established to sort n integers,
each of length O (log n). Hence in terms of input string length m

O (n log n), we have the time-space bound Q (m2/log3m). The idea in
producing this general bound was to take a fairly structured view of the

input without giving up any generality. I should also mention that Yao
extended the original Q (n2) result to linear branching programs (i.e. a

more powerful structured model). Unfortunately, there are no comparable
lower bounds for a set recognition problem, in either setting.

Before leaving this section, we should mention another important
structured comparison based model, the Batcher comparator network
(see Knuth [73]). The model consists of a network (or circuit) with one type
of gate, a comparator, which takes < x, y > on input and outputs
< max (a, y), min (x, y) >. Pippenger and Valiant [76] study an extension
of this model, called ordering networks, where comparators are replaced
by gates
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computing i) / (x,y)

and ii) g (b, x, y)

and then augmented by the usual Boolean operations. Both models can
be studied with respect to Depth or Size number of gates) of the network.
The merging problem is relatively well understood on both models, with
log n Depth and n log /? Size being asymptotically necessary and sufficient.
The sorting problem is relatively open. In particular, we know, Q (/? log /?)

Size O (n log2/?) and simultaneously O (log2/?) Depth on both models.

For Depth alone the model is more critical. The conjecture is that sorting
requires Q (log2/?) Depth on comparator networks, whereas the results of
Muller and Preparata [75] show that 0(log/?) Depth is sufficient (with
Size O (n2)) for ordering networks. However, this raises the question
as to whether or not we can simultaneously achieve O (log n) Depth and

quasilinear Size (i.e. O (/? logkn)). (For a much more powerful non oblivious

parallel model, namely a comparison tree with n comparisons permitted
in parallel, Valiant [75] can derive such simultaneous bounds—see also

Preparata [78]). Even for comparator networks, there is no proof that
Size • Depth co (n log2/?). This same issue concerning sorting on ordering
networks can be viewed in the general setting of Boolean circuits which are

to sort n numbers, each of binary length O (log /?).

The Size-Depth problem for sorting (in contrast to Time-Space) seems

to have a very interesting complexity behaviour, also observed for a variety
of other problems involving simultaneous resource bounds. This behaviour
is as follows : An optimal bound for measure 1 (say Depth O (log /?))

can be achieved when the bound for measure 2 is essentially pessimal
(say Size O (.n2)), whereas by relaxing the measure 1 somewhat

(to O (log2/?)) we can get good (i.e. quasilinear) measure 2 bounds. At the

other extreme, an optimal measure 2 bound, say if O (/? log n) Size were

possible, seems to be achievable only with an essentially pessimal measure 1

bound. As other examples consider Space (as measure 1) and Time

(measure 2) for the problems of the median (see Munro and Paterson [78]

for the upper bound) and the string pattern matching problem (see Galil
and Seiferas [77] for the upper bound). This latter problem exhibits a more
quantitative statement of the behaviour, namely that with approximately k

registers (which in our terms would be k log n Space since each register
holds a pointer) one can solve the string pattern matching problem in Time

f 1 x > y
I 0 x < y
f x b — 1

l y bo,



MODELS IN COMPUTATIONAL COMPLEXITY löl

O (n1 + 1^k). (Pippenger [personal communication] has recently shown that

a similar upper bound can also be achieved for the sorting problem in the

context of ordering networks.) This same quantative behaviour has a

corresponding lower bound for the (structured) simulation of linear recursion

schemes by flow-chart schemes that was referred to in Section I.

III. Arithmetic Models — Algebraic Complexity

I would now like to turn attention to the complexity of arithmetic

problems, and to the straight line or circuit model with operations +, —, x

(and perhaps -f-). Fortunately, I need not pursue this topic in too much

detail since Valiant [80] in this conference will be addressing just this topic.
Indeed, Valiant [79a] and [79b] has always provided compelling evidence for
the importance of the interrelation between a structured problem setting

(algebraic complexity) and the general theory. The correspondence between

algebraically structured arithmetic circuits computing (say) formal
polynomials in F[x1, xn] and general Boolean circuits computing Boolean
functions of n variables is readily apparent. In the former, gates represent
the ring operations (x5 +, -) and the inputs are the (indeterminates)
{ xt} u i7, while in the latter, the gates represent some basis set of Boolean

operations (say a v, —i) and the inputs are the (Boolean variables)
{ xt} u { 0 or false, 1 or true }. Since v a —i can be easily simulated
hy + x when restricted to {0, 1 { (e.g. x v y by x + y — x x y)9

positive results for the arithmetic case often carry over immediately to
the Boolean setting. The usual measures of complexity are SIZE number
of gates sequential Time complexity), DEPTH length of longest
path in the circuit parallel time complexity) and FORMULA SIZE

number of gates in a circuit having fan-out one; i.e. a formula). One
of the first (pair of) results that demonstrated to me the importance of
keeping this correspondence in mind, is the relating of the FORMULA
SIZE and DEPTH measures. Independently, Spira [71] (for the Boolean
case over any basis) and Brent [74] showed how to convert any formula of
size m to an equivalent formula (and hence circuit) of depth O (log m);
the converse that any circuit of depth d can be converted to a formula of
size 2d is immediate. It is interesting to note that the Spira result seems to
depend intrinsically on the Boolean domain, whereas the Brent result is

proven in a more abstract setting using only that x (resp. a) distributes
over + (resp. v Then, here again, is a situation where a result need not
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yield a direct corollary (the simulation of x v ybyx + y- xxy requires
fan-out two) yet the proof technique can be applied. In this regard, it is

interesting to note that whereas Pippenger [74] shows every symmetric
Boolean function has polynomial Formula Size (i.e. can be computed in
O (log n) Depth), the corresponding result is not known for the arithmetic
elementary symmetric functions (O (\og2n) Depth is easy to establish via
polynomial multiplication).

While the relationship between FORMULA SIZE and DEPTH is

relatively well understood, the relation between Size and Depth is a more
fundamental issue (see conjectures GC4 and GC6). The relating of TIME
to SIZE and SPACE to DEPTH in the general setting (for example, see

Borodin [77]) also shows the relationship between conjectures GC3 and
GC5 but the classes Polytimelogspace and Polytimelogdepth (in conjectures
GC4 and GC6) may be quite different (see Cook [80]). In the algebraic
setting, these general relationships take on added interest when combined
with some important results concerning Depth. First, Csanky proved that a
number of central problems (including A~1,An) have the same depth
complexity as computing det (A), and, more important, these problems can
be computed in O (log2ri) depth and simultaneously in O (n4) size. Hyafil
[79] took Csanky's result further in showing that any set of multivariate
polynomials of degree < d and computable in Size < t, can be computed
in Depth O (log d • log t). Clearly Q (log d) is a lower bound on depth,
so that Hyafil's result is a major challenge to conjecture GC4 in the algebraic
(i.e. structured) setting. It is the concept of degree which gives us an opportunity

to relate Size and Depth in the algebraic setting. The concept of
degree (in the sense of algebraic geometry) also gave Strassen [73] the

means to establish a non trivial Q (n log n) lower bound on Size. At present,
we do not have a meaningful analogy to degree in the Boolean setting, and
hence all the barriers and conjectures remain intact.

Hyafil's [79] result leaves open the analogue of conjecture GC6. The
construction which converts from deg d, Size t to Depth O (log d - log t)
results in a Size of that is, it does not preserve polynomial size.

This contrasts with Csanky's [76] result that our concrete examples

(det, An, A~1) are in Polytimelogdepth. It also remains open as to whether

or not these concrete problems (or perhaps all small degree polynomials
computable in polynomial Size) can be computed in smaller Depth (e.g.

O (log ri)). In this regard, one can note the similarity between the arithmetic
An, A~1 problems and the Boolean Depth requirements for integer powering
and division (see Cook [80]). We also note the similarity between the arith-



MODELS IN COMPUTATIONAL COMPLEXITY 183

metic A" and the Boolean A* (transitive closure). The latter problem is

complete for the issue of NSPACE(S) vs DSPACE(S). A (uniform) positive

result for A"(sayO (log"«) Depth with <2) would directly improve

Savitch's [70] deterministic simulation of nondeterministic space bounded

computations. It appears to me then that a first attempt to break barriers

GB2, 3 would be to try to establish a nonlogarithmic lower bound for the

depth of A" (equivalently, the det). The only known lower bound, Shamir

and Snir [77], is that A"doesrequire depth Q (log2«) for monotone +, x

circuits. However, Valiant [79c] has shown that monotone circuits can be

exponentially inefficient.
To me, the most compelling evidence of the importance of the algebraic

viewpoint for the general theory is Valiant's [79a] result that the permanent

(say when restricted to integer matrices) is complete for the class (#P)
of problems associated with counting the number of solutions of problems

computable in nondeterministic polynomial time (MP). The difference

between the determinant and permanent is thus made quite explicit in

complexity terms (even though we can't yet translate this into provable
lower bounds). Recently, Valiant [19b] uncovers the central role that the

determinant and permanent problems play within algebraic complexity
itself (with the result of further insights into the general theory). Valiant is

directly motivated (see his introductory paragraph) by the kind of
completeness results one obtains in the general theory. But rather than use

complexity based reductions (as is usually done) he is able to base his
reductions on purely algebraic properties. Again, following Schnorr's [76]

original beliefs in this regard, I would also argue that the algebraic setting
is a reasonable framework for attacking what many feel to be the
fundamental issue of complexity (P vs NP), even though (or maybe because)
lower bounds in the sense of algebraic complexity do not seem to have

any direct corollaries to the general theory.
I want to conclude this section by considering Space complexity, and,

more precisely, Time-Space tradeoffs for the algebraic setting. Space is

not usually considered within algebraic complexity but I think it is quite
relevant to our thesis. The Space measure here evolves naturally from the

attempt to execute a circuit as a straight-line program; namely, it is the
number of intermediate locations needed to store partial results. This
measure has been well studied in the guise of a certain pebble game
introduced in the schematology paper of Paterson and Hewitt [70] and used in
other structured settings (e.g. Cook [73] and Cook and Sethi [76] where
conjecture GC3 is formulated in a structured setting). Indeed, the pebble
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game has been studied extensively and is the basis for a number of results
that have "TIME-SPACE tradeoffs" as part of a title. If one wishes to
conserve on the number of intermediate locations (the number of pebbles)
then it may be necessary to often recompute results (i.e. repebble the same
node of the circuit). Tompa [78] uses the connectivity properties of the
FFT problem to demonstrate a Space (number of pebbles) • Time (number
of pebble moves) Q (n2) lower bound. I find it interesting that,
independently, Grigoryev [76] produces a similar Time-Space Q (n2) tradeoff
for multiplication in Z2 [x] (which extends to integer multiplication) with
respect to Boolean circuits (i.e. general setting) by using arguments about
the range of subfunctions.

My interest stems from the fact that the same duality (between
connectivity and subfunctions) again provides the basis for two results

concerning VLSI design; namely, using similar models, Thompson [79]
shows the product of Area length of wire) and Parallel Time2 Q (n2)

for the FFT (structured setting) while Brent and Kung [79] show Area •

Parallel Time2 Q (n2) for integer multiplication (general setting).
Recently, Brent and Goldschlager have established an analogous Area-
Parallel Time tradeoff result for a set recognition problem.

IV. Other Structured Models

I should use this last section to briefly indicate that many other structured
models can be found in a variety of problem areas. Yet, these models are
often more appropriate to particular problems rather than for a large class

of problems. Hence, the real purpose of this section is to indicate a need

for structured models natural to important problem areas.

Perhaps I should constrain this concluding discussion to an obvious

candidate, a "model for graph-theoretic problems". But given the scope
of graph theory, this seems far too ambitious. What has been done thus far?
We have already discussed the use of linear comparison trees and branching

programs for the study of shortest path problems. This model does seem to
abstract the underlying tests and operations needed for such problems
while suppressing any data structures needed for both searching and

representation. The comparison tree becomes a rather uninteresting general
model if we study unlabelled graph problems; since any such problem can
be "solved" by looking at each entry of the input adjacency matrix. The
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solutions (Kirkpatrick [74], Rivest and Vuillemin [76]) to the Rosenberg-

Àanderaa conjecture show that most graph problems require every entry

of the adjacency matrix be probed. (Obviously, there are other ways to

represent a graph. But unlabelled graph problems do again become non-

trivial if we consider time-space considerations with regard to the generalized

version of branching programs).
There is a class of structured models that have been developed by

Savitch [73], and Cook and Rackoff [80] for studying the space complexity
of the directed and undirected versions of the graph reachability (alias

transitive closure) problem. The models reflect the kinds of path traversal

strategies one often uses in graph theoretic algorithms. Similar models

have been employed for the problem of searching mazes (see Blum and

Kozen [78]). Essentially, the JAG model of Cook and Rackoff consists

of a finite control of say q states plus a set of p labelled markers. The Space

charge is log q + p log n, the latter term reflecting the fact that a marker
is used to remember a node in the graph. The graph is oriented (i.e. edges

leaving a node are numbered) and the model traverses a graph by moving
markers along edges or to be coincident with other markers. Moves are
determined by the state and by the presence of markers. If the model does

not allow backward traversal of edges, then Cook and Rackoff can
demonstrate an Q (\og2n/\og log n) Space lower bound in the directed case.

For the undirected case, the result of Aleliunas et al. [79] shows that the

reachability problem can be solved in O (log n) Space by a Monte Carlo
algorithm, and hence in non-uniform O (log n) Space. Indeed, a JAG with
only 2 markers and a polynomial number of states can solve the undirected
reachability problem.

If the JAG model does allow backward edge traversal, then the model
becomes "general for the issue of NSPACE (log n) ^ DSPACE (log «)".
The Aleliunas et al. result is based on a universal covering sequence (for
all n node cubic graphs) of polynomial (n) length; it is this covering sequence
which leads to a "representative set of inputs" on which a JAG with backward

edge capability can simulate a general algorithm for the directed
reachability problem (which is log space complete for NSPACE (log n)).

Recently there has been a set of interesting results (see Bland and Las
Vergnas [78], and Lovâsz [79]) concerning matroid properties where the
model is essentially an oracle for determining the independence of a set of
elements. Since matroid properties (and algorithms, like the Greedy
algorithms) are often viewed as generalizations of graph theoretic properties,
one might view the independence oracle as a structured model for graph
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theory. As such, this is a different kind of structured model than I have been

trying to sell in this paper. The results here proceed by an adversary argument

which constructs two similar looking matroids to force an exponential
number of oracle calls in order to determine a certain property. But the
matroids being constructed need not be, and are not, constructed from the

same "domain" (e.g. graphs, with cycle free paths as independent sets).

It is rather like relativized complexity theory (see Baker, et al. [75]) or the
construction of non standard models in logic, which gives insight into what
kind of arguments will not work. However, I am trying to emphasize
structured models where the domain is "standard" and the structure issues

hinge on the accessing and processing of such domain elements.

Given the significant progress in the field of graph theoretic algorithms,
it is relatively disappointing how few structured models have been proposed
for this area. In particular, we seem to have adopted the model of algebraic
complexity to study graph theoretic variants of P vs NP, and to study lower
bounds for graph theoretic parallel computation (see Reghbati and Corneil
[78] for some upper bounds in this context). To be fair, we sometimes adopt
graph theory as a means to proving lower bounds in algebraic complexity
(see Valiant [77]).

Clearly, I have not nearly exhausted the variety of computational
problems whose complexity has been studied from both the general and

structured viewpoints. But I hope I have begun to defend my earlier
conclusions that the general theory provides a standard for assessing complexity
results about structured models and conversely that the structured setting
gives insight for the general theory.

Note added at the end of Symposium : M. Rabin observed to me that
Khachian's polynomial time solution for the Linear Programming problem
provides a dramatic example of the structured vs general distinction. The

present polynomial bound is based on the precision of the inputs and not
just the number of inputs. Similar remarks can be made about the Transportation

Problem and the Edmonds-Karp solution.
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