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The set G* = G is open and R** = { V,, ..., V,» } an open covering of G*
such that ¥, « <« U, for ve {1, .., v*}. We have:

L

Cartan’s Theorem. There exists a constant K such that if ¢ € Z' (R*, ¢0)
then ¢&| R** = 6y where ne C'™' (R**, ¢0) and In|| <K| €] for
[ > 1.

This is a simple consequence of Theorem B and Banach’s open mapping
theorem.

Now we apply Cartan’s theorem. We keep the notations as above.
LetG= G X E"(p) and put R* = { U, X E" (p) }. Now R*is a Stein

covering of G. Let G* = G* X E"(p) and R** = {V, X E"(p) }. Let
 Ee Z'(R¥, q0) and write & =Y &, (¢/p) with &, e Z' (R*, q0). We

assume [ ‘< . Now Cartan’s theorem gives

PN
oy | R¥* = o, with n,e C'"Y(R*, q0) and ||n,|| <K[ &) | < .

It follows thatn =Y n,(¢/p)” is well defined in C'~'(R**, g0) and by

definition we have || ; |, < K| /g: I, -

SMOOTHING

We are given a sequence of admissible refinements of measure coverings
in X(p,). Here p; < p, = min p asusual. Let [ beafixedinteger > 1. We are
given B* « B'= B3, <« B3, 1 <. <B; <P < VP<cUW < U=U; < ...
< U, < W. Hereitis also required that (B, 1, U, 1) < (B,, U,); (V*, U*) <

< (B, W) and (By, Uy) < (B, U’). These extra conditions mean: 1) (/} (v,f;“ )

B %

A

(v+1 )
@ VLLO )"'Ll < (Ul\:) el
(UYL AT

(v) . . .
N VL), for each e {1, ..., i, } and

) ( .. . ]
...v_l)jc(U i\; - ﬂV L‘:))...Ll)f fOI' aﬂ l)Je{lO: ZK)L()?"‘LI}'

A
Recall thatall operations are done with respect to p;. Letusput R, =
N

A A ANA
_gm ™ ; ™)
Uty ..i,0V. ... Weconsider elements Cig.rigrgeon €L (R i ig s B)-
A A
Now we take a full collection & = {¢&, 0--rif 1g-.1,  OF such elements which is

anticommutative in { iy, ... % } and { i, ..., 1, }. In this way we get a double
complex C,**. Here § : C,** —» C}*1*and 9 : C** — C**! are the usual
coboundary operators.

NorMm IN C,B*: Let &£ e C,0%; we put
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A A
H 6 ”p = i,(io,“l,’gciz,, { ” fio...ik Lo "Lk (Rt(g—{—lli LO...LK)i(p) Hl with ie {fo,...,
i.}}. Herep >p, and R(”f,)c,bo o = UL AVET ) and |||, is taken with

respect to the chart #7; as usual.

SMOOTHING LEMMA Let ;c > 0. There exists a constant K such that:
If é e C F* with 65 = 0 and |[ é |, < o then we can find ;7 e C% ' such

that é| CckY = 811 and || 7], < K| f |, Here p < p, = yp,; with
0 <y < 1 and K depends only on p,.

Proof. Let us fix iy, ..., i, in the following discussion. Let G = U(v+ ”lk

and put G = (G); (p,) for some ie {1, .., } which is also fixed now.
Now G is Stein in X, and G is Stein in X. We put R* = G n B, , whichisa
Stein covering of G. Also R* = {(GnAV," "), (py) )=y, is a Stein

covermg of G Let f == {f } Now we look at the elements of

g L0
{Zjlo P —510, eZ"(R* F). Here iy, ... 7, is fixed as above.

A

We get a cocycle because we have assumed that 0 = 0. More precisely we

have considered the restriction of &, to R*. We must verify that

0> "‘ik’ LOs+ by
this restriction is possible.

Verification : By definition of Z* (R*, F) we have to look at sets of the
following type: (these are the sets where the cross-sections are defined)

GV ED) o (GaV D), —(GmV("“) Ji= RGP, ) Now
by2)wehave(R(”“.)lkLO )cm(R(V) o )i © U ) N n(V(”))
—R(V) . QED.

g ro”

Nowweput G* = UG "), = = G. Welet R = {(G*V 2N} ot e

A

The system R** is a Stein covermg of (G*),. We are in a good position now

For we are given¢; ; € Z" (R* F). Here R* 1s a Stein covering of G

A

and G is a Stein manifcld. We are working in the chart #”; where the usual

identifications are used. Hence we arrive at the following situation: G is

a Stein manifold with a Stein covering R* = B,,, 0 G. Also G* c = G

and R** = B,,, n G* is a Stein covering of G* such that R** < = R*.
A

The cocycle ;.. ;, is now considered as an element of Z* (R¥, g0) which
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we simply call &; ;. again. Now we apply the result after Cartan’s theorem.

Hence we can find a constant K such that for every p << p, we get y e
gl (}\Q**, q0) and || 7|, < KH& Hp with 8;1 ——2 i But this
means precisely that we can find 1710 i, €C7 1 (R‘w (p), F) such that
| ’;\io---ik ., < K || 510 i |l With 510 = omo . We have only

constructed ;. ; using a fixed i € { i, ..., i }. Now we must let (i, ..., )

vary. For each (i, ... ;) we choose some i which only depends on the

A

unordered (k--1)-tupel (i, ..., i) and construct an element Mig....ip as

above. Now we can restrict everything to C*53".

Verification : Consider a set where cross-sections over chr! have to be

defined, i.e. a set U(V“" V(”f_) . But by 1) follows U("+_3_‘) V("”) c
(R(v+2)

gt for each i€ {ip,.., 1, }. This inclusion shows that we

A

get a well defined element 11 € C"v+3 by restricting the elements #; or i 1O

ch 5l We find that Zj ] Ck v+3 = 8;1 now. The norm inequalities are not

obvious, but recalling how # is constructed here it is seen that we can apply
Theorem I to obtain the required estimate.

SMOOTHING THEOREM There exists a constant K such that If E €
eZ’ (% (p), F) with || 5 |, < 0 then we can ﬁnd 6” € Zl (11 (p), F) and
n e C'” 1(‘13 (p). F) for which é* | B (p) = [Q?’ (p) +511 and Hé* IP
and || /1; |, <K 2 ||,- Here p < p, < p, and K only depends on p,.

Proof. Before we can use the double complex { C*;* } we must introduce
two “ e-maps”. To define the e;-map, let Z** < C** consist of all
¢ € C* such that 6¢ = 0¢ = 0. Now we shall define the &,-map : ¢

Z' (B, F) - Z%. A section belonging to an element of C%' is defined on some

A A A A
set UD V.. <V where sections of elements of Z' (B, F) are

D) VR

defined. Hence we get a natural restriction map &; which also maps cocycles

into cocycles. It is easy to verify that || & (&)||, < K| €]|,- Theorem I
can be used because (U}’ n V(Llo)...”)i c (V(f(’)) ..y for every i and every

t € { tg ... 1, }. Recall that the norm in Z' (B, F) is defined with respect to
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23 here The g,-map ’: we shall construct a map &,: Z43) — Z' (U, F).
Let éj = {510 o J EZ. Hereé is defined on R“’” Because

TN ipo”
66 = 0 we see that the elements 5 o dpig
U V(3L’)covers X (py). If we put ¢, (f)io...il = ¢

=1

are independent of 1,. Now

A
(31) (31)
0---i1°to ln D ig...ig a V Lo

A
then we see that 82(5),0 ;. 1s a well defined section on U(:”) In

t ig...i"
thls way we obtain e, (f)eZl (11 F). Here 82 (Zj) 1S a cocycle because
56 == 0. Now we prove that || ¢, (é)Hp K|l 5 |,

Veriﬁcaz‘ion A computation of || e, (é)H , involves the following:

£, (5) = { 6(2) ..i; - Look at some fi(oz__)_il in the chart #°; with i e { iy, ..., 7, }.

We write élo iy =

= Y a, (t/p)” over (U;;...il)i and compute s%p | a, (U,-t) oo gy) |

A computation of || £ ||, involves the following: Lookat & . ; over (U, ...;0

NV}); in a chart W, Here u is fixed. We write &, = > a,* (#/p)’ and

L*

compute sup |2, (Us,...;n V) |- Now U V] covers X,. Hence we would

103
1

. * . . *

have sup | av(L)(UiO...il NV | =supla, (Us....) |ifa,=a,“in Uiy ovriy O

v,L v

A
. . . . 2 . ¥ %
n V.. But this is obvious since é(io) ooty = Cig g (U 0 V), Hence

we bhave || &, @) ], < || €l
Now we are ready to start the proof of the smoothing theorem. We

let K denote a constant, which may be different at different occurences.

We also introduce a double complex { E’k’v" } using (B, B), 1.e. it is defined
just as the previous double complex was, using B-sets instead of U-sets.
We shall inductively construct the following elements:

ez’

A
= f
- éio...i\ﬁ " —vy

e >
<

}Ezv_q”, ’ = 0,...,l

U 2

v — {éio...ivﬁ 1Ol —y

A A

v—1,1-v
{7]‘0 Ay —1210uet) - v}ecsv

~ - NV—l,v—l. .
y — {nio...iv_:l?Lo...Ll_v} EC 3y > ¥ = 17"'91
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Ve Ol v = 1, (1= 1)

’))V = {yio...iv_l, Lo...Ll_v__l

and y, = {Vio...i,_1 J€ C'™1 (B3

The construction: ¢ e Z' (B (p), F) is given. The whole construction
is done using p instead of p, and we omit p to simplify the notation. We
put & (é) == ioe Z(” Now We apply the Smoothmg Lemma and get 111
such that 6r/1 = 50 with H 111 I, < K|| fo |, < KH 6 1|, Put él = 5;11
Obv1ously H 51 |, < < K|| ny ||,- Inductively we find 5nv = évﬂ and we
put év = 511v where nv are found from the Smoothing Lemma. Finally
we get & and we have || & ||, < K || &]|,- Now we define &, and #, as

follows. Put 50 = &, where &, € Z%' is obtained by natural restriction of

&o. Put ;v = (=" {&q...i,_1r10..y_, y Which is well defined with respect

to (Bs,, B,) by taking natural restrictions. Put Ev = 51;v forv=1,..,L
A computation shows that Ev_l == 8:7v when v = 1, ..., [. Notice that this
is trivial when v = 1. In the following discussion each 1;‘, is restricted to
(B5,, Bs,). We have 8(;1—21) = 0. Hence we find 1;1 — ;/7\1 = 6;1 by the

Smoothing Lemma. Now we define ;v such that a;v = 1;‘, -, — 5;%—1

A,

inductively. This is possible because 0 (7~1v—71vf5;v—1) = 0, for we have

~ A

M=) = by = by =007 = B = By -
—5(11v ; nv ) =0. We get finally y, leC’ >0 and then 5;1_1 €
eClgll’O. We have 6(111——111——5))1_1) = 0. Therefore we can put )7, =
— & (=11~ 871_1). It follows that 7€ C*~1 (Bs)) and 5y, = &, (6, ).
We have iz (E,)A: —AE [ B’ and for ¢, (21) = — :f\* and ; = 37, the required

equation {* = ¢ 4+ on. The estimates follow immediately from the construc-
tion and the Smoothing Lemma.
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