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A SINGULAR INTEGRAL EQUATION CONNECTED
WITH QUASICONFORMAL MAPPINGS IN SPACE

by Lars Y. Ahlfors x)

Dedicated to Albert Pfluger for his seventieth birthday

1. Introduction

This paper continues the author's investigation of two differential

operators, S and S*, which arise naturally in the study of infinitesimal

quasiconformal mappings in n dimensions (see References). If Q is open
in RM the operator S acts on functions / : ß —> R" and has values Sf e SMn
where SMn is the space of symmetric n x n matrices with zero trace.
Definitions are in Sec. 2.

A key question is the solvability of the inhomogeneous equation
Sf v. For n 2, Sf can be identified with the complex derivative f= of a

complex-valued function, and the problem is that of recovering / from f
As well known, this problem has always a solution, and it is given by the

generalized Cauchy formula, also known as Pompeiu's formula. For n > 2

the right hand member v, an SM^-valued function, must satisfy certain
conditions, which are known in principle, as limiting cases of the Weyl-
Schouten conditions of vanishing conformai curvature.

These conditions, although explicit, are quite intractable. It is therefore
rather surprising that a necessary and sufficient condition for Sf — v to be
solvable can be expressed as a singular homogeneous integral equation
satisfied by v. This integral equation can be treated by the methods of
Calderon and Zygmund.

2. Definitions and notations

A quasiconformal homeomorphism F : Q -+ F (Q) is known to be
differentiate almost everywhere. We denote its Jacobian matrix by DF.
The normalized Jacobian is XF (det DF)~lln DF, and MF fXF • XF

x) Supported by NSF Grant GP-38886.
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is the normalized and symmetrized Jacobian; it carries the quasiconformal
data of the mapping.

The Riemannian metric ds2 — fdx (MF) dx is conformally flat, a
condition expressed by the vanishing of the conformai curvature tensor.
For n 3 this tensor is identically zero, but there is instead an integrability
condition.

Let F(x, t) be a one-parameter family of homeomorphisms such that

F(x, 0) x, F (x, 0) / (x). Under suitable regularity conditions (FF)0

Df; (XF)o =Df--trDf • 1B, and (MF)0 - Df + *Df - - tr Df • 1„.
n n

This motivates introducing the differential operator S defined by

(Sf)u ~(DJj+D,ft - - öuDkfk
z n

(The summation convention is in force in this paper). Note that Sf has

values in SMn.
There is a formal adjoint S* which maps SMn-valued functions on

Revalued functions. It is defined byS»;and it satisfies

(1) J Sf-cpdx — J / • S*(p dx
Q Q

when either f or cp has compact support. (Sf. cp and f - S* cp are the dot
products SfjCPij and fi (S*cp)h respectively; dx is the euclidean volume
element.)

Equation (1) defines Sf and <p as distributions even if/ and cp are

not differentiate. We are always assuming that / is continuous and cp

locally integrable.

3. Invariance properties

In (1) we prefer to regard cp dx as a matrix-valued measure, so that
the pairing

< S/, cpdx > J Sf - cp dx
Q

is between a function and a measure. Similarly, S* (cpdx) (S*cp) dx is a

vector-valued measure.
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Let A be a Möbius transformation. We define the pull-backs of vector-

and SMn-walued functions by

(A*f)(x) (DA)-1/(Ax)
(A*cp)(x) (DA)'1 cp (Ax) DA

and for the corresponding measures by

A*(fdx) \dztA\tDAf(Ax)dx
A*(cpdx) I det A J (DA)'1 cp (Ax) DA

These definitions are chosen so that the pairings are invariant:

< A*f, A*gdx > < f,gdx >

< A* v, A* cp dx > — < v, cp dx >

There is a basic identity

(2) S(A*f)(x) (DA)'1 Sf (Ax) DA

which may be expressed as a commutativity relation SA* A* S, applicable

to functions, but not to measures. It implies the relation S* A*
A* S*, which is valid for measures in the sense that

(3) S*(A*(pdx) A* (S* (p dx)

but not for functions. It should be noted that (2) and (3) are true only
because A is conformai.

A function is transformed into a measure by multiplication with a

fixed invariant measure p dx. The invariance means that A* (p dx) p dx,

or p (Ax) I det DA | p (x); we assume also that A leaves Q invariant.
In these circumstances it makes sense to consider the operator S* p S

which takes / to S* [p(Sf)dx] and commutes with A* : (5* p S) A*
A* (S* p S).
There are three classical cases in which Q is invariant under a transitive

group G (Q) of Möbius transformations:

(i) Q Rn. G (Ü) is the group of euclidean motions, and p 1.

(ii) Q » B (1) {x : \ x \ < 1 }. G G (B) is the group of non-euclidean
motions, and p (1 — |x|2)~".

(iii) Q is the one-point compactification of Rn, identified with Sn in R"+1.
The group is formed by the rotations of the sphere, and p

(l + |x|2)"rt.
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4. Non-euclidean motions

The euclidean case was dealt with in [3]. In the present paper we undertake

a more detailed study of the hyperbolic case. The unit ball in Rn is

denoted by B, and G is the full group of Möbius transformations mapping B
on itself. The Poincaré metric ds (1 —1^|2)-1 | dx | and the non-
euclidean volume element p dx (1 — \x\2)~n dx are invariant under G.

For A e G we prefer to denote the Jacobian by A' (.x) rather than
DA (x). We use | A! (x) | for the linear rate of change, the same in all
directions. This notation has the advantage of leading to formulas which
are easily recognizable generalizations of the familiar formulas for n 2

in complex notation. | A' (x) | is also the square norm of the matrix A' (x),
and I det A' (x) | | A' (x) |".

Reflection in the unit sphere is denoted by x* x/j x |2. Its Jacobian
is Z)x* I x |-2 (ln-2<2(x)) with ß 00u x^Xj/| x (2; note that

(l„"2ß(x))2 l/r
For every y e B there is a unique Tye G such that Tyy 0 and

Ty (y) I Ty (y) | • l,r The most general A e G is of the form A UTy
with y A~x (0) and Ue O (n).

For n — 2, in complex notation,

TyX

T'y 00

x — y
1 — yx
1 - I kl2

y K J (\ r„,\2(1 — yx)

The first formula can be rewritten as

(^c — T) (1 — 1 F 1 —

lf|2|^-k*|2
In this form it makes sense for arbitrary n and is in fact the correct formula.
The denominator | y |2 | x - y* |2 corresponds to | 1 - yx |2, and it is

equal to 1 - 2 (xy) + | x |2 | y |2, where (xy) is the inner product. To

emphasize the symmetry we shall use the notation \y\ \ x - y*
] x I \ y - x* I [x, y].

The expression for Ty (x) is

/ i — I y \2

T (x) - — A(x,y)
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with

A(x,y) (l-2<200) (l-2Q(x-y*)) (1 -2Q(x))

Observe that A (x,y) 'A (y, x) and A (x, y)2 1„ so that A (x, y) e O («).

The matrix A (x, y) generalizes the angle arg (1 —xy)/( 1 — yx).
It is useful to note that | Ax — Ay |2 | A' (x) | | ^4' (.y) | \ x - y\2

for any Möbius transformation A, and [Ax, Ay]2 \ Ä (x) | | A' (y) |

[x, y]2 if A eG. There is an important relation between Tyx and Txy

expressed by

(4) Tyx - A (x,y)Txy.

We refer to [2, 3, 4, 5] for the elementary proofs of these formulas.

5. Fundamental solutions

A continuous mapping / : B -> R" will be called a deformation. In this

paper we shall assume, mainly for simplicity, that / is continuous on the

boundary S (1), and that x */(x) 0 on S (I); this means that / maps B

on itself when regarded as an infinitesimal mapping.
A deformation is trivial if Sf 0. There are very few trivial

deformations: a complete list is given in [3].

It is customary to say that/is a quasiconformal deformation if 11 Sf\\
e L00 (B); here J| Sf\\ is the function whose value at x is the square norm
of the matrix Sf (x). More generally, we shall also consider functions with
\\Sf\\eLp (£); we abbreviate to Sfe LP, and we denote the Z/-norm of
the square norm by || Sf\\p. The same convention will prevail for all
matrix-valued functions.

We shall say that / is harmonic if S* p Sf 0, p (1 — |x|2)-".
Because of the invariance, if / is harmonic and AeG, then A*f is also
harmonic. Harmonicity in this sense is not the same as requiring the
components to be harmonic with respect to the Poincaré metric.

There are n linearly independent solutions of the equation S* y 0
which are homogeneous of degree 1 - n. We denote them by y k,
k 1, n, the elements being

lij,k I % I (àik,Xj + ^ij-Xfr) + (jl 2) I X I " 2
X^XyX^.

There is a unique vector-valued function gtk(x) with components
Qik (x) such that g,k(x) 0 for |x| 1 and p Sg mk so that
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S* p Sg k 0, or more precisely a Dirac distribution concentrated at 0.

It is easy to see that g giJc, which we regard as a Green's matrix, will be

of the form g ik(x) a | x | dik + b | x | xtxk\ the explicit expressions
for a (r) and b (r) are unimportant, except that g is of order O ((1 - |x|2)"+1)
for | x | -> 1 and O \ x |~" + 2) for x -> 0 (if n 2 the latter is replaced
by O (log 1/1 x |)).

IfUeO (n) it is immediate that g (Ux) Ug {xfiU. If we replace x
by Txy and U by - A (x, y) it follows with the help of (4) that

(5) A (y,x)g(Tyx) g(Txy)A (y,

We now define the Green's matrix with singularity at y by

Definition 1.

(6) g.k(x,y) (1 - I y \2)(T*g.k)(x)(1 - I |2)

[_x>y]2A (y, x) g (Tyx

It is clear that (S* p S)1 g (x, y) 0 (the subscript indicates that the

operator applies to the first variable). In view of (5) we can read off the

symmetry property

Lemma 1. g (x, y) fg (y, x).

This symmetry plays a prominent role in H. Weyl's classical paper [9]
which has been a strong inspiration for this work.

If A e G it is an easy consequence of (6) that

g(Ax, Ay) A' (x) g (x, y)'A' (y)

or, in a more suggestive form,

AfA* g(x, y)g(x,y),
where A% is A* applied to the first variable and the first index, and similarly

for A *
-

Next we define

Definition 2.

y..,k(x>y)P (x)Stg.k (x, y)(1 -1 y |2) p (x) (StT*g^

It is evident by invariance that S* y ^k (x, y) 0. When x and y are
transformed by the same A e G one finds

A*A* y..,, (x, y) dx y..„(x, y) dx
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where A * acts on x and the double index, A * on y and the single index.

For A Ty this leads to the explicit formula

(1 _ I v |2)" + 1

y..,* y) -r—^-n—A (f > x) y..,k (?>) a (x, y).
[x9y]Zn

We note that y
9

(x, 0) y (x) and y_f< (0, y) — — (1 — | y |2)"+1 y (y).
We shall need to apply S to either variable in y (x, y). For this

purpose we introduce

Definition 3. rijthk{x,y) [S2yijt. (x, y)]hk.

Because differentiations with respect to x and y commute it is clear

that S * F ihk (x, y) 0. Moreover, starting from the relation g ik (x, y)
9ki (y> x) il is n°l difficult to derive the following symmetry property:

Lemma 2. p (y) FijM (x, y) p (x) Fhk>ij (y, x).

It follows, in particular, that S*p (y) F0- (x, y) 0.

It is also important to know the asymptotic behavior of riJ>hk (x, y)
when x - y -» 0. We observe first that

p(y)rijM(o,y) - (i-\y |2)—[s(i-\y \2)n+1yij,.(y)lk

~ SijM(y) + RijM(y)
where Sijfhk(y) [S yij}fiy)]hk is homogeneous of degree - n and

R-ij,hk (f) is homogeneous of degree 2 — n. The explicit expression for
Rij,hk O, y) reads

(i-l y I2)"
riU. (x> y) r 12

A (x' ^ r^'(0' T*y) J (^'•[x, y J

Elementary estimates show that

(7) I riJM(x,y) + SijM(x-y) | ^ Cn | x - y |1-" [x, y]-1
with constant Cn.

6. Potentials

Given an SM„-valued function v on B wç.define its potential as the
vector-valued function Iv with components

1V (y)k I Vy (x) yiJJt(x, >0 dx
B
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The integral converges if v eLp (B) for some p with n < p ^ oo. In fact,
one proves that

\Iv(y)\^cB>p IIV 11,(1-
ifp < oo and

\Iv(y)I^ Cn 11 v 11
oo

1 — I j71) (1 + log 1/1(1 - |y|)

if p — co. In any event I v (y) vanishes at a fixed rate for | y | -» 1.

The forming of the potential is an invariant operation in the sense

that IA*v A*I v for every A eG. The potential is harmonic outside the

support of v, for (5* p S)2 yijtm (x, y) 0.

The following theorem serves to recover / from Sf and its boundary
values :

Theorem 1. If SfeLp (B),p > n, then

(8) cj{y)- + cnHf(y)

with
1 r

Hf(y) -Cn v
Sil)

Moreover, Hf is the unique harmonic function with the same boundary
values as /, and if x -f 0 on S (1) it can also be written in the form

i f (i- \y\2)n+1
Hf(y) — \ '

,2„ A(x,y)f(x)da(x).
Cn J I * - y I

Sil)
Remarks, da refers to the (n— l)-dimensional measure on S(1), and

cn 2{n—\) cojn where œn is the total measure of S (1). We are assuming
that / has a continuous extension to S (1). Actually, this is automatically
true if we assume the side condition in the form x \f(x) -> 0 as | x | -> 1,

for it can be shown that SfeLp forces/to satisfy a uniform Holder condition.
The proof is a straight-forward application of Stokes' formula. The

passage from the difierentiable to the distributional case is elementary.
The fact that a harmonic function is uniquely determined by its boundary
values can be demonstrated as follows : Suppose that / is harmonic and

zero on S (1). It is readily shown that

I Sf(x)u yiJ<k (x) da 0
S(r)
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for all r. Therefore 75/(0) 0 and hence /(0) 0 by (8). If this result

is applied to (T"1)*/ it follows that f(y) 0 for arbitrary so that /
is indeed identically zero.

7. Computation of SIv

It is easy to show that SiJthk (y) (y)]hk *s a Calderon-

Zygmund kernel for any choice of the indices; in other words, it is

homogeneous of degree — n, and its mean-value over the unit sphere is 0. If
veLp, 1 < p < oo, it follows by the Calderon-Zygmund theory that the

principal value

pr. v. J vy (x)(x —
B

exists almost everywhere, and that it is the limit in Lp (B) of the

corresponding truncated integrals. In view of (7) it follows that the integral

(9) rv(y)hkJ v;; (x) r
B

will also exist as a principal value almost everywhere. One finds, however,
that the remainder in (7) makes it possible to assert merely that the

principal value is a limit in Lpf for any pr < p/n. In these circumstances

it is natural to assume that v eLp (B) for all p ^ 1.

Theorem 2. If v e Lp (B) with p > n, then SIv e Lp' (B) for
all 1 < p' < pin, and

(10) SIv — hnv + Tv

where bn 4 o)J(n + 2) and Tv is defined by (9).

Proof Let cp be an SMn-yalued test-function. The definition of SIv
as a distribution leads to the following formal computation :

I SIv(y)hkcp(y)hkdy- J Iv (y\S* cp (y\dy
B B

- J S* (p(y\dyIVy(x)yy
B B

- J" Vy (x)dxJS*(p(y)kyiJtk(x,y)dy
B B

- 1 Vy (t) dx[b„(pu(x)- J (p(y)hkrijM(x,y)dy~\.
B B
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The justification, by means of the Zygmund-Calderon theory, is routine,
and (10) follows.

Taken together, Theorems 1 and 2 lead to a very striking result:

Theorem 3. An SMn-valued function veLp(B), p > n, is of the

form v Sf with f — 0 on S (1) ifand only if it satisfies the homogeneous

integral equation Tv — — an v with an cn — bn — 2 (n — 2) (n+ 1) coj
n (n + 2).

Indeed, if v is of this form, Theorem 1 implies cnf — /v, hence

cnv — SIv, and consequently Tv (bn — cn) v by Theorem 2. Conversely,

if Tv — anv then SIv — cnv by (10), and / Iv vanishes on S (1).
The point of Theorem 3 is that the solvability of Sf v (with an extra

condition on/) has been reduced to an integral equation.

Theorem 4. For any veLp(B), p > n, S* p [rv + anv] 0.

Proof Let / be a vector-valued test-function. Theorem 3 applies to
Sf and we obtain by use of Lemma 2

J S* p r v fdx- I p (x) rv O)y dx
B B

-J p (x) Sf(x)ij dxI v(y)hkrmj(y,x)dy
B B

- J p{y)v{y\kdy J
B B

- I jo(y)v(y)hkr Sf(y)hkdy J p(y)v(y)hkSf(y)hkdy
B B

~ a„ J S* pv
B

and hence S* p Tv — an S*v.

Theorem 5. Every v which is in all Lp (B) has a unique representation
in the form v vf + v" where v' and v" are in all Lp (B) while v' is

in the image of SI and v" is in the kernel of S* p.

As a consequence of Theorems 3 and 4 the representation is given by

cnv - SIv + (rv+anv).

It is unique, for if SI Tv + anv, then S* p SIv 0 so that Iv is harmonic
and 0 on S (1), hence identically zero.
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8. AUTOMORPHIC FUNCTIONS AND BELTRAMI DIFFERENTIALS

Although this aspect has not been emphasized it should be clear that
the author is trying to develop a theory which is immediately applicable
to the study of discrete subgroups of G. All the definitions have been chosen

with this in mind, and the relevant theorems for subgroups follow effortlessly.

Let G° be a discrete subgroup of G. A vector-valued function / is

automorphic with respect to G° if A* f /, or more explicitly A' (xff1 f (Ax)

/ (x) for all A e G°. Similarly, an SMn-valued function v will be called

a Beltrami differential for G° if A*v v, or A' (x)-1 v (Ax) A' (x) v (x),
for all A e G°. If v is a Beltrami differential, then A* (pv dx) p v dx
for all A e G°, and p v dx is called an nth order differential. The terminology

is borrowed from the corresponding notions for n 2.

If v is Beltrami and in L00, then it is also in Lp (B) for all p, and
Theorems 2-5 are applicable. They gain added significance from the fact
that Iv is automatically automorphic with respect to G° (it is easy to show
that A*Iv IA*v for all v and A e G). As a consequence SIv is Beltrami,
and by Theorem 2 the same is true of Tv. It follows that Theorems 2-5

may be interpreted as referring to the quotient space G°\B, provided
that we start from the hypothesis veLM. In the conclusion we know,
for instance, that

j 11 SI y 11 pdx j 11 SI v 11 p p0dx < oo
B G°\B

where, by a theorem of Godement,

Poix) Y
AeG°

is known to converge.
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