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numbers o such that there are infinitely many polynomials P with rational
integer coefficients of degree < d and with

0<|P()|<HP) .

By Corollary 6D it is clear that w, = d unless « is algebraic of degree < d.
Furthermore if « is algebraic of degree n, then one can show using the norm
of P(«) that w; £ n — 1(d=1, 2, ...). Thus Mahler could characterize the
algebraic numbers o by the property that w, (x) (d=1, 2, ...) remains
bounded.

Koksma (1939) defines w; = wy () as the supremum of the numbers @
such that there are infinitely many algebraic numbers f of degree < d with

o~ BI<HEB) ™.

It is easy to see that w, < w, and Wirsing (1961) showed that w,; = 1 (w,;+1)
if « is transcendental. Hence the algebraic numbers can also be characterized
by the property that o, (x) (d=1, 2,...) is bounded. We have w, < w,
< n — 1 if « is algebraic of degree n, and the results of the last section
show that w; = dif d < n — 1. Since w; and w, increase with d, we have
for algebraic « of degree n,

o — o — d if d<n-—-1
@ T T n—11if d=n.

Thus the exponent in Theorem 7H is best possible precisely if d < n.

Another characterization of algebraic numbers by approximation
properties was given by Gelfond (1952, §III.4, Lemma VII) and refined by
Lang (1965a) and Tijdeman (1971, Lemma 6). This lemma was slightly
improved by D. Brownawell (unpublished).

8. TooLs FROM THE GEOMETRY OF NUMBERS

8.1. To prove the theorems enunciated in the last section one needs
certain results from the Geometry of Numbers. This field was first investi-
gated under this name by Minkowski (1896). Other books on the Geometry
of Numbers are Cassels (1959) and Lekkerkerker (1969).

Let K be a symmetric ') convex set in Euclidean E”. For convenience
let us assume that K is compact and has a non-empty interior. For A > 0
let 2K be the set consisting of the points Ax with x € K. Minkowski defines

1y le. if x €K, then also — x € K.
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the first minimum A, as the least positive value of A such that 1K contains
an integer point x # 0. More generally, for 1 < j < n, the j-th minimum 4;
is the least positive value of A such that AK contains j linearly independent
integer points. It is clear that 0 < 4, < 1, < ... £ /1, < o0, and that there
are linearly independent integer points xg, ..., X, with

(8.1) x;e ;K (j=1,...,n).
Minkowski’s Theorem 6H is easily seen to be equivalent with the inequality
AV(K) £2".

Later Minkowski could refine this to the much stronger

THEOREM 8A (Minkowski’s Theorem on Successive Minima).
(8.2) 2"t < A4 A V(K) £ 2.

Like Theorem 6H this result can be generalized to arbitrary lattices A4,
and then (8.2) is to be replaced by

(8.3) d(A) 2" < Ay . A V(K) < d(A)2".

Of particular interest to us will be the situation when L, (x), ..., L, (X)
are linearly independent linear forms and R, ..., R, are positive numbers,
and when K is the parallelepiped defined by ')

(8.4) | L,(x)| < R, (i=1,..,n).

In the special case when R, ... R, = 1 and when idet (Ly, ...,L,,)I = A,
say, we have V' (K) = 2"/4, whence 4/n! < A, ... 4, £ A. In particular we

have
(8.5) 1< ... 4, <1,

where the notation 4 € B means that A < ¢B with ¢ = ¢ (n, 4). Later on
the notation 4 > < B will mean that both 4 € B and B € A.

8.2. We shall need three so-called “ transference theorems ” which
relate the successive minima of certain parallelepipeds to the successive
minima of other parallelepipeds.

1) The case when R; = ... = R, = 1 is just as general, but the factors Ry, ..., R,
will be convenient for later applications.
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THeoREM 8B (¢ Davenport’s Lemma ” (Davenport, 1937)). Let 4y, ..., 4,
be the successive minima of the parallelepiped IT given by (8.4). Let pq, ..., Py
be numbers with

Py =Py 2 ...2p, >0 and pidy S .0 Z P

Then there is a permutation (¢4, t5, ..., t,) of (1, 2, ..., n) such that the successive
minima 1y, ..., A, of the new parallelepiped II' given by

|Li(x)| < Rip;;" (i=1,...,n)
satisfy
(8.6) ;> < pik (j=1,...,n).

Moreover, let Xy, ..., X, be linearly independent integer points with (8.1),
i.e. with Ri* | L; (x;) | £ 4; (i, j=1, ..., n). Let T be the subspace consisting
of 0, and for 1 < j < n let T; be the subspace spanned by X, ..., X;. Then
every integer point X outside the subspace T;_{ where 1 < j < n satisfies

max (Rl_lpjl I Ll (X) |> vony R;lpjn l Ln(x) |) > ij} .

Note that the ratios of p,44, ..., p,4, are equal to or smaller than the
ratios of 1., ..., 4,, so that the successive minima have been “ pushed closer
together ”. Usually in transference theorems only inequalities such as (8.6)
are given. But the last statement of the theorem will also be needed.

8.3. Every linear form L (x) is of the type L(x) = ax where a is
a fixed vector and where ax denotes the inner product. Now suppose that
L (x),..,L,(x) are linearly independent linear forms. Then if L, (x)

= a)x (i=1, ..., n), the vectors a4, ..., a, are linearly independent. There are
. * .
unique vectors a:, ..., 4, With
aiaj = 511 == .
0 otherwise .

The linear forms L:, ..., L. given by L: (x) = a’:x (i=1, ..., n) are called
dual to Ly, ..., L,; they satisfy the identity L,(x) L] (y) + ... + L, (x) L;, (y)
= xy. The dual linear forms are again linearly independent, and they have
determinant 1 if Ly, ..., L, have determinant 1. The parallelepiped

o*: |[Lix)| SR (i=1,..,n)
is called the dual of the parallelepiped IT defined by (8.4).
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Remark. One can define the polar set of any convex symmetric set,
and the dual of a parallelepiped is closely related to its polar set. But the
polar set of a parallelepiped has the disadvantage that it need not be a
parallelepiped.

TueoReM 8C (Mahler 1939).  Let 2y, ..., A, and 1, ..., A, be the successive
minima of a parallelepiped Il and of its dual I1*, respectively. Then

}“j > < j'n_-l-ll—j (]:13 9n)

Moreover, if x,, ..., X, are linearly independent points with (8.1), i.e. with
|L;(x;)| £ 4R, (i, j=1, ...,n), and if X,,..,x, are defined by xX;
= 0;; (i, /=1, ..., n), then

(87) IL*i(X:-i-l—j> | < /’{jRL—l (la.]:l: ’n) :

8.4. Suppose 1 < p < nand put [ = (}). Vectors in E" will be denoted
as usual by a, b, ..., and vectors in E' will be denoted by A, B, ... . By

a, A ... Aa,

we shall denote the exterior product of the vectors a,, ..., a,, l.e. the vector
in E' whose coordinates are the (p x p)-determinants formed from the matrix
with rows a,, ..., a,, and arranged in lexicographic order. For example if

n = 4andp = 2, thenl = 6; and Ifa = (Ocla Xy, X3, OC4-)>b = (/513 ﬁZ: ﬂ3’ ﬁ4)7
Oy Oy

then
/))3 [))4

“":(Mz B Bs|” | BiBal’ |B2Bs|” | BrBe
with 1 = i,

Let C(n, p) be the set of all p-tuples of integers iy, ..., 1
< ... < i, £ n. There are [ such p-tuples.

Now suppose that L, (x) = a;X, ..., L, (x) = a,x are independent linear
forms. For o = { iy, ..., 7, } in C(n, p), let A, be the vector

> > 2 3 3

p

A, =a, N ...Aa .
o i1 ip

Let L7 be the linear form in E' defined by L") (X) = A, X. The / linear
forms L with ¢ € C (n, p) are again linearly independent, and they have
determinant 1 if L, ..., L, have determinant 1. Let R,, ..., R, be positive
constants with R, R, ... R, = 1 and define R, by R, = II R,. The inequal-

ities -
ILPX)| <R, (oeC(n,p)
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define a parallelepiped IT‘?’ in E* which we shall call the p-th pseudocompound
of the parallelepiped II defined by (8.4).

Remarks. Mahler (1955) defined the p-th compound of any symmetric
convex set, and the pseudocompound of a parallelepiped is closely related
to its compound. But the compound of a parallelepiped is not necessarily a
parallelepiped. Except for the notation, the (n—1)-st pseudocompound is
the same as the dual of a parallelepiped, and hence the results of the last
subsection may be interpreted as special cases of the results of the present
subsection.

THEOREM 8D (Mahler 1955).  Let Ay, ..., A, and vy, ..., v, be the successive
minima of a parallelepiped II and of its p-th pseudocompound IT P, respect-
ively. For o € C(n, p) put A, = II A; and order the elements of C (n, p) as

1eg

O1s ey 0y SUCh that A, < ... < Ay Then
vj></16j (]=1,,l)

Moreover, if xy, ..., x, are linearly independent integer points with (8.1),
i.e. with lLi (XJ,-)I = LR (G j=1,..,n), and if for © = {j,..,j,} in
C(n,p) we put X, = X;; A ... A X, then

L (X) | < AR,  (o,7eC(n,p)).

9. OUTLINE OF THE PROOF OF THE THEOREMS ON SIMULTANEOUS
APPROXIMATION TO ALGEBRAIC NUMBERS

9.1. Let us sez what happens if we try to generalize Roth’s proof to
prove, say, Corollary 7B. In Roth’s proof we constructed a polynomial
P (xy, ..., x,,) in m variables x, ..., x,, which had a zero of high order at
(a, ..., o). Hence the natural thing to try would be

(a) to construct a polynomial P (Xq(, .., X115 eel Xpgs oons X)) In ml
variables of total degree < r, in each block of variables Xpts -nes Xpi
(h =1, ..., m) with a zero of high order at («, ..., ot,; ...: Oy, ..., ;). Then

(b) one would have to show that if each of m given rational [-tuples

Ph: Py i
<f, e f) (h=1, ..., m) satisfies (7.2), then P also has a zero of high
h h

order at
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