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A CONSTRUCTION OF GAUSS

by C. W. BARNES

1. INTRODUCTION

Every prime of the form 4 n + 1 can be expressed uniquely as the sum
of two squares. Suppose p = x> + y* where p is a prime of the form
4n + 1. A construction for x and y was given by Legendre [8] in terms of
the continued fraction for \/1—) In [1] we gave a new construction for x and
y, again using the continued fraction for \/1_) A summary of the various
constructions is given in Davenport [5], pages 120-123.

Gauss [6] remarked that if p = 47n + 1, and if « and f are defined by

!

g = 2(2n) .2

n!

p = a® + B%; a particularly simple construction to state. Proofs of the

construction of Gauss were given by Cauchy [4], page 414, and Jacobsthal
[7]; however, neither of them is simple.

In the present note we give a simple proof of the construction of Gauss

based on the method in [1].

(mod p), « = (2r) ! B (mod p), where | a| < g, 18] < gthen

2. CONTINUED FRACTIONS

We continue with the notation in [1]. The results we need can be found
in Perron [9]. We denote the simple continued fraction

a, + 1
(D | a, + 1
a, +

|

Q '
=
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by [a,, ay, ..., a,]. For 0 = m = n we denote the numerator and denominator
of the m™ approximant to [a,, a4, ..., a,] by 4, and B,, respectively.
If p is a prime of the form 4 n + 1, then

(2) \/p = [@os A1y evns Ay Ay o205 A5 200]

in the usual notation for a periodic continued fraction. The symmetric part
of the period does not have a central term. In [1] we proved that p
= x? + y? where

(3) X = meBm—l - AmAm—l
(4) | y = Am — pBn,

A , |
and where —= is the m™ approximant to (2). We also showed that

m

AL + A2
(5) p= -

~ B2+ B2

3. THE QUADRATIC CHARACTER OF

(2n) !
2(n N?*’

’ -1
It is well known that if p is a prime of the form 4 n + 1 then { (%—) 112

= — 1 (mod p); that is, 2n) !* = 1 (mod p). We make use of this in the
(2n) !

LemMMa. If p = 4n + 1 is a prime then
p==an P 2(n 1)

1S a quadratic residue

of p.
(2n) ! .

Proof. We use Euler’s criterion. Thus if we suppose that 20 17 1S a
n!

2n) ! L
2((}1)')2 } 2 = —1(mod p) and thus
n!

{(2n) 1? }52—1 =—{2(nhH? }3—2;1— (mod p). Since (2n) !* = —1 (mod p) and

n 1?~1 = 1 (mod p) we have (—=1)" = —2 2 (mod p), or (=1)"*"! =

(—1)

quadratic nonresidue of p we have {

-

, using the standard result for the quadratic character of 2 with res-
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pect to an odd prime. We finally get (=1 = (=1)** " or (-t =
(2n) !
2(n')?

(—1)" (mod p) which is a contradiction since p is an odd prime. Thus

is a quadratic residue of p.

4. 'THE CONSTRUCTION OF (GAUSS

THEOREM. Suppose p = 4n + 1 is a prime and p = x*> + y® where
x and y are given by (3) and (4). Let f and « denote respectively the numeri-

!

and (2n) ! B modulo p, so that | o | < », -

cally smallest residues of 2 (n 17 2

18] <§.Thenp=oc2+ﬁz.

Proof. By (5) we have, using the remark at the beginning of section 3,
A2 + A2, =0 (modp) and hence —AZ = A._, (modp), so that
{@n) 1} A2 =A%, (modp), and since p is a prime (2n)!4,,
= + A, _, (mod p). Supposing the negative sign holds we have (2n) ! 4,
= —A,A,_, (modp). Therefore we obtain (2n)! A2 — (2n)!pB;,
= (pB,B,,-1—A,A4,,-1) (mod p), so that by (3) and (4) we get

(6) x = (2n)!y(mod p).
If the positive sign holds above it follows that x = — (2r) ! y (mod p)

which is just as good for our present purposes since we are not concerned
with the signs of x and y. We will comment on the signs in section 5.

(2n) ! =1 p—1 P_;_l

2(7’1 1)2} 2 1 (mOd p) SO (21’1) 172 5

By the lemma we have {

il

p—1 p—

1
(n H?~ ! (mod p), and therefore 2n)! 2 =2 2 (mod p)since (n !, p) = 1.

We have x = + (2n) ! y (mod p), and since each of y and — 1 is a quadratic
p—1 p—1 p—1 .
residue of p, x 2 =@2n)! 2 =2 2 (mod p), and in terms of the

b 2
Legendre symbol it follows that (—) = (-); that is, the quadratic charac-
p p

ter of x with respect to p is the same as the quadratic character of 2 with
respect to p.

Suppose 2 is a quadratic residue of p. Then




-1 \ - r—1 g1 pt
272 )" ' (Apd,—1) 2 =(A4,4,-1) 2 =(=x) 2 =x 2 =1
(mod p).

Next, if 2 is a quadratic nonresidue of p we have

p—1 p—1 r—1 p1

22 MNP A, d4,-) 2 = —(=x) 2 =—(x) 2 =—-(-1=1
(mod p), |

and we conclude that 2 (n )* 4,4,,_, is a quadratic residue of p. By (3),
(4), and (6) we have

2n)!ly = — A,4,,_,(mod p),
2 2n) !y = —2(m)* 4,4,,-, (mod p)
and
—2(m)* (2n) 'y = b* (mod p)
for some quadratic residue b%. Therefore
—2mNH* (2n) 'y = — (2n) 1* b* (mod p),
—2mND*y = —(2n) ! b* (mod p),

and finally
@,
= 2 1 b* (mod p).
Hence by (6)
(2 12 5
X = e b (mod p).
p

Let b2 =r (modp), |r| < =, so that (r, p) = 1. Then in terms of «,

[\

B, and r, x = ar (mod p) and y = fr (mod p). There are unique integers
Kand L suchthat x = ar + Kp,y = fr + L p. Then

x* +y* = (@*+p)r* + (K> +L%p* + 2rp(aK +pL),
or
p = @+p)r* +(K*+L?*p* + 2rp(aK +BL).

Suppose that |r| > 1,K # 0, and L # 0. The last equation can be
written



5 —

(7)  pK* + (rap) K + { L*p* + 2rfpL+ («* +p*)r* —p} = 0.

Since (7) is a quadratic in K and we are supposing that the integral root 1S
not zero we have

K|{L*p* + 2rfpL + (> +p*)r* —p} .
There is an integer ¢ such that

L?p? + 2rBpL + (a*> + ¥ r* — p = Kt

and therefore (7) vanishes when

_ L?p* + 2rBpL + (* +5°) 1 — p
t .

K

That 1s

(8) { L?p* + 2rBpL + («* + ¥ r* — p} {#* + 2ropt
+p{L?p* + 2rfpL+ (*+p*)r* —p}} =0
The discriminant of the quadratic function
> + 2rapt + p{ p*L? + 2rfpL + (&> +B*)r* — p}

is4p® {p — (pL+Pr)*} which is not zero. It follows that the second factor
in (8) cannot be zero; otherwise we would have two distinct integral values
for ¢ giving rise to two distinct integers K, whereas K is unique. Hence we
have

(9) p°’L? + 2rfpL + (&> +p)r* —p = 0
and since we are supposing that L # 0, we see that

L|{(@*+B*r* — p} so that for an integer u we have (a*>+p3)r? — p
= L u and (9) vanishes when

_ @+ —p

b

L

u
so that
(10) { (> +B*)r* — pY{u® + 2rfpu + p* { (> +p*)#? — pl} =0.
As before we consider the quadratic function

u® + 2rBpu + p* { (> +p*)r* — p}
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The discriminant is 4 p? (p —«?r?) which cannot vanish, so that, as before,
the first factor in (10) must be zero, and we have

(11) , (*+p)r* —p =0

which is a contradiction since «®> + B? > 1 and we are supposing that
‘ r | > 1.

Therefore we cannot have [r| > 1,K # 0, and L # 0. If | r| = 1 we
see that K = L = O since |x — ar| < p and |y — fr| < p in this case.
If |r| > 1with K =L =0 we would have x = ar, y = fr and hence
(x,y) > 1, whereas x and y are relatively prime. Finally it remains to
consider the possibility of having | F | > 1 with one of K and L zero, the
other nonzero. This if we suppose that | r| > 1, K = 0, L # 0, we obtain
(9) which, as we have seen, leads to a contradiction. On the other hand the
supposition that | r| > 1 with K # 0, L = 0 implies that (11) would hold
with r? > 1.

We conclude that |r| =1, K=0 and L =0. Hence x = + a
y = + pand a? + p* = p.

In [1], Corollary 2, we observed that if p = x> 4+ y? then, in our no-
tation, y is a quadratic residue of p. Collecting our results we have the

COROLLARY. Letp = x? 4+ y? where p is a prime of the form 4 n + 1

2
with x and y given by (3) and (4). Then (J—C) = (-)and (X) = 1.
p p p

5. CONCLUSION

We saw that x = +«, y = + . When p = 13 we have y = —3,
f = —3;whenp =29,y = =5, = 5,andwhenp =41,y =5, = 5.
Hence the sign of y, determined by the approximants to a continued fraction
depends on the integer m, the number of terms in the finite segment of (2)
which is used, can agree with that of f§ or be opposite that of . The same
applies to x and «. In [1], Theorem 1, we gave a construction which always
gives positive values for x and y. Other various constructions, as we have
seen, do not have this property.

(2n) !

(n 1)*

Finally we comment on the numbers which we denote by a, for

n=123, ...



S

The members of the sequence { a,} are related to the numbers b, 4
(2n) !
(D n
variety of applications. Birkhoff [3] pointed out that b, is an integer for
every positive integer n, and noted the recurrence relation b, = > 72} 1bb,_;;
a relation which was also obtained by Wedderburn [10].

The results of this note depend on the fact that a, is an integer, at least
when p = 4n + 1 is a prime. Although it is known that a, is an integer
for every positive integer n, we can see that this also follows readily from [3].
For we have 2a, = (n+1) b, 1. If n is even, it follows that b, . is even

n=0,1,2, ..., which, as mentioned by Becker [2], have a

odd

since (2, n+1) = 1. Therefore a,

e n+ 1 : : :
then 2 ] (n+1) and in this case also a, = —5 b, 1s an integer. A list of

values for a, can be obtained from the second column of a table in [2],
n+1

page 699, headed N,, by multiplying the (74 1)st member by
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