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HOLOMORPHIC MAPPINGS
OF COMPLEX MANIFOLDS

by Shiing-shen Chern

1. A complex manifold is, briefly speaking, a connected

manifold with local complex coordinates defined up to a holo-

morphic transformation. Examples of complex manifolds
include the number space Cm and the projective space Pm of
dimensions m. For m 1 these are known in function theory
as the Gaussian plane and the Riemann sphere respectively.

A holomorphic mapping of a complex manifold M of dimension

m into another one N of dimension n is a continuous mapping

/ such that, if are the local coordinates at a point
Ç e M and %, zn are local coordinates at the image point
f (Q e TV, the mapping is locally defined by the equations

(1) z,

where the functions at the right-hand side are holomorphic
functions in their arguments. By this definition, a holomorphic
mapping f:C1-*P1 is precisely a meromorphic function in
classical function theory.

The first question that arises is the question of existence..
For the condition of a holomorphic mapping is so strong thai
it is not clear that, for given complex manifolds ilf, N, a

holomorphic mapping f: M -> N should exist which is not a constant
(i.e., one that the image / (M) is not a single point of N). In
fact, if M, N are compact Riemann surfaces (a Riemann surface
is a complex manifold of dimension one), then a non-constant
holomorphic mapping /: M-> N exists only when g (M) ^ g (iV),
where g (M), g (N) are the genera of M, N respectively. This
well-known result can be derived as a consequence of the
Riemann-Hurwitz formula (cf. § 2).

A more elementary fact is the result that every holomorphic
function on a compact complex manifold is a constant. From
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this it follows that every holomorphic mapping of Pm into a

complex torus of dimension n is a constant, because Pm is

simply connected and the complex torus has Cn as its universal
covering space.

The above result can be generalized. We recall that an
analytic set on a complex manifold M is a set E satisfying the
condition that, if Ç0 g E, there exist s holomorphic functions
/l7 fs in a neighborhood of Ç0 such that the intersection of E
with the neighborhood is defined by the equations f2L —

fs 0. Then the following theorem is known [6, p. 356]:
Let /: M -> TV be a holomorphic mapping such that M is compact
and that every compact analytic set of TV consists of a finite
number of points. Then / is constant.

2. While these results are of interest, it seems desirable to
formulate some problems of general scope on holomorphic
mappings. I would consider the following a fundamental one:
Given a holomorphic mapping /: M-+N. To determine
relations between the invariants of the manifolds ilf, TV and the
invariants which arise from the mapping /.

A first illustration of this problem is the Riemann-Hurwitz
formula on the holomorphic mapping f:M->N of compact
Riemann surfaces. The formula can be written

(2) 2-2g(M) + w =d(2-2g(N)),

where d is the degree of the mapping and w is the index of
ramification, i.e., the sum of the orders of the points of ramification.
The genera g (iff), g (TV) are invariants of Ttf, TV themselves,
while <i, w depend on the mapping.

Another set of relations of this nature consists of the Plticker
formulas for an algebraic curve. Let an algebraic curve be

defined by a holomorphic mapping /: M -> Pni where TkT is a

compact Riemann surface. Suppose that the curve is non-
degenerate, i.e., that the image f (M) does not belong to a sub-

space of dimension ^ n — 1. To this curve is defined the pth
associated curve fp : M -* G {n, p), 0 S P S n — 1, formed by
the osculating projective spaces of dimension p, where G (rc, p)
is the Grassmann manifold of all p-dimensional projective spaces
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in Pn (G (ft, 0) Pn). fp (M) defines a cycle in G (ft, p), which
is homologous to a positive integral multiple vp of the
fundamental two-cycle of G (ft, p). The integer 0 is called the

order of rank p of our algebraic curve. Geometrically it is the
number of points of the curve at which the osculating spaces
of dimension p meet a fixed generic linear space of dimension

ft — p — 1 of jP„. A stationary point of order p is one at
which the pth associated curve has a tangent with a contact of

higher order. The stationary points are isolated and a positive
index can be associated to each of them. Let wp ^ 0 be the
sum of indices at the stationary points of rank p. Then Plücker's
formulas are

(3) -Wp-vp-t+2vp-vp+1 2 — 2g (M) 0^p^ft-l
Here the right-hand side is an invariant of AT, while the left-
hand side involves quantities which depend on the mapping.

For non-singular algebraic varieties a much more profound
relation between invariants of manifolds and quantities depending

on a holomorphic mapping is given by Grothendieck's
Riemann-Roch theorem [1]. We will not dwell on a discussion
of this theorem. It suffices to say that the theorem contains
as a special case the Riemann-Hurwitz formula. Applying the
theorem of Grothendieck and the classification of singularities
by Thorn, I. R. Porteous [5] derived relations between the
characteristic classes of non-singular algebraic varieties under
the following simple types of mappings: a) dilatations; b) ramified

coverings with singularities of a relatively simple type.
It will be natural to expect that the relations answering our

fundamental problem have a bearing on the existence problem
of holomorphic mappings. An example is the non-existence
theorem of holomorphic mappings between compact Riemann
surfaces in § 1 derived as a consequence of the Riemann-Hurwitz
formula. But our fundamental problem seems to be wider
in scope.

A natural counter-part of the existence problem is the uniqueness

problem, namely the determination of a holomorphic
mapping by its restriction to a certain subset of the original
manifold. Very little seems to be known along this line. As
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an example I wish to state the following so-called Riemann's
theorem [6, p. 343]: Let f : M -* N be a continuous mapping of
a complex manifold M into another N. Let £ be a nowhere
dense analytic set in iff. If the restriction of / to iff—2? is
holomorphic, the same is true for / itself.

3. Another important problem on holomorphic mappings is
the study of the properties of the image set. If /: iff-> N is a

holomorphic mapping and iff is compact, then f (iff) is an analytic
set. If N Pm then a famous theorem of Chow says that / (iff)
is an algebraic set. (We recall that a subset E c Pn is called
algebraic, if there exist q polynomials gl7 ...,gq in the n + 1

homogeneous coordinates of Pn such that E is defined by the
equations g1 gq 0.)

The case that iff, N are of the same dimension has particular
properties for the following reasons: 1) iff, N are oriented manifolds

and / preserves orientation; 2) it will be possible to compare
the local degree of the mapping with the global degree. The
results so obtained are valid for more general mappings. In
fact, the following theorem was proved by S. Sternberg and
R. G. Swan [9]: Let iff, N be two oriented n-dimensional
differentiate manifolds, with iff compact and N connected. Let
/: M-+N be a differentiate mapping, whose Jacobian J (/) is

non-negative. Then either J (f) 0 or N is also compact,
/ is onto, and / has a positive degree on each component of M
on which J (/) =j= 0.

In particular, suppose M be connected and compact, and
J (/) ^ 0. Then N is compact, the degree d (/) of the mapping
is positive, and every point a e N is covered d (/) times when
counted with the proper multiplicity. Since N is compact, we
can equip it with a riemannian metric, so that the total volume
of N is 1. Let v (M) be the volume of the image of M under /,
and let n (a) be the local degree of / at a, i.e., the number of
times that a is covered by / (iff). Then we have

(4) d(f) n (a) v{M)

These results should be considered as a starting-point of the
theory of value distributions in complex function theory, the
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essential difference being that, in the latter case, M is non-

compact.

4. The study of mappings f:M-+N where M is non-

compact is radically different from the compact case and much

finer analytical considerations will be necessary. The natural
idea is to exhaust M by a family of compact domains with
boundary, Dt, as t-> oo, and to study the restriction of / to Dt.

The asymptotic behavior of the geometrical quantities
introduced for the restricted mappings / | Dt as i->oo will then be

the main concern of the problem.
The problem which generalizes (4) to the case of a domain

with boundary can be stated as follows : Let M and N be two
connected, oriented ^-dimensional C^-manifolds with M non-
compact and N compact. Let /: M -> N be a C°°-differentiable

mapping, whose Jacobian J (/) is ^ 0 and =j= 0. Let a e N, and

let / I D be the restriction of / to a compact domain D c M,
such that the image of the boundary dD of D does not contain a.

Equip N with a riemannian metric with total volume 1, and
denote by v (D) the volume of / (D) ci N. Let n (a, D) be the
number of times that the point a is covered by / (D). Our

problem is to express the difference n (a, D) —• v (D) as an
integral over c)D.

An explicit formula solving this problem, which will then be

a generalization of (4), is called the first main theorem. A most
convenient way to derive such a formula is by applying the
theory of harmonic differential forms on a compact riemannian
manifold [7] and proceeds as follows:

We consider the manifold N and denote by $ its volume
element. Let öa be the Dirac measure with singularity at a.
Then O and ôa are both currents of dimension zero and their
difference <P — ôa is orthogonal to the harmonic form #. It
follows from the fundamental existence theorem on harmonic
integrals on a compact riemannian manifold that the equation

(5) AS Öa-<I>

where S is a current of dimension zero and A is the Laplacian,
has a solution in S and that S is a differential form of degree
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n in N—a. Moreover, the solution S is defined up to an additive
harmonic form. Put

(6) A öS

where <5 is the codifferential. Then, under the above hypotheses,
we have the " first main theorem " :

(7) n(a, D)-v(D) J A
f(ÔD)

In order to derive geometrical consequences from (7), it will
be necessary to study the integral at its right-hand side,
particularly its asymptotic behavior. Formula (7) contains as a

special case the classical first main theorem in the theory of
value distributions of meromorphic functions, but is of course
much more general in scope. One can say that the reason which
accounts more than any other for the properties of value
distributions of meromorphic functions is the remarkable behavior
of the boundary integral in (7).

I have carried out the study of the boundary integral in (7)
for the case that M Cn, N — Pn. Let £l7 Çn be the
coordinates in Cn, and let Dt be the ball defined by

(8) CiCi+- + C„C„ ^ t2'

Let

(9) Q0 — (dCi adCi + +dÇn AdCn) s

and let Q be the fundamental two-form of the elliptic Hermitian
metric in Pn such that jPn Qn 1. We put

(10) Vk(t) \DtP Q"-k A Qk0 0

so that e0 (t) is the volume of / (Dt). By estimating the boundary
integral in (7) and applying integral-geometric considerations,
the following geometrical result is derived [3] :

Let /: Cn-+ Pn be a holomorphic mapping which satisfies the
(t) dx

following conditions: 1) The function T (t) jrQ 2n-i >00'
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2) j;o (v[ (t) rfx)/T2" o (T(t)).Thenthe set P„ — f (Q is of

measure zero.

It is well-known that for an arbitrary holomorphic mapping
/: Cn P„, the set Pn — / (Cn) may contain some open subset

of Pn, so that the conclusion will certainly not be true without
some supplementary condition. On the other hand, it is not

necessary to suppose the holomorphy of /, for even in the
classical case of value distributions the main results are true for
quasi-meromorphic functions. It would be an interesting
problem to find the proper restrictions on / for the above conclusion

to be true.

5. The fundamental problem posed in the beginning of § 2

has a meaning also for the case of a holomorphic mapping
/: M iV, where M, N are compact complex manifolds, M being
now with boundary. If both M and N are Riemann surfaces,
the result so obtained forms a generalization of the Riemann-
Hurwitz formula. Such a result is easily derived as a

consequence of the Gauss-Bonnet formula. In the particular case
when N — Pu this is called the second main theorem of the
theory of value distributions of meromorphic functions and
constitutes the core of the theory.

By simply writing down the generalized Riemann-Hurwitz
formula, one can derive in a purely differential-geometric way
the following theorem *) : Let / : D -> N be a holomorphic mapping,
where D is the pointed disk 0 < | Z | <1 and N is a compact
Riemann surface of genus > 1. Then / can be extended as a

holomorphic mapping of the whole disk | Ç | < 1 into N.
Similarly, by a combination of the first and second main

theorems, one can generalize the defect relations on meromorphic
functions to holomorphic mappings /: MP^ where M is a

non-compact Riemann surface such that it can be compactified,
as a Riemann surface, by the addition of a finite number of
points. In the case that the image Riemann surface TV is a

complex torus, one derives in this way the result that the defect
at every point a e N is zero. Geometrically the latter means
that N is " evenly " covered by the image of M.

*) I am indebted to J.-P. Serre for pointing out this conclusion to me.
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All these seem to justify the emphasis we have put on our
fundamental problem. Unfortunately, for higher dimensions,
even when the image manifold is Pm our knowledge on the
problem is still very limited. For a holomorphic mapping
/: M -* .Pn, with M compact, this leads us back to the old theory
of projective invariants in algebraic geometry. With recent
advances in algebraic geometry, it might be possible and worthwhile

to organize the classical results in a better form. The
case of non-compact M awaits much further work.

I hope to have pointed out a few guiding ideas on the subject
of holomorphic mappings. Only the future can tell whether
the topic will lead to results of general mathematical interest.
I cannot help to feel, however, that so long as the complex
structure remains a subject of investigation, the study of
holomorphic mappings should be a logical objective.

In conclusion I wish to say that, while I have discussed the
subject from a geometrical viewpoint, there has been an extensive
literature to which I am indebted and which it would be

impossible to quote in detail. Many of the ideas in geometrical
function theory in one variable originated from L. Ahlfors.
In the case of high dimensions I should mention in particular
the works of H. Schwartz and W. Stoll [8, 10], although they
do not seem to have a close contact with the viewpoints envisaged
here.
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