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A NAIVELY CONSTRUCTIVE APPROACH TO

BOUNDEDNESS PRINCIPLES, WITH APPLICATIONS
TO HARMONIC ANALYSIS

by R. E. Edwards and J. F. Price

General Introduction

This paper is partly pedagogical and expository. Thus Part 1 (§§ 1-4)

presents a naively constructive approach to boundedness principles.
Although this construction leads to results differing but slightly from the

standard versions, we feel that this approach (which can be followed with
no overt reference to category, barrelled spaces,, and so on) offers some

pedagogical and expository advantages. We emphasise that the level of
constructivity is naive and not fundamental.

The remainder of the paper consists of applications of the constructive

procedure. In Part 2 (§§ 5, 6) the applications yield improvements of
recent results due to Price and to Gaudry concerning multipliers. In
Part 3 (§§7-10) the applications are to convergence and divergence of
Fourier series of continuous functions on compact Abelian groups.
These results (which may be known to the afficionados but which, as far
as we know, have not been published hitherto) characterise those compact
Abelian groups having the property that every continuous function has a

convergent Fourier series; and, in the remaining cases, applies the general
method of Part 1 to construct continuous functions with divergent Fourier
series.

Part 1: Boundedness principles

§ 1. Introduction and preliminaries

Let E denote a locally convex space and P a set of bounded gauges
on E; that is, each feP is a function with domain E and range a subset
of [0, go) such that

/ (x+j) ^ f(x)+ f(y (x, y e E),

/(ax) œ a/(x) (xeE, a > 0),
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(so that / (0) 0) and / is bounded on every bounded subset of E. In
all cases, if / is continuous, then it is bounded; the converse is true if E
is bornological ([2], p. 477). Note also that any seminorm is a positive
gauge function; so too are Re+u sup (Re u, 0) and Im+u sup (7m u, 0),
whenever u is a real-linear functional on E.

The boundedness principles discussed in this paper are those which
assert that, granted suitable conditions on E, if the upper envelope /* of
P is finite valued, then /* (which is evidently a gauge) is also bounded
(cf. [2], Ch. 7).

It is customary to prove this type of boundedness principle (with
continuous seminorms in place of bounded gauges) by appeal to assumed

properties of E (for example, that it be second category, or barrelled, or
sequentially complete and infrabarrelled) of a sort which renders the proof
almost effortless.

One indirect use of boundedness principles aims at establishing the
existence of misbehaviour, leaving aside any attempt to locate any specific
instance thereof (cf. Banach's famous "principe de condensation des

singularités"). We are here referring to situations in which a sequence
(xn) in E is known which satisfies

(xn) is bounded (or convergent-to-zero) in E (1.1)
and

sup„siV/*(^„) 00, (1.2)

and an appeal to a boundedness principle is then made to infer the existence

of one or more elements x of E satisfying

f*(x) oo. (1.3)

[The argument is simply that the negation of (1.3) implies, via a boundedness

principle, that /* is bounded (or continuous), and that this involves a

contradiction of the conjunction of (1.1) and (1.2).]
The alternative to be advocated in this paper amounts to seeking a

constructive procedure (involving no appeal to boundedness principles)
leading from (1.1) and (1.2) to specified elements x satisfying (1.3). To
do this seems all the more„natural when, as is often the case, a fair amount
of effort has already been expended in constructing a sequence (xn) satisfying
(1.1) and (1.2). Moreover, granted such a procedure, general boundedness

principles can be derived quite easily (see §§ 3 and 4). This incidental

approach to boundedness principles appears to be at least as successful

as the customary one.
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A construction of the desired type (a special case of which was

subsequently located in the Appendix to [6]; see also [12], Solution 20 in [13],

and [16]) is easily describable if E is complete and first countable (see §2

below). The procedure is then extendible to sequentially complete spaces E

(see § 3), and from this follows at once the corresponding version of the

boundedness principle applying to bounded gauges (see § 4). Continuity

of/* follows under appropriate additional conditions.

Since we shall be working with gauge functions which are assumed to

be merely bounded (rather than continuous), the usual standard passage

from a non-Hausdorff space to its Hausdorff quotient is not generally

available. For this reason, it seems worthwhile to formulate the results

without assuming that E is Hausdorff. (If E is bornological—for example,

first countable ([2], 6.1.1 and 7.3.2)—there is no problem.)
We shall write N for {1, 2, ...}; and the sequence (un)neN often be

written briefly as (w„).

If E is any locally convex space and (xn) a sequence of elements of E,

the series xn or Y,n= i xn is said to normally summable in E if
Zneiv a(xn) < 00 f°r every continuous seminorm a on E. The series

JlneN xn 1s said to be convergent in E and to have x eE as a sum, written

* ~ Xhen xn,if
lim^œ x0

for every continuous seminorm cr on E; the set of sums of a given convergent
series form precisely one equivalence class modulo {0}~. A series which
is both normally summable and convergent in E is said to be normally
convergent in E, or to converge normally in E. If E is sequentially complete,

any series which is normally summable in E is normally convergent in E.

Two comments regarding the hypotheses imposed upon E are worth
making at the outset. In the first place, we have concentrated on the

locally convex case, with only Remarks 2.3 (3), 3.3(3) and 4.2 (2) referring
to the alternative, the reason being that this is by far the most important
case for applications. Accordingly, throughout §§ 2-4, E will (except
where the contrary is explicitly indicated) be assumed to be locally convex.

In the second place, it would suffice for subsequent developments to
have Theorem 2.1 established for Banach spaces (and even merely for the
familiar Banach space /1 N)). However, only limited economy is gained
by dealing with this special case alone and it seems best to retain a degree
of generality which allows a more direct and explicit approach in the case
of (say) Fréchet spaces.
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Our final preliminary comment refers to boundedness of sets. If E is

any topological linear space, a subset A of E will be said to be bounded in
E if and only if to every neighbourhood U of 0 in E corresponds a number

r r (A, U) > 0 such that rA {rx : x e A} is contained in U. If E is

first countable and d is a semimetric on E defining its topology, boundedness
in the above sense of a set A ç E must not be confused with metric boundedness

[i.e., with the condition sup {d(x, y) : x e A, y e A} < oo]. It is in
order to minimise the possibility of this confusion that we use the term
"first countable" (an abbreviation for "satisfying the first axiom of count-
ability") rather than "semimetrizable".

§ 2. The construction when E is complete andfirst countable.

In this section, where E will always denote a complete first countable

(locally convex) space and P a set of bounded gauges on E, we will describe

the basic construction. Let /* denote the upper envelope of P.

If the sequence (x„) figuring in (1.1) and (1.2) is such that /*(*„) oo

for some ne N, no constructional problem remains. So we shall henceforth

assume the contrary.

2.1 Theorem. Suppose that ß and a are real numbers satisfying
ß > a > 0 and that sequences (xn) in £, (/n) in P are such that:

Then infinite sequences nx < n2 < °f positive integers may be constructed

such that, for every sequence (yn) of real numbers satisfying

/*(x„) < oo for every ne N, (2.1)

lim»->«> 0,

sup neNfn(xn) oo.

(2.2)

(2.3)

a ^ yn ^ ß for every ne N, (2.4)

the series

(2.5)

is normally convergent in E, and

f*(x) ^ \imv_ fn(x) co (2.6)

for each sum x of (2.5).
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I 2.2 Construction and proof. Let (<jv) be an increasing sequence of
continuous seminorms on E which define its topology. By initial passage

to suitable subsequences, we may and will assume that (2.2) and (2.3) hold

in the stronger form:

< 00> t2-2')

lim»->«,/,(*») °o- (2-3')

[To do this, define nve N for v e N by induction in such a way that

ni < n2 < >>•,

av (xn g 2"v and fn (xn > v (2.7)
V V V

for all v g N. This is possible since by (2.2) we can determine n\e N such

that CiCO ^ 2_1 if n ^ n°u and then, by (2.3) and the fact that each

f g P is finite valued, there exists n ^ n\ such that fn(xn) > 1 ; denote the

smallest such n ^ n\ by n1. When n1 < n2 < ttj have been determined

so that (2.7) holds for 1 ^ v ^ y, find (see (2.2)) an integer n°j+1 > rij such

that Gj + 1(x„) ^2"J~1 if n ^ n°j + 1. Then (2.3) shows that there exists

an integer n ^ n°j+1 such that fn(xn) > j + 1 ; put fij +1 for the smallest
such integer n ^ nj + 1.]

So now we assume (2.1), (2.2') and (2.3') and define one sequence

ni < n2 < of the required type in the following manner. (Other
possibilities are discussed in Remark 2.3 (2) below.) Let nx be the smallest

n g N such that

f„(xn) ^ ~1
;

n1 may be determined by (2.3'). Suppose that v is a positive integer and
that positive integers n1 < n2 < < nv have been defined so that

fn. CO ^ 2~v whenever 1 g j < v,

fnv(\)^ß^"1 El â+ ß<X" 1
V.

[An empty sum is defined to be 0; then the conditions are all satisfied when
v 1.] Then (2.2'), (2.3') and the fact that each feP is finite-valued
imply that there exists an integer n >which satisfies

fn.CO2~v_1 whenever 1 < v + 1,

fn CO ßrJ- E lg J < V + 1 fn (Xn) + * (v+1);

i let Hv T be the smallest such n. We then have for each v e AT-

J
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Tly < ïly +1?

A. (xn ^ 2~v whenever 1 ^ j < v, (2.8)

f„v(x„)è ßot~1 Xi âj<vf»+ (2.9)

By (2.2') and (2.4), the sum (2.5) is normally convergent in E. Let x
be any sum of this series. To establish (2.6), write

x wv + yv + vv,

where uv 7/ xn. and is a sum °f the series Ij>v yf xnr Thus

yv xn^ x — uv — vv, and so

a/ny (*„„) ^ fnv (Vv \)S fBy (*) + /„v (Wv) + fnv (®v)- (2.10)

Now, by (2.4),

f„v(uv) üßY^J<^fnv(\y, (2.11)

and, by (2.4), (2.8) and the fact that each fn is bounded, hence continuous,

f%(»v)g ß V.>v/„r (X„.) <£ j8 £,>v 2~J /?2~\ (2.12)

By (2.10), (2.11) and (2.12)

a/„v (-O ^ /„V (*) + ß Sigy<v/.v (*».) + /12~v,

and so, by (2.9),

ß Zisj<v/iv (4) + ßvg 4 (x) + ß Eigy<v/„v (4) + J92-'.

Hence

f„v(x)^ß(v-2-*),
which proves (2.6) and the construction is complete.

2.3 Remarks. (1) If it is known that

D*= {xeE : f*(x) < 00}

is dense in E, and if (xn) and (/„) satisfy (2.2) and (2.3), we can approximate
each xn so closely by an element yn of D that (2.2) and (2.3) are left intact

on replacing xn by yn. The hypotheses (2.1)—(2.3) are satisfied when xn

is everywhere replaced by yn.
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(2) If it be supposed that (2.2') holds and that sequences (A„), (B„r)
and (C„) are known such that lim Bn r 0 for every lim C„ co,

n —* oo n~* co

f*(x i) + ••• +/*CO A»

max fj (xn) g Bn>r,
1 âjâr

fn On) t Cn9

then it is easy to specify a function (j)aiß : N X N -> N in terms of (An),

(Bn r) and (Cn) such that (2.4) and (2.5) yield (2.6) for every sequence (nv)

such that Cn g ßa~x and nv + 1 ^ 4><x,p(nv? v) f°r every veiV.

(3) Local convexity of E is not essential in 2.1 and 2.2. In the

contrary case one may proceed by introducing an invariant semimetric

(x, y) |-> I x—y I defining the topology of E, much as in [2], proof of
Theorem 6.1.1, or [15], Chapitre I, §3, No. 1. Normal summabihty in
E of a series Y,neNzn of elements of E may then be taken to mean the

convergence of Y,neN \ zn\- In place of (2.2') arrange that

EneW \ßX„\ < CO,

which will ensure the normal convergence in E of (2.5) whenever (2.4)
holds (E being assumed to be complete). The rest of the proof and
construction proceeds as before.

This method could, of course, be used when E is locally convex (and
first countable and complete) ; we have not done so because the seminorms

an are usually more manageable in practice.

(4) A useful variant of 2.1 may be stated in the following terms.

2.4 Suppose given real numbers ß > a > 0 and sequences (xn) in E
and (fn) in P such that

/*(^«) < 00 f°r every ne N, (2.1)

{xn :ne N} is bounded in E, (2.2")

SIiPneNÂix») *= 00. (2.3)

Then one can construct a sequence (2„) of real numbers with the following
properties :

^^0,E„s*A„<co; (2.13)
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for every sequence (y„) satisfying (2.4) the series

Z»eNynKx„ (2.14)

is normally convergent in E; and

/*(*) oo (2.15)

for every sum x of the series (2.14).
In the sequel we shall denote by ll(N) the set of sequences (Xn) satisfying

(2.13).

Proof. Define by recurrence a strictly increasing sequence (kn) of
positive integers, taking ki to the first k e N such that fk(xk) > l3 and

kn + 1 to be the first ke N such that k > kn and fk(xk) > (/z+1)3. Then

apply 2.1 and 2.2 with xn and fn replaced by n~2 xk and fk respectively.
n n

This furnishes at least one strictly increasing sequence (nv) of positive
integers such that (2.4) entails that the series

ZveN Tv«v~2 Xk (2.16)
V

is normally convergent in E and that (2.15) holds for every sum x of (2.16).

It thus suffices to define Xn to be n~2 when n kn for some v e N and to

be zero for all other ne N; it is obvious that (2.13) is then satisfied.

§ 3. The construction when E is sequentially complete

3.1 In this section we assume merely that E is a locally convex space
which is sequentially complete. Again P will denote a set of bounded

gauges on E, and /* will denote its upper envelope. Suppose given

sequences (xn) in E and (/„) inP such that (2.1), (2.2") and (2.3) are satisfied.

Then the conclusion of 2.4 remains valid.

Proof. Consider the continuous linear map T of ll{N) into E defined

by
TZ Y**NZnXn.

Evidently, xn Tan for suitably chosen ocn such that {a„ : ne N} is a bounded
subset of Z1^). It therefore suffices to apply 2.4 with E replaced by

l\N), xn by a„, and /„ by /„ o T.

The following corollary will find application in §§ 5 and 6 below.
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3.2 Corollary. Suppose that H is a Hausdorff topological linear

space and that {EßieI is a family of linear subspaces of H such that

(i) Et is a Banach space relative to a norm || • ||f and the injection

Et -> H is continuous.

Let ê n {Ei : i e 1} be topologised as a topological linear space by

taking a base at 0 in ê formed of the sets {xei : sup^j jj x ||f < s},
where s ranges over positive numbers and J over finite subsets of I. Let

E be a sequentially closed linear subspace of ê and (fn)neN a sequence of
bounded gauges on E, and write /* for the upper envelope of (fn)neN.

Suppose finally that (.xn)neN is a sequence of elements of E such that

(ii) f*(xn) < oo for every ne N;

(iii) sup„eA, j] .v„ |]; < co for every i e 7;

(iv) sup nENf„(xn)oo.

The conclusion is that, given real numbers ß > a > 0, a sequence
(Âi)neiv G /+( A0 may be constructed such that, for every sequence (y„)neN

satisfying (2.4), the series (2.14) is normally convergent in E to a (unique)
sum x satisfying (2.15).

Proof. In view of 3.1, it will suffice to verify that ê (which is obviously
locally convex) is sequentially complete and Hausdorff. The latter property
is evidently present. As to the former, suppose that (y„)neN is a Cauchy
sequence in S. Then, by definition of the topology on <f, (y„) is Cauchy
in Ei for every z g I. Hence, by the first clause of (i), (yn) is convergent in
Ei to a limit y(i) e Ev The second clause of (i), plus the fact that H is

Hausdorff, entails that there exists y e H such that y(i) y for every i e I.
Accordingly, yei; and, since lim,^^ y(0 — y in Ei for every i e /,
lim^^^L, y in S. This shows that S is sequentially complete.

3.3 Remarks. (1) If the elements of P are seminorms (rather than
merely gauges), we may everywhere permit (yn) to be a sequence taking
values in the (real or complex) scalar field of E, replacing (2.4) by the
condition

a ^ I In \ ß f°r every n e N. (2.4')

This is easily seen by reverting to 2.2 and using the fact that now
fn(yx) I y I/„(*) for every xeE, every ne N and every scalar y. No
changes are needed in the choice of the nv.
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(2) Local convexity is needed in the proof of 3.1 since otherwise (2.2"), f
i.e., the boundedness of S — {xn : n e N} in E, does not guarantee the ]

existence of any continuous or bounded linear map T from lx(N) into E *

such that S is contained in the T-image of a bounded subset of l1(N). '

For it is plain that such a T can exist, only if the convex envelope S' of S %

is bounded in E. On the other hand, it is not difficult to verify that any
1

first countable linear topological space E, in which the convex envelope
of every bounded set (or of the range of every sequence converging to zero
in E is bounded, is necessarily locally convex.

(3) Naturally, local convexity of E may be dropped from the hypotheses
of 3.1, if one assumes in place of (2.2") that the convex envelope of
{xn : n e TV} is a bounded subset of E.

§ 4. Deduction of boundedness principles

4.1 Theorem. Suppose that E is a sequentially complete locally convex
space and that P is a set of bounded gauges on E. If f*(x) — sup {/ (x) :

feP} < oo for every xeE, then /* is bounded.

Proof. Suppose the contrary, that is, that/*(x) < oo for every xeE
and yet there exists a bounded subset B of E on which /* is unbounded.
Then we can choose xne B, fne P such that f„(xn) > n for every ne N.
Then (2.1), (2.2") and (2.3) are satisfied; hence, by 3.1, there exists xeE
such that /*(x) oo, which is the required contradiction.

4.2 Remarks. (1) If we assume also that E is infrabarrelled and that
each feP is continuous, it follows that/* is continuous, that is, that P is

equicontinuous if it is pointwise bounded; cf. [2], pp. 47, 480-81. For, if
V denotes the interval [—e, e], where e > 0, then

/*- i(F) H {f~\:feP}
is closed, convex and balanced and absorbs bounded sets in E. Since E
is infrabarrelled,/*~1(F) is therefore a neighbourhood of the origin in E
and thus /* is continuous^ as asserted.

(2) If one drops the hypothesis that E be locally convex (the remaining
assumptions of Theorem 4.1 remaining intact), the substance of
Remark 3.3 (3) shows that one may still conclude that f*(B) is bounded !'

whenever B is a subset of E whose convex envelope in E is bounded.
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However, even assuming that E is first countable and complete, one

can in general no longer conclude that/* is bounded (i.e., that f*(A) is

bounded for every bounded subset A of E) whenever it is finite-valued.

Counter-examples are easily given in the case of the familiar spaces

E F (N) with p e (0, 1).

Part 2: Applications to Multipliers

§ 5. (p, q)-multipliers which are not measures

5.1 Introduction. In this section and the following one we will use

the substance of § 3 to prove several apparently new properties of (p, q)-

multipliers. Let G be a locally compact group [all topological groups will
be assumed to be Hausdorff and, in this section, will be multiplicatively
written with identity e]. Denote by LP(G), where 1 S P S °o? the usual
Lebesgue space formed with a fixed left Haar measure XG on G; and by
Cc(G) the space of continuous complex-valued functions on G with
compact supports.

For öeG, define the left translation operator za and the right translation
operator pa by

^ag(x) gia'1 x) and

j respectively. A linear operator T from Cc(G) into Lq(G) is said to be a
I (left) (p, q)-multiplier if and only if

(i) T is continuous from Cc(G), equipped with the norm induced by
f LP(G), into L\G); and

j (ii) T commutes with left translations, that is Tza %aT for all a eG.
i

i A right (jp, q)-multiplier is defined in a similar manner with (ii) replaced
by

j (ii') Tpa paT for all a eG.

j Let Lqp(G) denote the Banach space of (p, ^-multipliers equipped with the
j customary norm, denoted by || • ||M, of continuous linear operators from

a subspace of LP{G) into Lq{G). That is, for each TeLqp(G), || T\\Ptq is
the smallest real number K satisfying
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for all g e Cc(G). [When p ^ oo it is more usual to define L^(G) as the

space of unique continuous extensions to LP(G) of the (p, ^-multipliers.]
As an example, whenever k e Cc(G), the operator Tk, defined by

Tk :g |-> g * k

for all geCc(G), is (a) a (p, ^-multiplier for all (p, q) satisfying
1 ^ P S q S °o; and (b) a (p, ^-multiplier for all p, qe [1, oo] provided
G is compact. [When G is noncompact it is known that Lqp {0} whenever

p > q—see [1], § 3.4.3. We also remark that, unless a more explicit
reference is given, all the properties of the convolution operator between

functions and functions and between functions and measures used in the

sequel may be found in [2], §4.19.] For convenience, we will sometimes

write || k || p q
in place of || Tk \ \Ptq. Use will be made of the fact that

|| * ||i,s || Tk ||i,s =11 k ||5,

II* Ik* llnlkco WA~1IS'k\U

where A denotes the modular function of G, as defined in [7], (15.11) and

(15.15) and s' is defined by l/s+l/s' — 1; cf. [1], Corollary 2.6.2 (i) and

Theorem 1.4.

5.2 Definitions. If TeLqp(G), we say that:

(i) supp T Ç W, where IF is a closed subset of G, if and only if
supp Tg ç (supp g). W for every g e Cc(G).

(ii) T is a measure ji if and only if Tg — g * p for every g g Cc(G).

[When k g Cc(G), supp Tk ç IF if and only if supp k ç IF; and in any
case Tk is the measure ft kXG.\

5.3 Adjoint multipliers. Let T g Lqp(G) and define an adjoint T' of T
by

g * T' h (e) Tg * h (e) (5.2)

for all g, h g Cc{G). Since Tg * h(e) \GTg hdXG, where h{x) h(x _ x),

it is readily shown that T commutes with right translations and that it
may be extended to an operator from (.Lq')w into (Lp)v. We also infer
from (5.2) that

g * T' h Tg * h (5.3)
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everywhere on G, since ia{Tg * h) ta(7g) * h J1 (rag) * h. It is plain

from (5.3) that T is a measure p if and only if T' is of the form h |-> p * /*.

If we also assume that G is unimodular, so that the U norms of g and g

are identical, two applications of the converse to Holder's inequality will
show that

llr'lL,, \\T\La9 (5.4)
14 >P

where l/p'+l/p 1; thus T is a right (^%/^O-mnltiplier. Moreover

(cf. [1], Corollary 2.6.2 (ii))

^||llS ||fc|k.= 11*11«- (5-5)

5.4 Rudin-Shapiro sequences. If G is a nonvoid open subset of G,

by a U-supported Rudin-Shapiro sequence (briefly: a U-RS-sequence) on G

we shall mean a sequence (hn)neN of elements of Cc(G) with the following
properties :

supp hn ç U,

inf || hn ||2 > 0, sup || A„ !|oo < oo,

|| h„ ||2j2 0.

(5.6)

We do not know conditions on G which are necessary and sufficient for
there to exist G-RS-sequences on G for a given U. When G is nondiscrete

Abelian, G-RS-sequences may be constructed on G in a fairly explicit
manner for every non-void open subset G of G (see Appendix A.2 below).
Sufficient conditions applying in the non-Abelian case are given in Appendix

A.3.

If (hn) is a G-RS-sequence, we may construct positive integers
< m2 < so that

|| h 1(2,2 ^ n~1

Let kn nhm It then follows from (5.6) that
n

||*„||i^Ai, (5.7)

II K ||s ^ A1,sn (1 co), (5.8)

II K 1(2,2 g 2~", (5.9)

where A and B are positive and independent of n.

L'Enseienement mathém.. t. XVI. fasc. 3-4. t s
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5.5 When G is infinite compact Abelian, Theorem 4.15 of [1] shows that
there exists an operator belonging to Lqp(G) for every p e (1, oo] and every
qe [1, oo) and which is not a measure. [Given an infinite Sidon subset

of r, operators with this property are immediately constructible whether
G is Abelian or not; cf. [7], (37.22).] When G is noncompact locally
compact Abelian or infinite compact, it has recently been shown that there
exists an operator belonging to Lpp(G) for every p e (1, oo) which is not a

bounded measure. [See [4] and [9]; the proof contained in [9] is

constructive to some extent. See also [17].] We aim to show in 5.7 below that,
if U is a relatively compact open subset of G, and if we are able to construct
a G-RS-sequence on G, then we can construct an operator T e f) {Lqp(G) :

1 < p -^q ^ oo} such that supp T ç U and T is not a measure. (If G is

also unimodular, an analogous result holds for right (p, ^-multipliers.)
The inequality p > 1, along with the inequality q < oo if G is

unimodular, is essential for the existence of such a T since every member of
L?(G) is of the form g |-> g * fi, where fi is a bounded measure if q 1

or pe Lq(G) if 1 < q ^ oo (see [1], Corollary 2.6.2), and since Lq(G) L^(G)
if G is unimodular (see (5.4) above). When G is non-compact, the inequality

p tk q is also essential since in this case Lqp{G) {0} whenever p > q (see [1],
§ 3.4.3). Concerning non-unimodular groups, see 5.8 below.

5.6 Lemma. Let k be a continuous function supported by a

relatively compact open subset U of G, and let c c(U) > 0 denote

inf{d(x)_1 :xeG}, where A is the modular function for G. Then
functions u, v e Cc(G) with 11 w * v [ |

œ ^ 1 may be constructed so that

\u*Tkv(e)\^2) y k l^.

Proof. Let {<5a} be an approximate identity on G comprised of non-
negative functions with compact supports and which each satisfy

v V V
jG ôadXG 1. Since k * da tends to k in L (G), we may select v ôa

so that

II (V*£)v ||t «= || k*V111 ^ ^ II fc||i. (5.10)

Define a compactly supported function g on G by g(x) v * k(x)/
I v * k{x) I if v * k(x) 0, and g(x) 0 otherwise. Let wa <5a * g
Then wa e Cc(G) and, since ua (v * £)v tends to g (v * &)v in Ll(G), we

may select a so that
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I JG Ma(v * kYdXGI> I J g (v * fc)v ^G|. (5.11)

Putting uua,wethen have from (5.10) and (5.11)

I u*Tkv(e)II jc (v * k)wdXG|

^||V*£)v||i ^ ||£||i

à (c/2) || k Hj.

Moreover, ||w*v||00 ||v*w||00 ^II vINI« II» ^ i'as required.

5.7 Theorem. (1) Let (hn) be a £/-RS-sequence on a locally compact

group G, where U is a relatively compact open subset of G, and let (kn)neN

be defined as in 5.4. A continuum of sequences (œn) e ll(N) may be

constructed for which the series

lneN0)nTkn (5.12)

converges normally in Lqp{G) for every pair (p, q) satisfying 1 < p fg q < oo

to a unique operator, T say, such that

(1) supp T c U, and

(ii) T is not a measure.

(2) With the further condition that G is unimodular, the theorem
remains valid if we replace throughout left multipliers and their related

concepts by right multipliers and their correspondingly related concepts.

Proof. (1) For each ne N, Lemma 5.6 shows that we may select
and fix u„, vne Cc(G) such that

|| "„ * h, |U ^ 1 I K* \(e) I ^ (c/2) || Hi, (5.13)

where c inf {d(x)"1 : x e U) > 0 does not depend on n.
We aim to apply 3.2, taking:

H the space of linear maps from Cc(G) into L}0C{G), the topology on
H being that of pointwise convergence;
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I { (p,i) 1 < p û q < 00} ;

jE(p,4) Lqp(G) with its standard norm;

E S\

fn-.T\^\un*Tvn{e)[,

x„ Tk.
n

It is clear that 3.2 (i) holds and that fn is continuous (a fortiori bounded) on E.

By way of verification of 3.2 (ii)-(iv) we will show that

/* (Tk < 00 for every ne N, (5.14)
n

lim«-,«, Tkn0 in (5.15)

lim^œ/„(rt) CO. (5.16)
n

Regarding (5.14), we have

fm(Tk) I Um*Tknvm(e)I I um*vm*kn(e) | g || * || w|| || t

which, by the first clause of (5.13), does not exceed ||&„||i. .Hence

/* (Tk ^ || A: ||i, which is finite since kn e Cc(G).

As to (5.15), the Kiesz-Thorin convexity theorem ([11], Volume II, p. 95)
1 1

shows that for (/?, q) e I satisfying —|— ^ 1 one has
P q

WWUg II \||2j2 || || 17, (5.17)

where 1 /p a/2 + (1 —a)/l, l/q a/2 + (l—ofy/s, so that a 2jp' e (0, 1]

and se[l, oo]. On combining the first clause of (5.1), (5.8), (5.9) and

(5.17), we see that

linw || 7;J|Pi9 0 (5.18)

for every pair (p, q) e I satisfying l/p -f l/q ^ 1. If, on the other hand,
(/?, q) el and l/p + \\q < 1, a similar argument gives

II \||p.«^ \\W\^WTk\\^ (5-19>

where l/p a/2 + (1—a)/s and \jq a/2, so that a 2/q e (0, 1) and

se (I, oo]. On combining the second clause of (5.1), (5.8), (5.9) and the

fact that A is bounded away from zero on U, (5.18) appears once more.
The verification of (5.15) is thus complete.
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The definition of fn combines with (5.7) and (5.13) to yield (5.16).

Appeal to 3.2 provides a construction for a continuum of sequences

(con)ell(N) for each of which the series (5.12) converges normally in E

to a sum T satisfying

/* (T) oo. (5.20)

This entails that, for every (/?, q) e /, TeLqp(G) and the series (5.12) is

normally convergent in Lqp(G) to the sum T. Since supp ^ — U for

every n, it is simple to verify that sup T U. It remains to show that T
is not a measure. However, were T to be the measure p, it would be the

case that supp p ç Ü and so, using the first clause of (5.7), that

f„(T) I M„ * T\'n(e) I I u„ * * [1(e) |

I [g("»* ~ V/i I

Since p has a compact support, this inequality would lead to a contradiction
of (5.20). Thus T cannot be a measure.

(2) Finally, when G is unimodular, everything remains valid when right
multipliers replace left multipliers throughout: this can be seen by either

repeating the entire argument ab initio, or by deriving it from the result
already obtained by making use of the properties of the adjoint discussed

in 5.3.

5.8 The non-unimodular case, (i) If G is non-unimodular, there can
be no full analogue of Theorem 5.7 applying to right multipliers. This is

so because in this case there exist no non-trivial right (p, ^-multipliers
when p ^ q.

To see this, suppose that T is a right (p, ^-multiplier and that p ^ q.
For f e Cc(G) and ae G we then have

II Pa Tf\\q II TPaf\\q g II r||p>, II pj\\p II r||p>, A(ay»

and

\\PaTf\\q= A(ay<«\\Tf\\q.
Hence

II Tf\\irkA(a)1/p~1/q||T ||p>? ||/||p.
Since G is non-unimodular and p ^ q,
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and we infer that 7=0.
(ii) In spite of (i) immediately above, there is a partial analogue taking

the following form.
Assume that there exists a sequence (hn) satisfying (5.6), where now

|| K 112,2 is defined to mean

sup { II K*/||2:/eCc(G),||/||2 ^ 1}.

Then modification of the proof of Theorem 5.7 will lead to the construction
of operators 7 which are right multipliers of type (p, p) for every p e (1, oo),
have supports contained in U, and are not of the form f\-> p */for any
measure p.

§ 6. (p, q)-multipliers whose transforms are not measures

6.1 Introduction. Throughout this section we suppose that G is a

locally compact Abelian LCA) group with dual group 7, both groups
being additively written. We begin by slightly modifying the form of the
definition of (p, ^-multipliers, so rendering it possible to make certain
statements about their Fourier transforms without attempting a general
definition of such transforms. To this end, let 7 denote the set of functions

on G which belong to fl {LP(G) : 1 ^ p ^ oo} and which possess Fourier
transforms with compact supports, and denote by Lqp(G) the set of continuous

linear operators from 7, equipped with the Lp(G)-norm, into Lq(G)
which commute with translations. As before, equip Lqp(G) with the

(LP(G), Lq(G)) operator norm. It is easy to specify a natural isometry
between Lqp(G) as defined above and Lqp(G) as defined in § 5, and so we

speak of the elements of Lqp(G) as (p, ^-multipliers on G.

When 7 is a (p, ^-multiplier in this sense, we say that its Fourier
a

transform T is a measure p if and only if there exists a measure p on 7
such that

h*Tg(0) — lr hgdp(6.1)

for all g, h e 7, where u denotes the Fourier transform of u. Similarly,
A

if Q is an open subset of 7, we shall write 7 p on Q if and only if (6.1)

holds for all g, he F such that supp g ^ Q. If 1 is a closed subset of 7,
A A

we shall write supp 7 Ç I if and only if 7 0 on 7/7.
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It is simple to verify that, if Ke F and TK is the mapping

g\-*g*K=K*g, then TKeLqp whenever 1 ^ ^ ^ oo. (In fact,

|K*g||co g II^IIp'IUIIp and |K*g||p â ll^lji II g ||p and the con-

vexity of the function t |-> log II K* g M t-1? or an appeal to the closed
A A

graph theorem, does the rest.) Furthermore, TK is the measure KXr,
where Xr is the Haar measure of F normalised so that the L2(/lr)-norm of
u is equal to || w ||2 for every u eL2(G).

6.2 It has been shown by Gaudry ([5], Theorem 3.1) that, if G is non-

compact LCA and 1 ^p<2<q^co, there exist operators T e Lqp(G)
A

such that T is not a measure. In 6.3 and its proof we shall indicate how to
construct operators T which belong to Lqp(G) for every pair (p, q) satisfying

A

l^p<2<g^co and which are such that supp T is contained in a
A

compact subset of F and T is not a measure. The precise statement of
6.3 requires some prefatory remarks.

Let G be a noncompact LCA group and Q a relatively compact open
subset of the dual group F. Since F is nondiscrete LCA, an C-RS-

sequence (hn) on F may be constructed in such a way that the inverse
Fourier transform of hn belongs to LX(G) for every n\ see Appendix A.2.
Assuming this to have been done, choose positive integers m1 < m2 <
and define kn nhm^ exactly as in 5.4, so that (5.7)-(5.9) remain intact

(but with F, rather than G, as the underlying group). We now consider
the functions Kn on G, Kn being defined to be the inverse Fourier transform
of k„.

It is plain that every Kn belongs to F. Moreover, an application of
Holder's inequality yields

II*»11. ^ ||*B||^i|jqiir2/i (s>2). (6.2)

By Parseval's formula and (5.8),

IK ||2 |K ||2 ^
also, since G is LCA, (5.9) leads to

IKIUHKJk,
Inserting these last two estimates into (6.2), we obtain

|| Kn ||s 0 (n2/s 2). (6.3)
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We shall need to note also that a construction, similar to that appearing
in the proof of Lemma 5.6, shows that for each ne N we may select and
fix w„, vne F such that

|| "» II«, g 1 (6.4)

and

I Jr un Vnkn dXrIè i||Kn||!i || II, à \Bn, (6.5)

the last link in this chain of inequalities stemming from (5.7).

6.3 Theorem. Let G be a noncompact LCA group, Q a relatively
compact open subset of the dual group jT. Suppose the function Kn(n e N)
to be defined as in 6.2. A continuum of sequences (con) e li(N) may be

constructed, for each of which the series

YneN œn ?Kn (6-6)

converges normally in Lqp(G) for every pair (/?, q) satisfying 1 p < 2 < q

^ oo, the sum T of the series (6.6) satisfying the conditions

(i) Te f| { Lqv{G) : 1 <2<q^*>};
A

(ii) supp T £ Q ; and

A
(iii) T is not a measure.

Proof. Since G is Abelian, (5.4) shows that Lqp(G) Lpq,(G) and

II ' I\p,q " II ' IAccordingly, we may and will restrict attention to
those pairs (p, q) such that 1 ^p<2<q^co and l/p + l/q ^ 1;

denote by I the set of such pairs.
We propose to appeal to Corollary 3.2, taking therein

H the space of linear maps from F into L/0C(G) with the topology of
pointwise convergence;

/ as defined immediately above;

E(Piq) Lqp(G) for every (p,q)eI;E the closed linear subspace of S generated by the TK (ne N);
n

fn'-T\-*\un* Tv„(0) I ;

x" - Tk„-
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Regarding the hypotheses of Corollary 3.2, it is clear that 3.2 (i) is

satisfied. Also, for any TeE and any me N, Holder's inequality yields

fm(T)g|| um||,.|| Tvmy,J£ || um II,. || r||p„ || vm ||p>

which, since um and vm belong to F, shows that fm is continuous (and therefore

certainly bounded) on E.
A

Next, since (see the remarks at the end of 6.1 above) TK is the measure
ft

KnXr — knXr>

fm(TK) I Jr Um Vmkn dXr | ^ || K ||l>

the inequality coming from (6.4). This makes it clear that f*(TK is
Ä n

finite for every ne N, so that 3.2 (ii) is satisfied.

Turning to 3.2 (iii), note first that by convexity (as in the proof of
(5.17)) we have

II ^„IU ^ II rKJ"2>2 ll^Ji- (6.7)

where, since p < 2 < q, we have a < 1 and s > 2. Now, by the case

s — co of (5.8),

11 T'Kfi 11 2,2 11 Kn I! eo — 11 kn 11
00 n>

Using this in combination with (6.3) and (6.7), it appears that

where ß (1—a) (l—2/s) is positive, and so

lim„_rXl Tk
n

which is more than enough to verify 3.2 (iii).
As for 3.2 (iv), the fact that TK^ K„Xr combines with (6.5) to yield

In(Tk— I Jr unvnK„d/.r | ^ \Bn,

which confirms 3.2 (iv).
An appeal to Corollary 3.2 is thus justified and assures one of the

existence of a continuum of sequences (co„) e l\(N) for each of which the
series (6.6) converges normally to a (unique) sum in which satisfies

f* (T)oo. (6.8)

From this it is evident that (i) is satisfied, and that, for every pair (p, q)
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satisfying 1 ^p<2<q^co, the series (6.6) converges normally in
Lqp{G) to T. Next, T is the limit in E of

as r -» oo and, since it is plain that supp Sr ç Q for every r, (ii) is easily
A

derived. Finally, if T were a measure jn, it would necessarily be the case

that supp ji c q and so, for every ne TV, one would have by (6.1) and (6.4)

fn (T) I U„*Tv„(0)[ I v„ du I

Ü M (ßh

which is finite since 0 is relatively compact. However, this plainly would

entail/* (F) < oo, in conflict with (6.8), so that T cannot be a measure and

(iii) is verified. This completes the proof.

6.4 Remark. Theorem 6.3 was proved by Hörmander ([14], Theorem

1.9) for G Rn and any given pair (/?, q) satisfying 1 < 2 < q ^ oo,

this result being extended to a general noncompact LCA G by Gaudry [5].

The argument given by Hörmander (loc. cit. Theorem 1.6 and the remark

immediately following) for the case G =* Rn can also be extended to a

general LCA G and shows that, if either q ^ 2 or p ^ 2, then every
A

T e Lqp{G) is such that Lisa measure [and indeed a measure of the form
ij/Àr, where \jj e Lfoc (T) if q ^ 2 and ij) e Lfoc (T) if p ^ 2, and so

\j/ e Lfoc (T) in either case ]. Thus the hypotheses made in Theorem 6.3

about p and q are necessary for the validity of the conclusion.

Part 3: Applications to Fourier series

§ 7. Applications to divergence of Fourier series.

7.1 Throughout §§7-10, G will denote an infinite Hausdorff compact
Abelian group with character group T, and XG the Haar measure on G,

A
normalised so that Xg(G) 1. For any/e L^G), / will denote the Fourier
transform of /; for any finite subset A of F,

sAf I/(y)y (7.1)
yeA

is the d-partial sum of the Fourier series of /; and sp (/) will stand for
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the spectrum offi i.e., for the support supp f {y e T \ f (y) ^ 0} of /.
The term "trigonometric polynomial" will frequently be abbreviated to

"t.p.". In addition, $ will denote the largest torsion subgroup of F

([7], (A.4)), and n the natural map of r onto r/$. If A denotes a subset

of r, [A] will stand for the subgroup of r generated by A.

By a (convergence) grouping we shall mean a sequence 3 (AfijsN

(Aj) of finite subsets A j of T such that

Jj +1 (jeN);

U Aj T0 is a subgroup of r, said to be

j i
covered by 3;

for each j e TV, dy ßy+Zy, where dy iS

nonvoid finite subset of $ and ßy is a finite
subset of r such that n Qj is 1-1.

(7.2)

[The first two conditions are natural enough in the context described in 7.3,

but the third is less so and may well be pointless.] The grouping 3 is said

to be of infinite type if and only if n (F0) is infinite.

7.2 Examples, (i) Let F0 be any countable subgroup of r such that

r0 n 0 {0}; for example, T0 {ny0 : n e Z}, where y0 e F\&. Then

a grouping 3 covering T0 results whenever Aj {0} and Aj I2y for
every y e A, where (&j)jeN is any increasing sequence of finite subsets of
r0 with union equal to f0. This grouping is of infinite type if and. only
if r0 is infinite.

(ii) If G is connected, and if T0 is any countable subgroup of T, then
([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) T0 is an ordered group
isomorphic to a discrete subgroup of R. Assuming T0 ^ {0}, T0 has a

smallest positive element y0 and T0 {ny0 : n e Z}. A natural grouping
H covering T0 is that in which Aj {0} and

Aj Qj {;ny0 : n e Z, | n | ^ j]
for every j e N; this grouping is of infinite type.

7.3 A grouping 3 (Aj)jeN will be thought of as specifying one of
the many possible ways in which one may interpret the convergence of
Fourier series of functions f on G satisfying sp (/) T0, namely, as

convergence of the corresponding sequence of partial sums (SA.f)JeN.
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Indeed, the conditions (7.2) guarantee that lim SAf f for all sufficiently
j -+00 3

regular such functions /. However, our concern rests with the possibility
of constructing continuous functions f on G satisfying

sp (/) £ r0, lïm Re SAjf(0) - oo. (7.3)

j ->00

It will appear that the possibilities exhibit a fairly clear dichotomy,
depending largely upon whether G is or is not O-dimensional.

In the first place, it will emerge in 7.6 that the construction principle
of § 2, applied to the Banach space E — C (G) of continuous complex
valued functions on G [with norm || • || equal to the maximum modulus]
and to sequences of gauges of the type

/I- Re SAf(0) Re jG (7.4)

where DÀ stands for the "Dirichlet function"

DA I y, (7.5)
yeA

shows that the problem hinges on the existence of groupings Sf for which

Pj || Da. ||i Jg I da. I d)-Cj -* oo. (7.6)

Accordingly, and in view of the fact ([7], (24.26)) that G is O-dimensional

if and only if F coincides with #, it emerges that the dichotomy referred to

may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not O-dimensional (i.e., <P ^ F). Then (see Example 7.2 (i))
there exist groupings ÇÙ — (Aj) of infinite type; and, for any such grouping,
one can construct (fairly explicitly, as described in 7.6) continuous functions

f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if F0 is any
countably infinite subgroup of F satisfying F0 n # {0}, and if (Aj)jeN
is any increasing sequence of finite subsets of F0 with union F0, we can
construct a continuous f on G satisfying (7.3).

(ii) G is O-dimensional (i.e., $ F). Then there exists no grouping
of infinite type. However, given any countable subgroup F0 of F, there

are groupings @ (Aj) covering F0, in which Qj {0} and Aj Aj is

a finite subgroup of F0, and for which

/ lim SA f
j~> oo

3



— 279 —

uniformly on G for every continuous / satisfying sp (/) £ F0.
Case (i) will be dealt with in § 8, case (ii) in § 9. The groupings described

in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 Remark. Perhaps it should be stressed here that, if T0 is any
infinite subgroup of F, there is no obstacle to constructing continuous

functions / such that sp (/) Ç F0 and finite subsets Aj c Aj + 1 of F0
for which

lim SA J(0) co.
j 3

[One has in fact only to construct a continuous / such that sp (/) £ F0
A

and J / (y) I oo ; it is then trivial that there exist finite subsets A of F 0
yer

for which | SAf(0) | is arbitrarily large, so that we can choose a sequence

(AJ) for which A} ç Aj + 1 and | SAJ(0) | -> oo with j.] However, the

sets Aj obtained this way will not [and, in view of 7.4 (ii), cannot] in general
00

be such that U Aj T0. For more details, see A.5.1 and A.5.2 of the
j= i

Appendix.

7.6 Suppose one is given a grouping 3 (A3)jeN covering T0 and

satisfying (7.6). As is described in § 10, one may construct polynomials
qp in two indeterminates over the real field (v being a suitable fixed

integer not less than 36 and p} any positive number not less than || DA. || œ)

such that, for suitable unimodular complex numbers the t.p.s

satisfy

\\Qj\\£i,sp(Qj)ç[Aj]çr0,
Sa Qj (0) jG Dj, Qj dlG is real and ^ ^ pj.

In view of (7.2), (7.6) and (7.7), one may choose inductively a sequence
Jn)neN °f positive integers so that

Sa Qjn (0) is real and > n3, I

"
(7-8)

j„ <jn+i,sp(Qj)sr0. ]

Accordingly, the t.p.s

(7.7)
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-"2ô,„
satisfy the conditions

sp(u„) £ r0, £ || || c °°

Sa un (0) is real and > n-

(7.9)

At this point the construction in § 2 will yield integers 0 < nx < n2 <
and specifiable sequences (yp)peN of positive numbers such that each function
of the form

oo

/= I yPu-p
P l p

is continuous and satisfies

sp (/) <= r0, lim Re SA. /(0) oo. (7.10)

A fortiori, / satisfies (7.3).
We add here that, if the A ; are symmetric, the DA are real-valued,

j
and we may work throughout with real-valued functions, replacing
Re SA f by SA f everywhere.j j

§ 8. Discussion of case (i) : G not 0-dimensional

8.1 In this case 0 ^ T, and we begin by considering a finite subset

of r of the form -

A Q + A, (8.1)

where Q and A are finite subsets of r such that n | Q is 1-1 and 0 / A c 0.
We aim to show that (for a suitable absolute constant k > 0)

/ log N \*ii^ii' • <8-2)

provided N | Q | (the cardinal number of Q) is sufficiently large.

8.2 Proof of (8.2). Introduce H as the annihilator in G of # and

identify in the usual way the dual of H with r/&. Likewise identify the

dual of K — G/H with $ ([7], (24.11)).
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We then have

II A.Ill 1*1 E y| A
yeA

— Jg/H ^G/H(X) I S X ® (X^"~^ ^ (X^~y) I d^n(y)>
de£2 (f>eA

the inner integral being viewed as a function of x x-^H Thus, writing
0 for n (9) and noting that (j) (y) 1 for $ e A ç $ and y e H, we obtain

|| Ad ||i 1g/h dXG/H(x) J# | S a x)® W I (8-3)
06fi

where

a (0, x) 0 (x) J] 0 (x).
<£e/i

Now, since the dual of H (namely r/&) is torsion-free ([7], (A.4)),
Theorem A of [8] shows that (for a suitable absolute constant k > 0) we

have

/ log N \*
J„ I Z a (9, »>8 m I JIM a 4 I « (9. *> I

t(rrETl S (8'4)
\log log NJ 4,sA

since | 0 (x) | 1 and <j>(x) depends only x. By (8.3) and (8.4),

/ loa N\*|| A ||i =^(T j ~ Jg/W I E ^ W I ^c/i/W' (8-5)
VloglogiV/ 4*A

Since A # 0, the remaining integral is not less than the maximum modulus
of the Fourier transform of the function 3c | —> <fi (x), i.e., is not less

<f>eA

than unity. Thus, (8.2) follows from (8.5).

8.3 Proof of 7.4 (i). The conclusions stated in case (i) of 7.4 are
now almost immediate. If Q) (Aj)jeN is a grouping of infinite type
covering r0, | n (Aj) | oo and so, since Aj ç $, | n (Qj) | -> oo. Then
(8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.

8.4 Supplementary remarks. The fact that, when G is not 0-dimen-
sional, (7.6) holds for suitable subgroups F0 of F and suitable groupings
3f (Aj)jeN covering F0 can be derived without appeal to Theorem A
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of [8]. To do this, it suffices to take yk e F\ $ (k 1, 2,m) such that
the family (yk)i^k^m is independent (see [7], (A.10)), define

ro :nkeZfor1,2,..., m},

and make use of the formula

Jg F(Ji (•*)>..., ym(x))dyG(x)
(277:) 11'... ft* Fie" (8.6)

valid for every Fe C(Fm), where T denotes the circle group. (Recall that
Yfc i nk Jk denotes the character x |-> yi(x)"i... ym(x)nm of G.) It then

appears that (7.6) holds when one takes

Ai {111 1nkyk:I nk|^ for k—l,2,..., },

where the rjk are positive integers satisfying rj,k ^ rj,k+ 1 and limy^^ rjk
oo. Moreover, when m — 1, the Cohen-Davenport result (essentially

Theorem A of [8] for the case G — T) shows that (7.6) holds for every
grouping Q) covering T0.

The verification of (8.6) is simple. First note that, if G and G' are

compact groups, and if (j) is a continuous homomorphism of G into G',
then

\G{Fo4>)dXG=\Fd).HC(8.7)

for every F e C {G'). (This is a consequence of the fact that
F I Jg (F ° <t>)dÀG is invariant under translation by elements of (j) (G),
combined with the uniqueness of the normalised Haar measure on a

compact group.) Taking G' Tm and (j) : jc | —> (y± (x), ym (x)), the

stated conditions on the yk are just adequate to ensure that the annihilator
in Zm (identified in the canonical fashion with the dual of Tm) of (j) (G) is

{(0,..., 0)} and so ([7], (24.10)) that 0 (G) Tm. Accordingly, (8.6) appears
as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited
in other ways. For example, suppose more generally that k is an arbitrary
nonvoid set and that (yk)kSK is a finite or infinite independent family of
elements of F\ 0. Denote by F0 the subgroup of F generated by
{yk : k e k}. Taking G' i* TK and (j) : x |-> (yk(x))kGK, one may use (8.7)

in a similar fashion to show that there is an isometric isomorphism
F <-> F o (j) f between LP(TK) (or C (TK)) and the subspace of LP(G) (or
C (G)) formed of those/eLp(G) or C (G)) such that sp (/) ç F0. Moreover,

if one identifies in the canonical fashion the dual of TK with the weak
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.j. A A
direct product ZK the said isomorphism is such that F f o (j)', where

<£' is the isomorphism of ZK onto F0 defined by (nk) 2^fc6K nk yk.

One consequence of this may be expressed roughly as follows: If the

compact Abelian group Gis such that r\ <P contains an independent family
of (finite or infinite) cardinality m, then Fourier series on G behave, in
respect of convergence or summability, no better than do Fourier series

on Tm.

Another consequence is that, if A is a subset of F0, then A is a Sidon

(or A(p)) subset of F if and only if 4>,~1(A) is a Sidon (or A(p)) subset
*

of ZK

8.5 Further results. Theorem A of [8] implies something stronger
than (8.2), namely: if co is any complex-valued function on F such that

CO (y + (j)) œ (y)e <P), (8.8)

so that co can be regarded as a function on r/<P, and if we write

E ® (y) % saAf E © / (y), (8.9)
yeA yeA

then, for A Q + A as in (8.1), we have

/ Ior N \*
l|z>ï|11 (U0)

provided N | Q|is sufficiently large.
So, if we can arrange for Q Qj to vary in such a way that the right-

hand side of (8.10) tends to infinity with j, the substance of 7.6 will lead to
a continuous / satisfying sp (/) e F0 and

lim ReS1?./(0) co. (8.11)
j~* 00

Taking the most familiar case, in which r Z and ^ {0},
and supposing A Qtorange over a sequence (zly) of finite subsets of Z
such that, if Nj| Aj|,/ log Nj \*

lim i i 77 mm co (n) oo,
; Voglog^.; ueAj[

1

the construction will lead to a continuous / on such that

lim Re S%.f(0)oo.
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In particular, taking Aj {n e Z :2j^ n <1} it can be arranged
that

v ± fin)
nëZ (log (2+\n\)T

diverges for any preassigned distribution of signs ± and any preassigned
a < £.

Of course, much stronger results are derivable by using random (and
unspecifiable changes of sign, but there seems little hope of making this
even remotely constructive.

§ 9. Discussion of case (ii : G 0-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero
in G formed of compact open subgroups IF. For each such W the
annihilator A W° in r of IF is a finite subgroup of r. Define

X characteristic function of IF. (9.1)

A
Thsn kw is continuous, kw ^ 0, JG kw dXG 1. The transform kw of kw
is plainly equal to unity on A. On the other hand, since IF is a subgroup,
we have for a e W and y e T

A

kw(?)Ig kw (x) y (x) dlG (x) jc kw {x+d) y dlG (x)

Ig kw (y) y (y-a) dXG (y)

A
y(a)kw(y),

A A
which shows that kw(y) 0 if yeT\A. Thus kw is the characteristic

function of A, and so

kw Dw o. (9.2)

By (9.1) and (9.2), a routine argument shows that, if 1 ^ p < oo and

feLp(G), then

/ lim SWof (9.3)
w

in U(G); and that (9.3) holds uniformly for any continuous /.

9.2 Proof of 7.4 (ii). If T0 is any countably infinite subgroup of r
we can choose a sequence Wj of compact open subgroups of G such that
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Wj + £ Wj and r0 £ U IF], where IF] is a finite subgroup of f and
y=1

IF] £ 1F}+1. The 4, W) n T0 satisfy (7.2) and, from (9.3),

/ lim SA.f(9.4)

j
uniformly for any continuous / with sp(/)^r0. This verifies the

statements made in 7.4 (ii).

9.3 By using the results in [3], more can be said in case (ii) of 7.4;
cf. [3], Theorem (2.9) and Example (4.8).

Let feL1(G) and let T0 be any countable subgroup of r containing
SP (/)• Choose the Wj as in 9.2. Then, apart from the fact that (W3) is

not in general a base at 0 in G (they can be chosen to be so if and only if
G is first countable), (Wj) is an open-compact D"-sequence ([3], p. 188).
The proof of Theorem (2.5) of [3] is easily modified to show that

fix) lim Sw°.f (9.5)
j ->oo

holds for almost all x e G. Moreover, Theorem (2.7) of [3] applies to
show that the majorant function

S*f(x) sup I I (9.6)
jeN J

satisfies the estimates

l
II SV||p â 2(p(p-l)-1)p||/|| p(1oo)

||SV||i ^ 2 + 2jG|/|l0g+ |/|
1

||SV||p^2(l-p)'||/||1 (0<p<l).

In particular, the convergence in (9.5) is dominated whenever

|/| log+ \f\eL1(G).

A more immediate consequence of (9.1) and (9.2) is a strong version
of localisability of the convergence of Fourier series: life Ll(G) vanishes
a.e. on some neighbourhood of x0 e G, we can choose the Wj so that
SAjf(*o) 0 for every sufficiently large [A suitable choice of IV} may
be made once for all, independent off if is first countable.] Nothing
similar is true for general G;see,for example, [11], Vol. II, pp. 304-305.

(9.7)

(9.8)

(9.9)
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§ 10. Concerning the polynomials Qj.

There is no difficulty in making fairly explicit the construction of
t.p.s Qj of the type employed in 7.6.

For p > 0, t ^ 0 define

1 if t ^ p9

if p ^ t ^ 2p,
±p J

[ 0 if t 2p.

if z 0,

hp ~ I 2 1-

For all complex z define

/,(*) —
z I

1
z hp (\ z\) if z ^ 0.

Write
(z) n

1
n exp {—n | z |2,

S.ftOO 7Z ~7j— (nIz 12)J

i=o 7!

(10.1)

(10.2)

(10.3)

Let ju denote Lebesgue measure on C (identified with R2 in the canonical
fashion).

It is then routine to verify that

lis."/J» ^ l|/P|U i,

lim En*/„=/„
(10.4)

uniformly on any compact set omitting 0. From this it follows that to

every p > 0 and every positive integer v correspond positive integers
h (p, v), k (p, v) such that

z\ z - fp*P^(z)
1 1

^ for ^ I z I ^ p,
v v

1

|/p*-P»,iï(z)| ^ 1 + ~ for |z| ^
(10.5)

Now

fp * Pn, k00?p,v (*> Z), (10.6)
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where

Hp,v) — n(p,v))J JL 2L" Z Z1p,v (X,Y) n 1n(p,v) £ -, - _
J 0 7! i 0 m 0

k(p,y)

£ Cp>v (/, m) X'7m.
l,m 0

It is easily verifiable that the Cp>v (/, m) are real-valued.

If 0 is a bounded measurable function on G and

öp,v ?p,v(0, 0),^ ^ || ||c

we have from (10.5)

M-15- e;,v
1

»

1

< - whenever | 6 | ^

I Ql v
I ^ 1 + - everywhere on G.

v

If 0 is a t.p., then v is a t.p. and

Sp (ôp.v) £ [sp (0)].

I 0 I whenever | 0 | >

2 H— j I 0 I everywhere,

(10.7)

(10.8)

(10.9)

(10.10)

From (10.9) we obtain

101 - 0 e;.v

whence it follows that, if 6 =£ o,

I Jo 0 Q°P,V dXG I > (I - v "') || |], — v~1 (2+ v-1)

^ (1—2v-*)||0||1

provided v ^ 9 || 0 ||72.
Taking 0 DA. and pj ^ || DA.||, the trigonometric polynomials

:w-K"

(10.11)

Ô, 1 + ÔPj,v 1 + - (DAf (10.12)
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are then seen from (10.9), (10.10) and (10.11) to satisfy

\\Qj\\è.h
SP (Qj) S [Aj],

I Jv DAj Q'jdXGI£ (l-3v-*)|| A..U,

(10.13)

provided v is chosen ^ 9 || DAj [|7 » In view of (7.6), we may choose

the integer v ^ max^ (36, 9 || DAj fli"1)- Then (10.13) shows that there

are unimodular complex numbers ^ such that the Qj Q] satisfy (7.7).

Appendix

Rudin-Shapiro sequences

A.l Notations and definitions. As hitherto, all topological groups G

are assumed to be Hausdorff; and, for any locally compact group G, XG

will denote a selected left Haar measure, with respect to which the Lebesgue

spaces LP(G) are to be formed. Cc(G) denotes the set of complex-valued
continuous functions on G having compact supports.

If X and Y are topological groups, Horn (X, Y) denotes the set of
continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if ke Cc(G),

Tk will denote the convolution operator

with domain Cc(G) and range in Cc(G); and || k ||M will denote the (p, q)-

norm of this operator, i.e., the smallest real number m ^ 0 such that

\\f*k\\q^m\\f\\p (feCc(G)).

It is well-known that, if G is Abelian, || k ||2,2 is equal to
A A

|| k ||oo supyer I k (y) |,

A
where T is the character group of G and k is the Fourier transform of k.

(Something similar is true whenever G is compact, but we shall not use

this.)
£/-RS-sequences on G are as defined in 5.4.
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In A.2-A.4 we are concerned with conditions on G sufficient to ensure

the possibility of constructing t7-RS-sequences on G for certain choices

of U. In A.5 we use Rudin-Shapiro sequences on infinite compact Abelian

groups to support statements made in 7.5.

A.2 The Abelian case. If G is Abelian and nondiscrete, the methods

of § 2 of [5] show how to construct (reasonably explicitly) a £/-RS-sequence

(hn) on G for any preassigned nonvoid open U ç G; see also [7], (37.19.b).
A

In addition, we may assume that each hn is integrable on F, the character

group of G. [To see this, let F be a compact neighbourhood of the origin
of G and let W be a nonvoid subset of U such that V + W £ U. Let {u
be an approximate identity on G comprised of functions in Cc{G) with
supports in V and Fourier transforms in L1 (F). Finally, let (kn) be a

JF-RS-sequence ; then for each ne N we may select in so that (kn * uir) is a
A A A

t/-RS-sequence with the further property that (kn * uin) k„u in e L^F),
as required.] We take this construction for granted (but see A.5 below)
and use it to show how to construct t/-RS-sequences on certain non-
Abelian groups G. The basis of the extension is a simple technique of
passage from a quotient group to the original, the crucial step being
A.3.2 below.

A.3 The not-necessarily Abelian case.

A.3.1 Assume here that K is a compact normal subgroup of G. Let
XK be normalised so that Xk(K) 1 ; and let 7c : x |-> 3c denote the natural
mapping of G onto G/K.

Iff e Cc(G), the function/' on G/K defined by

/ (X) Jk/(XO dkK (0 (A.l)
belongs to Cc(G/K) ; cf. [7], (15.21). If g g Cc(G/K), gone Cc(G) and

(g o 71)' g. (A.2)
If xa denotes left-translation by amount a, it is verifiable that

Oa/X ^ From this it follows that the disposable factors in XG and
XGjK can be mutually adjusted so that

$crfdA(} Jg/X/' dXG/K (A.3)
for /g Cc(G). Using (A.3), a direct calculation confirms that

(f*(kon)y =f'*k (A.4)
whenever fe Cc{G) and k e Cc{G/K).
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Another consequence of (A.3) is that for 1 ^ ^ oo

11/11^ II/'II, (A.5)

for every /e Cc(G); and that for 0 < p ^ oo

11/11,-ll/'ll, (A-6>

for every /e Cc(G;K), the set of fe Cc(G) which are constant on cosets

modulo K.

A.3.2 Let k e Cc(G/K). Then

P°*IU ^ PIU (A-7)

Proof. For /e Cc(G), / (k o je) e Cc(G;/0 and (A.6) gives

||/* (& ° II« II (/* (& o re))' ||4,

which by (A.4)

Hl/'**ll*
— II/' II, II ^ Hp.«

^PllrPII
the last step by (A.5). Whence (A.7).

A.3.3 If (hn) is a F-RS-sequence on G/K and G =n~1(V), then (hnon)
is a G-RS-sequence on G.

Proof. In view of A.3.2 it suffices to note that

supp (hnon) 71
~1 (supp /zw)

— ft-1 (^0>

|| hnO 7111
oo II Ä„ ||œ,

||Ä„ok||2 II A„ ||2,

the last two because of (A.6) and (A.2).

A.3.4 Suppose that K is a compact normal subgroup of G and that
one can construct F-RS-sequences on G/K for any given nonvoid open
F c G/K. Then one can construct G-RS-sequences on G for any given

open subset G of G which contains K
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Proof. Apply A.3.3, taking a nonvoid open subset W of G such that

KW ç U, and noting that V n(W) is then nonvoid and open in G/K
and that 7i~1(V) KW^ U.

A.3.5 Let ô(G) be the closure in G of the derived commutator)
subgroup of G, and suppose that 5(G) is compact and nonopen in G.

Then one can construct £/-RS-sequences on G for any given open subset U

of G containing 5(G). (Note that, since 5(G) is a closed subgroup of G,

it is nonopen in G if and only if it has empty interior, or if and only if it
is locally null for XG.)

Proof. This follows from A.2 and A.3.4 because:

5(G) is in any case a normal subgroup of G such that G/5(G) is LCA [see

[7], (5.22), (5.26), (23.8)]; and 5(G) is nonopen in G if and only if G/5(G)
is nondiscrete ([7], (5.21)).

A.3.6 The hypotheses of A.3.5 are satisfied in any one of the following
cases (all groups being assumed Hausdorff and locally compact):

(i) G G iXG2, where 5(G^) and 5(G2) are compact and 5(G^) is

nonopen in G1 (hence in particular if G A x B, where A is nondiscrete
Abelian and ô(B) is compact);

(ii) 5(G) is compact and there exists an open connected subset W of G

such that e e W $ 5(G) (hence in particular if G is compact and connected
and 5(G) ^ G);

(iii) 5(G) is compact and, for some Abelian A, some cp e Horn (G, A)
and some connected open subset W of G, we have ee W and cp | W non-
constant (hence in particular if G is compact and connected and Horn (G, A)
is nontrivial) ;

(iv) G cp(H), where cp e Horn (G, H) is such that Ker cp is locally
countable (that is, such that Ker (p intersects each compact set in a countable
set), and where ô(H) is compact and nonopen in H.

Proof, (i) It is evident that 5(G) ç Ô(GX) x 5(G2), which shows
that 5(G) is compact and nonopen in G [if it were open,
à(&i) prG^ (5(GX) X 5(G2)) would have interior points].

(ii) Were 5(G) to be open in G, W would be a disjoint union of
WnS(G) and W n (G\5(G)), each relatively open in W. Since
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e e W n (5(G), connectedness of W would imply that W n (G\ô(G)) 0,
i.e., W ç <5(G), a contradiction.

(iii) Ker cp is a closed subgroup of G containing <5(G) ; since W $ Ker cp,

it follows that W $ <5(G). Now use (ii).

(iv) Clearly,

(5(G) <= Vïm cp (0(H))

is compact. Suppose <5(G) were open in G. Then cp(ô(H)) has interior
points, and the same would be true of

(P'1 (<P (S(H)))~SS(H),

where S Ker cp. So there would exist a compact neighbourhood V of
the identity in H such that

V ç SÖ(H)
and so

V V n (SÔ(H)).

But, if yeVn (Sô(H)), y sz for some s e S and z e ö(H), hence

s yz~1 e VSCH)'1, and so s e (VS(H)~1) n S, which is countable by
hypothesis, say {sn : ne TV}. But thenyeUs„ö(H).

neN

Thus
V V n (SS(H)) ç U (5(^)

neN

and so, since XH(6(H)) 0,

0 <*h(V)ZX (<5(//)) 0,
neN

a contradiction.

A.3.7 Remarks, (i) A.3.6 (iii) suffices to show that any finite-dimensional

unitary group U(n) satisfies the hypotheses of A.3.5. [For U(n) is

compact and connected (see [7], (7.15)); and we may apply A.3.6 (iii) with
A T, the circle group, and cp det.]

On the other hand, it is easy to see (cf. A.3.6 (i) and its proof) that if
G Y[ where the Gt are compact and at least one of them satisfies

iel
the hypothesis of A.3.5, then G satisfies the said hypotheses.

So every product of unitary groups satisfies the hypotheses of A.3.5.
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(ii) The hypotheses of A.3.5 are also satisfied if G Gi © G2, the

semidirect product of G1 and G2 (see [7], (2.6) and (6.20)), provided Gt is

compact and Ô(G2) is compact and nonopen in G2 (hence in particular if
Q a © B, where A is compact and B is nondiscrete and Abelian). In
fact, 8 (G) ç Gx X ô(G2) and the proof proceeds as for A.3.6 (i).

A.4 The operators f \-+ k *f.
in A.3, it turns out that (cf. (A.4))

Retaining the notations introduced

((Icon) */)' k *fs (A.8)

for every/e Cc{G) and k e Cc(G/K), where, for any function g with domain

a group X, g denotes the function x 1-» g(x~*) with domain X. As a

consequence, the results of A.3 have direct analogues for the operatorf \-* k*/,
provided G/K is unimodular, which is so if and only if G is unimodular.

A.5 Concerning 7.5.

A.5.1 Throughout A.5 we suppose G to be infinite compact Abelian.
Let r0 be any infinite subsemigroup of the character group T of G; 0 e r0.
The construction described in § 2 of [5] may be employed to produce t.p.s
fn (n e N) on G which, together with their spectra Sn, satisfy the conditions :

s0{0}, sa s rII 2»

B2">2 ^\\fn\\s^A2"l2 (l^oo),
JI fn11 2,2 — 11 ||oo 'j

(A.9)

/„ (p on Sn9 0 on r\Sn,
where A and B are positive absolute constants and cp is a function on r
with Ran cp ç { — 1, 0, 1} and | cp (y) | 1 if and only if y e Sn. (When
G T, these fn are virtually the original Rudin-Shapiro t.p.s. In the
terminology adopted in 5.4 above the hn 2~~nJ2fn constitute a G-RS-

sequence on G.)

If we now choose a„ef inductively so that, on writing Fn an + Sn9

we have

a„+1 e r0 \ [(F0 u u Fn) - Sn+1],
then

Fn I I Sn I 2", Fn ç r0,

Fn n Fm 0 if m ^ n,
(A. 10)
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and the t.p.s

satisfy the relations
wt„ 2~"/2 anfn

II vf„!)„ g A, wn2 n'2(pn,

Ran cpns{-1, 0, 1}, [ q>„ (y) \ 1 if and only if ye F„.

(A. 11)

(A. 12)

From (A.10) and (A.12) it follows that at least one of the sets

A„ (p'1 ({1}), B„ (p~1{{—1}) has not fewer than 2""1 elements.

Define s„ 1, Cn A„ if \A„\ ^ 2" "1 and s„=-l, B„ if
\ An \ < l"'1.Then

(en w„)A (y) 2 "/2 if ye C„.

C„ s FmIC„ I ^ 2"-1.
(A. 13)

A.5.2 In terms of the construction given in A.5.1, it is possible to write
down any number of continuous functions f on G and sequences (Aj) of
finite subsets of F 0 such that

dj — Aj +1,

sp (/) ç r0,

f (0) is real and lim SA./(0) oo,

Z I f(y) I 00 ;
yer

(A. 14)

cf. the statements made in 7.5.

Indeed, if (cn)n=0 is a sequence of real numbers satisfying

and if

if suffices to take

C„^ o, Z c„ <CO, Z 2"/2 00,
it 0 n 0

d; C0 U U Cj,

/= Z C«8« Vf».

(A. 15)

(A. 16)

(A. 17)

(A.14) being then a simple consequence of (A.12) and (A.13).
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However, it is a consequence of the choice of the yn and ccn and of (A. 12)

[on evaluating the Fourier series of wn at 0] that | | An | — | Bn | j ^ 2"/2,

which implies that Cn contains only about one half the elements of Fn, so
00

that U Aj falls far short of exhausting T0. In particular, (AJ) is not a
j=%

convergence grouping of the sort described in § 7.

A.5.3 Two further consequences of the construction in A.5.1 are

perhaps worth mentioning in passing.

(i) For any complex-valued sequence (cn) m t such that

X« =1 I C«I< 00 » (A-18)
the formula

£ Z» 1 (A-19)

yields a continuous function g e C(G). It is easy to specify choices of (cn)

in accord with (A. 18), and of nonnegative functions 77 on F such that

limy^œ rj (•y) *= 0, (A.20)

for which

X7Sr|g(?)|2"2"(y) 00. (A.21)

One might, for example, take cn — n~2 and t](y) 6n~1 logn for
CO

y e Fn (n 1, 2,...) and rj(y) 0 for y e r\F, where F U Fn.
n 1

This is an analogue of a well-known result of Banach for the case
G T; it provides numerous reasonably constructive counter-examples
to conjectural improvements of the Hausdorff-Young theorem.

(ii) Take (c„), rj and g as in (i) immediately above. Let \j/ be any
nonnegative function on F which is bounded away from zero on F. Let
further 9 be any complex-valued function on F such that

9 (y) ^ (y) j g (7) 11 ~ 2n(y) sgn g (7) for y e F. (A.22)

Then (A.21), (A.22) and Bochner's theorem combine to show that 9 is

not a Fourier-Stieltjes transform. Yet, if \jj is bounded, and if we define
0(y) 0 for y e F\ F, (A.20) and the fact that g e C(G) ensure that

Oenr>2lr (F). (A.23)
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We thus obtain explicit examples of functions 0 satisfying (A.23) which
are not Fourier-Stieltjes transforms.

Note that, if every cn is real and nonzero, an (unbounded) xj/ can be

chosen so as to make Ran 6 — { — 1, 1}; this yields explicit examples of
+ 1-valued functions 6 which are not Fourier-Stieltjes transforms. (These

a
are, of course, also obtainable by starting with functions sgn h, where

h e C(G), h is real-valued and h $ I1 (F).)
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