§6. ACYCLIC MAPS INTO A GIVEN SPACE

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 25 (1979)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
28.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

We prove $\tilde{X} \rightarrow F$ is a homotopy equivalence with the same argument used in (5.6) to show P_{k} implies H_{k}. Since F is also the fibre of $\left.X_{N}^{+} \rightarrow\left[B \pi_{1}(X)\right)\right]_{N}^{+}$ we have proved the theorem.
(5.8) Remark. Using (5.1), we see that for an acyclic map $f: X \rightarrow Y$ which is k-simple for all $k \geqq 2$, the homotopy groups $\pi_{*}(Y)$ can be computed in terms of $\pi_{*}(X)$ and $\pi_{*}\left(B \pi_{1}(X)_{N}^{+}\right) \cong \pi_{*}(B N)^{+}$for $i \geqq 2$. Some computations of $\pi_{*}\left(B N^{+}\right)$for a certain perfect group N can be found for instance in [H , Chapter 7].

§ 6. Acyclic maps into a given space

In this section we study acyclic maps $f: X \rightarrow Y$ into a fixed space Y. Two such map $f: X \rightarrow Y$ and $f^{\prime}: X^{\prime} \rightarrow Y$ are called equivalent provided there is a homotopy equivalence $h: X \rightarrow X^{\prime}$ with $f \simeq f^{\prime} h$. Let $A C(Y)$ denote the class of equivalence classes of acyclic $f: X \rightarrow Y$ over Y where X and Y are $C W$-spaces.
(6.1) Definition. An extension data over a space Y is a triple (Φ, i, Φ) where
(a) Φ is an extension $1 \rightarrow N \rightarrow G \rightarrow \pi_{1}(Y) \rightarrow 1$ with N perfect,
(b) $i: B G \rightarrow B G_{N}^{+}$is an acyclic map with $\operatorname{ker}\left(\pi_{1}(i)\right)=N$ (whose equivalence class is well defined by (3.5)), and
(c) $\phi: Y \rightarrow B G_{N}^{+}$is a 2-connected map.

Two triples of extension data (Φ, i, ϕ) and ($\Phi^{\prime}, i^{\prime}, \phi^{\prime}$) are called equivalent provided there exists an isomorphism $g: G \rightarrow G^{\prime}$ making the following diagrams commutative (up to homotopy for the second one).

where $N^{\prime}=g(N)$ and Bg^{+}is the unique homotopy equivalence determined by g with (3.1).

We denote by $E D(Y)$ the class of equivalence classes of extension data.
(6.2) Definition. The data map ρ is the function $\rho: A C(Y) \rightarrow E D(Y)$ which assigns to an acyclic map $f: X \rightarrow Y$ the class $\rho(f)=(\Phi, i, \phi)$ of extension data defined as follows:
(a) Φ is the extension $1 \rightarrow \operatorname{ker} \pi_{1}(f) \rightarrow \pi_{1}^{-}(X) \rightarrow \pi_{1}(Y) \rightarrow 1$.
(b) (c) With the well defined $j: X \rightarrow B G$ for $G=\pi_{1}(X)$ we form the cocartesian diagram

Since f is acyclic, i is acyclic, and since $\pi_{1}(j)$ is an isomorphism, $\operatorname{ker}\left(\pi_{1}(i)\right)$ $=N$. Thus $Y \cup{ }_{X} B G$ is $B G_{N}^{+}$up to equivalence.

Now we have to check that the map $\phi: Y \rightarrow Y \cup_{X} B G=B G_{N}^{+}$is 2-connected. Since $\pi_{1}(j)$ is an isomorphism, $\pi_{1}(\phi)$ is also an isomorphism. The fact that $\pi_{2}(\phi)$ is surjective comes from the diagram.

$$
\begin{array}{cccc}
\pi_{2}(Y) & \sim & \sim \\
\pi_{2}(\tilde{Y}) & \sim H_{2}(\tilde{Y}) & \sim & \sim
\end{array} H_{2}\left(\tilde{X}_{N}\right) .
$$

The surjectivity on the right is a classical result of Hopf which follows easily from the Serre spectral sequence of the fibration $\tilde{X} \rightarrow \tilde{X}_{N} \rightarrow B N$.

Now using (2.5) a simple argument, left to the reader, shows that $\rho: A C(Y) \rightarrow E D(Y)$ is well defined.
(6.3) Theorem. Let Y be a $C W$-space. The map $\rho: A C(Y) \rightarrow E D(Y)$ surjective and its restriction to the subclass $A C_{S}(Y)$ of $A C(Y)$ of $f: X$ $\rightarrow Y$ which are k-simple for all $k \geqq 2$ is a bijection.

Proof. To show ρ is surjective, consider extension data (Φ, i, ϕ) and form the cartesian square

Now f is acyclic by (2.2), and since its fiber is the same as i, we deduce by (5.2) that f is k-simple for all $k \geqq 2$.

Next, let $\rho(f)=\left(\Phi_{0}, i_{0}, \phi_{0}\right)$ and we show this extension data is equivalent to (Φ, i, ϕ). Using the homotopy exact sequences for $X \rightarrow Y$ and $B G \rightarrow B G_{N}^{+}$and the fact that ϕ is 2-connected, we deduce from the five lemma that $\pi_{1}(\alpha): \pi_{1}(X) \rightarrow G$ is an isomorphism. The following diagram shows that $\left(\Phi_{0}, i_{0}, \phi_{0}\right)$ is equivalent to (Φ, i, ϕ) and ρ is surjective.

Now, if $f: X \rightarrow Y$ is an acyclic map which is k-simple for all $k \geqq 2$ and with $\rho(f)=(\Phi, i, \phi)$, then we form the following commutative diagram.

As we have seen in the proof the surjectivity of ρ, the map f_{0} is acyclic and k-simple for $k \geqq 2$. The map d induces an isomorphism on the fundamental groups and on homology with $\mathbf{Z} \pi_{1}(Y)$ twisted coefficients. By (5.3), the map d is a homotopy equivalence. This proves that the acyclic map f is equivalent to the induced map f_{0}. Thus ρ restricted to $A C_{S}(U) \rightarrow E D(Y)$ is a bijection.
(6.4) Remark. This theorem leaves open the question of the fibres of the function.

$$
\rho: A C(Y) \rightarrow E D(Y) .
$$

In the next theorem we factor an acyclic map by ones having simplicity properties.
(6.5) Remark. In theorem (6.3), if one fixes an extension $\Phi: 1 \rightarrow N$ $\rightarrow G \rightarrow \pi_{1}(Y) \rightarrow 1$, then the same proof permits us to classify acyclic maps $f: X \rightarrow Y$ which are k-simple for $k>2$ together with an identification $d: \pi_{1}(X) \rightarrow G$ such that $\Phi d=\pi_{1}(f)$. The objects of $E D(Y)$ have to be replaced by couples (i, ϕ) where $i: B G \rightarrow B G_{N}^{+}$is as above and $\phi: Y$ $\rightarrow B G_{N}^{+}$is 2-connected with the following diagram commuting up to homotopy.

$$
B \pi_{1}(Y) \xrightarrow{B \Phi} B G
$$

This is what is done implicitely in [H, Sections 2 and 4]. Observe that we are dealing here with classes which are sets.
(6.6) Lemma. Let X be a $C W$-space and N a perfect normal subgroup of $\pi_{1}(X)$. Let $X \rightarrow P_{n} X$ denote the nth stage of the Postnikov decomposition of X. Then for all $n \geqq 1$ we have that
(1) $\pi_{j}\left(X_{N}^{+}\right) \rightarrow \pi_{j}\left(\left(P_{n} X\right)_{N}^{+}\right)$is an isomorphism for $j \leqq n$ and an epimorphism for $j=n+1$, and
(2) $\pi_{j}\left(A \tilde{X}_{N}\right) \rightarrow \pi_{j}\left(A\left(P_{n} \tilde{X}_{N}\right)\right)$ is an isomorphism for $j \leqq n$ and an epimorphism for $j=n+1$.

Proof. Consider the following homotopy commutative diagram of fibre sequences

$$
\left.\begin{array}{cccc}
T & \longrightarrow & A \tilde{X}_{N} & \longrightarrow
\end{array}\right) A\left(P_{n} \tilde{X}\right)
$$

Clearly $\pi_{i}(F)=0$ for $i \leqq n+1$. The spaces \tilde{X}_{N} and $P_{n} \tilde{X}_{N}$ have the same $(n+1)$-skeleton and the same can be assumed for \tilde{X}_{N}^{+}and $\left(\dot{P}_{n} \tilde{X}_{N}\right)^{+}$. Hence $\pi_{i}(G)=0$ for $i \leqq n+1$. Now (1) follows because G is the fibre of X_{N}^{+} $\rightarrow\left(P_{n} X\right)^{+}$.

By comparing Serre spectral sequences, we obtain the surjectivity of

$$
H_{0}\left(N, H_{n+1}(F)\right) \rightarrow H_{0}\left(N, H_{n+1}(G)\right)=H_{n+1}(G)=\pi_{n+1}(G)
$$

Thus $\pi_{j}(T)=0$ for $j \leqq n$ and (2) follows.
(6.7) Theorem. Let $f: X \rightarrow Y$ be a map between $C W$-spaces. Then there is a factorization

such that β_{i} is i-connected and α_{i} is an acyclic map which is k-simple for $k>i$.

Such a decomposition is unique up to a homotopy equivalence.
Proof. The ith stage X_{i} is defined by the cartesian diagram

where $N=\operatorname{ker}\left(\pi_{1}(X) \rightarrow \pi_{1}(Y)\right)$. By (6.6) the map β_{i} is i-connected since the fiber of the two vertical arrows is $A\left(P_{n} \tilde{X}\right)_{N}$. Now by (5.4) we see that α_{i} is simple for $k>i$.

For two decompositions $\left(X_{i}^{\prime}\right)$ and $\left(X_{i}^{\prime \prime}\right)$ of $f: X \rightarrow Y$ satisfying the above conditions, we have $P_{i} X_{i}^{\prime}=P_{i} X_{i}^{\prime \prime}$ and both X_{i}^{\prime} and $X_{i}^{\prime \prime}$ map into X_{i}, constructed above, such that the resulting diagrams are homotopy commutative. The connectivity of the β_{i} and (5.1) shows that these maps are all homotopy equivalences. This proves the theorem.
(6.8) Remarks. This theorem (6.7) coincides with the Dror results for Y a point [D1, Theorem 1.3] and $Y=S^{n}$ [D2]. An interesting problem is to describe the ith stage X_{i} in terms of invariants of X_{i-1} as in [D1] and [D2]. (See the footnote in the introduction.)

Appendix - Simplicity properties of fibers

In the proof of (5.4) we used the fact that for a fibration $F \rightarrow E \xrightarrow{f} B$ the action of $\pi_{1}(F)$ on $\operatorname{Im}\left(\partial: \pi_{k+1}(B) \rightarrow \pi_{k}(F)\right)$ is trivial. This assertion does not seem to be in the literature so we include a proof here.

We extend the mapping sequence of the fibration f to $\Omega B \rightarrow F \rightarrow E \xrightarrow{f} B$ and study F as the total space of a principal fibration with fibre the H-space ΩB. If G is an H-space, then $\pi_{1}(G)$ acts trivally on $\pi_{*}(G)$ because the covering transformations $\tilde{G} \rightarrow G$ on the universal covering \tilde{G} of G are homotopic to the identity. This is proved by lifting a loop to a path in \tilde{G} and using the H-space structure on \tilde{G} to deform the identity along this path to the covering transformation defined by the homotopy class of the loop. Recall that a principal fibration is induced from $G \rightarrow E_{G} \rightarrow B_{G}$ up to fibre homotopy equivalence.
(A.1) Proposition. Let $G \rightarrow X \xrightarrow{\pi} Y^{\prime}$ be a principal fibration with fibre G acting on X. Then we have:
(a) $\operatorname{im}\left(\pi_{1}(G) \rightarrow \pi_{1}(X)\right)$ acts trivially on $\dot{\pi}_{*}(X)$, and
(b) $\pi_{1}(X)$ acts trivially on $\operatorname{im}\left(\pi_{*}(G) \rightarrow \pi_{*}(X)\right)$.

Proof. For (a) we have the following commutative diagram induced by a covering transformation $T: \tilde{G} \rightarrow \tilde{G}$.

