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The set G* c= G is open and R**{ Vu....}anopen covering of G*

such that Vlc:c G, for i e{I,t*}. We have:

Cartan'sTheorem. There exists a constant K such that if ^ e Z' {Rv, q&)

then £ I R**ôqwhererj e C'~1 (R**, q(9) and || |J < ÜT|j £ || for

/> 1.

This is a simple consequence of Theorem B and Banach's open mapping

theorem.

Now we apply Cartan's theorem. We keep the notations as above.

Let G G x E"(p)andput R*{ Gt X }. Now R* is a Stein

covering of G. Let G* G* X E"(and R** { V, X (p)}. Let

£ e Z' (R*,q(9)and write £ £ £(v) (tjp)vwith(v) e Z( We
A

assume || £ |[p sup || £(v) || < co. Now Cartan's theorem gives
V

£(v) I R** 5iu with IjyeCl~l{R**,q(9)and || J| < |[ < co.

It follows that q£ »?„ (t/pfisweU defined in (R**, and by
A. A

definition we have ||^||p<i^||ç||p.

Smoothing

We are given a sequence of admissible refinements of measure coverings
in X(p J. Herep! < p0 min pt as usual. Let I be a fixed integer > 1. We are
given 23* 33' 233Z <| 233/:mî;l 23± 230 <| 23 H* <| U U3l <4

U0 IL. Here it is also required that (23v + 1, Uv + 1) (23v, Uv); (23*, U*)

(23/,U)and(230?Uo) < (23, IL). These extra conditions mean: 1) U(vf1\A
0 K

n LCvpr..,t c (L/(fv)... i n NV..J. f°r each e { i } and

A
Recall that all operations are done with respect to p l. Let us put R[^m_ijc

0

VnL<;/...vWc consider elements F>-
A A

Now we take a full collection £ {£io...if[ l0...lK} of such elements which is

anticommutative in { i0,...ik} and { i0,..., }. In this way we get a double
complex Ck'K.Hereô : Ck'K-* Ck +1'Kandd : Ck'K -»• Ck'K + 1

are the usual
coboundary operators.

Norm in Ck'K\ Let £eCk,K;weput



Il Ç\\p
(.Q

a*
t }

{ II Iii with ie{/„,...,

4}}. Herep >Pl and ^0v.t^HO-% V^nF^ and H II' is taken with

respect to the chart iV i as usual.

Smoothing Lemma: Let k>0. There exists a constant K such that:AAA A

If £ e Cf'Kwith dÇ0 and (| Ç||p< oo then we can find e CY+V such

that 3 I Cf+3 dr\and || r\||p< K||3 ||p. Here < yPlwith
0 < y < 1 and K depends only on p2.

Proof. Let us fix i0,ikinthe following discussion. Let G U'^1 \
A

and put G (G)t (px) for some i e { z0, ik } which is also fixed now.
A

Now G is Stein in X0 and G is Stein in X. We put R* G n 93v+1 which is a
A

Stein covering of G. Also R* { (GnVl(v + 1))i (px) }l=1> is a SteinAAAcovering of G. Let £ {£i0,...ik,l0...lK }• Now we look at the elements of

{îi0,...ik,l0...lK} h0....ik e ZK(R*,F).Hereis fixed as above.
A

We get a cocycle because we have assumed that dÇ 0. More precisely we
A A

have considered the restriction of ^ to R*. We must verify that
this restriction is possible.

A

Verification : By definition of ZK (R*, F) we have to look at sets of the

following type: (these are the sets where the cross-sections are defined)

(GnV^in .» n GnV= (GNow

by2) wehave(^0+.!.Vo-J« cn (K'-'vo-Jj c ^Xn-n(V^X
J

Now we put 6* ~ L(;o:.2^c cG.Welet {(G*nFl(v+2))j}
A

The system R** is a Stein covering of (G*)f. We are in a good position now.AAA A

For we are given e ZK(R*, F). Here R* is a Stein covering of G
A

and G is a Stein manifold. We are working in the chart where the usual

identifications are used. Hence we arrive at the following situation: G is

a Stein manifold with a Stein covering R* 93v + 1 n G. Also G* c= c= G

and i?** 93v + 2 n G* is a Stein covering of G* such that i£** c= c R*.
A A

The cocycle £i0,..jk is now considered as an element of ZK{R*,q(9) which
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we simply call £i0.../k again. Now we apply the result after Cartan's theorem.

Hence we can find a constant K such that for every p p2 we get r\ e

e CK_1 (R**, q(9) and || tj ||„ < K||with But this
A A

means precisely that we can find e CK~1 OR** (p), F) such that

||i0...iJL < * II v.«* IL with Jo-'* We have onJy
A

constructed m0...ik using a fixed i e { ;'0,ik }. Now we must let (i0, ik)

vary. For each (z0,... ik) we choose some i which only depends on the
A

unordered (fc+l)-tupel (i0, if) and construct an element niQ,...ik as

above. Now we can restrict everything to

Verification : Consider a set where cross-sections over C*;+~31 have to be

defined, i.e. a set n F(;+.3)1k. But by 1) follows 1% n c
cz f°r eac^ / e { ?ov5 C- }• This inclusion shows that we

A A

get a well defined element rj e Ck;+V by restricting the elements to
A A

We find that £ | — dr] now. The norm inequalities are not
A

obvious, but recalling how r] is constructed here it is seen that we can apply
Theorem I to obtain the required estimate.

A
Smoothing Theorem. There exists a constant K such that: If £ e

e Zl (93 (p), F) with || £ ||p < oo then we can find £* e Zl (II (p), F) and

î e C1"1 ($' (p). F) for which 3* | »' (p) 3 | »' (p) + ^ and || £* ||p
A A

and || r] \\p < if || £ ||p. Here p < p2 < Pi and K only depends on p2.

Proof. Before we can use the double complex { Ck,vK } we must introduce
two " 8-maps ". To define the c^map, let Zk,vK a C\K consist of all
A A A
£ 6 Ckf such that SÇ 0. Now we shall define the s^map : s1 :

A
Zl (33, F) -> Z°0'!. A section belonging to an element of C°0'! is defined on someAAA A
set U^qn c f l()... l;

where sections of elements of Z!(S3, F) are

defined. Hence we get a natural restriction map sk which also maps cocycles
A A

into cocycles. It is easy to verify that || s1(^) ||p < £|| £ |[p. Theorem I
can be used because n (F^ i;)t for every i and every
i e{ t0,... l, }. Recall that the norm in Z' (33, F) is defined with respect to
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A A
9Î0 here. The " e2-map " : we shall construct a map s2 : Zlfi -> Zl (U, F).

Let 3 } e ZliHere^0,...i(jl0is defined on ^;03Oi(,l0. Because
/v A

^ 0 we see that the elements ÇiQ _ i[Ho are independent of i0. Now

u F(3° covers X (pj. If we put e2 (3);0...if f;,,.in n F(f^
t= 1

A A
then we see that £2(öi0...il is a weU defined section on U\2Ql)iv In

A A A
this way we obtain e2 (£) e Zl (II, F). Here s2 (£) is a cocycle because

ôÇ e= 0. Now we prove that || e2 (0 ||P < ^|| £ ||p-

A
Verification. A computation of ||e2(0||p involves the following:
A

s2 (£) { ^'"iJ- Look at some in the chart if { with i e { i0,..., z) }.
A

We write £>v t/pfoverand compute sup | i() |.
V

A A

A computation of 11 Ç 11

p
involves the following : Look at C,over (7

A
in a chart JFj. Here i is fixed. We write £ ßv(0 (//p)v and

i*

compute sup | av(l) (UiQ,...ilnVL) |. Now u VL covers X0. Hence we would

have sup | av(l\U*0...h n V*)| sup | av (t/j* ...j() | if av av(1) in t/*0 n
V,L V

A

n L*. But this is obvious since ^ ÇiQ _ ihl in n V*)t. Hence

we have || e2(3)||p < || 3 ||p.

Now we are ready to start the proof of the smoothing theorem. We
let K denote a constant, which may be different at different occurences.

We also introduce a double complex { Ck'vK } using (93, 93), i.e. it is defined

just as the previous double complex was, using 93-sets instead of tt-sets.

We shall inductively construct the following elements:

A A
— S P \ çz 7v>l~v

Sv I ^0- V J 3v

fv R0..VH>....-v}eZV3;v o,...,/
A A

— 1 I — V

{ fli0...iv_1^ IQ...Iz_v } e L 3v

Vv — { } G ^ 3v
'

5 v 19---J
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f, - {L'O-À-L «O"*-,-! 6 CsV-V"""1; v 1

and y, { ylo...it_1 } e C'-1 ($3,).

A A
The construction : £ e Zl (93 (p), F) is given. The whole construction

is done using p instead of px and we omit p to simplify the notation. We
A A A

put gj (ç) £0 e Z°0''. Now we apply the Smoothing Lemma and get

such that ctyj £0 with || ||p < if || £0 ||p < || 3 ||„. Put £j. <5(7!.

A A A A

Obviously || ^ ||p <If || rji|UInductively we find <5(7v £v_! and we
A A A

put £v ôrjv where qv are found from the Smoothing Lemma. Finally
A A A ~ ~

we get and we have || ||p < K||^ ||p. Now we define and r]v as

follows. Put £0 £0 where £0 e Z0^ is obtained by natural restriction of
A ~ A
Ç0. Put (7V (-l)v {^0.} which is well defined with respect

to (933v, 933v) by taking natural restrictions. Put £v for v 1,..., /.

A computation shows that drjY when v 1, /. Notice that this
A

is trivial when v — 1. In the following discussion each rjv is restricted to
~ A ~ A ~

(933v5 933v). We have d(rj1—rj1) 0. Hence we find r\1 — rj1 dyl by the
~ ~ ~ A ~

Smoothing Lemma. Now we define yv such that dyv rjv — rjv — ôyv^l

inductively. This is possible because d (rjv — rfv — ôyv^x) 0, for we have

~A~ ~ A ~ ~ A
d(lv-1v-öyv-1) <?,.-!- £v-i - <5 */v_! — <5 (Jv_! -
— <5 (f7v_1-(7v_1) — 0. We get finally yj^eC'j,2,0 and then <5y;_i e

eClïj1'0. We have d(?/,— (7,— ^h-i)0. Therefore we can put y,

^(ni-ni-àyi-x).Itfollows that yte C1'1(®3i) and <5y,

~ A A A A ~
We have s2(£,)— | S3' and for s2 (<?,)= - and (7 the requiredAAAequation £* £ + örj. The estimates follow immediately from the construction

and the Smoothing Lemma.
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