Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 5 (1959)

Heft: 2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES POLYGONES ET LES POLYÈDRES RÉGULIERS

ENTIERS.

Autor: Ehrhart, E.

DOI: https://doi.org/10.5169/seals-35477

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR LES POLYGONES ET LES POLYÈDRES RÉGULIERS ENTIERS

par E. Ehrhart, Strasbourg

(Reçu le 18 avril 1959.)

Un polygone ou un polyèdre est dit entier si tous ses sommets le sont, c'est-à-dire si ces points, rapportés à des axes rectangulaires de même unité, ont pour coordonnées des nombres entiers. Nous nous proposons de chercher les polygones et les polyèdres réguliers entiers et démontrerons à ce sujet les sept propositions suivantes:

1. Dans le plan XOY tout vecteur à extrémités entières est le côté d'un carré entier.

Car les vecteurs (a, b) et (-b, a) sont égaux et perpendiculaires.

2. A part ces carrés, il n'existe dans le plan XOY aucun polygone convexe régulier entier.

Soit $\varphi = \frac{2\pi}{n}$ l'angle formé par un côté d'un polygone régulier entier à n sommets et le prolongement du côté consécutif. Les pentes m, m' de ces côtés étant rationnelles, $X = \operatorname{tg} \varphi = \frac{m' - m}{1 + mm'}$ l'est aussi.

a) n est impair. tg $n\phi = tg$ $2\pi = 0$ donne

$$C_n^1 X - C_n^3 X^3 + C_n^5 X^5 + ... + (-1)^{\frac{n-1}{2}} X^n = 0$$
.

Les seules racines rationnelles non nulles que pourrait avoir cette équation à coefficients entiers sont donc les diviseurs de $n = C_n^1$. Or $0 < \operatorname{tg} \frac{2n}{n} < 1$ si $n \ge 9$, et l'on sait que $\operatorname{tg} \frac{2\pi}{n}$ est irrationnel pour n = 3, 5, 7.

- b) $n = 2^{\alpha} n'$ (α entier, n' impair). Si le polygone était régulier entier, il existerait un polygone de même nature ayant n' côtés.
- c) $n=2^{\alpha}$ (α entier > 2). Il existerait un octogone régulier entier. Or on sait que $\cos\frac{2\pi}{8}$ est irrationnel, tandis que le cosinus de l'angle des vecteurs-côtés (a, b), (a', b') est $\frac{aa'+bb'}{a^2+b^2}$ donc rationnel.
- 3. Les seuls polygones réguliers entiers de l'espace sont des carrés et des triangles équilatéraux.

Comme dans la proposition 2, il ne reste qu'à examiner le cas de n impair. Pour l'angle φ des vecteurs-côtés (a, b, c), (a', b', c')

$$X = tg^{2} \varphi = \frac{(bc' - b'c)^{2} + (ca' - c'a)^{2} + (ab' - a'b)^{2}}{(aa' + bb' + cc')^{2}}$$

est rationnel et doit être racine de l'équation à coefficients entiers

$$C_n^1 - C_n^3 X + C_n^5 X^2 + ... + (-1)^{\frac{n-1}{2}} X^{\frac{n-1}{2}} = 0$$
.

Les racines rationnelles possibles sont les diviseurs de $C_n^1 = n$. Or $tg^2 \frac{2\pi}{n} < 1$ si $n \ge 9$, et l'on sait que $tg^2 \frac{2\pi}{n}$ est irrationnel pour n = 5 et n = 7.

4. Il n'existe ni dodécaèdre ni icosaèdre régulier entier.

Les faces du dodécaèdre régulier sont des pentagones réguliers. Les faces issues d'un sommet de l'icosaèdre sont cinq triangles équilatéraux dont les côtés opposés à ce sommet forment un pentagone régulier. Or on a vu qu'un pentagone régulier ne peut être entier.

5. Tout cube entier donne deux tétraèdres réguliers entiers inscrits.

Si ABCD, A' B' C' D' sont les bases du cube, ces tètraèdres sont AB' CD' et A' BC' D. Tout cube entier donne un octaèdre régulier entier par inscription et, éventuellement, une homothétie

de rapport deux centrée à l'origine, car les centres des faces du cube, sommets de l'octaèdre, sont des points entiers ou semientiers.

6. Réciproquement, tout tétraèdre régulier entier donne un cube entier par circonscription et, éventuellement, une homothètie de rapport deux centrée à l'origine.

Soit AB'CD' le tétraèdre. Pour construire le sommet A', par exemple, du cube circonscrit, remarquons que \overrightarrow{AA} ' est équipollent à \overrightarrow{MM} ' qui joint les milieux de AC et de B'D'. A' est donc entier ou semi-entier puisque la composante scalaire de \overrightarrow{MM} ' sur OX, par exemple, est $\frac{1}{2}$ ($X_{D'} + X_{B'} - X_{A} - X_{C}$).

De même tout octaèdre régulier entier donne un cube entier par circonscription et, éventuellement, une homothétie de rapport deux centrée à l'origine. — Soient ABCD, A' B' C' D' les bases du cube circonscrit. Les centres N, N, P des faces ABCD, ABB'A', BCC' B' et les centres M', N', P' des faces opposées sont les sommets de l'octaèdre. Le sommet A, par exemple, du cube est un point entier ou semi-entier, car son abscisse, par exemple, est $X_{M} + \frac{1}{2} (X_{N'} - X_{N}) + \frac{1}{2} (X_{P} - X_{P'})$.

7. Il existe deux familles de cubes entiers à trois paramètres.

Nous ne distinguons pas deux cubes déduits l'un de l'autre par une translation entière ou par une même permutation des trois coordonnées de chaque sommet.

Famille A. Le cube construit sur les vecteurs \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} de composantes scalaires (a, b, o), (-b, a, o), (o, o, c) est entier si les entiers a, b, c satisfont $c^2 = a^2 + b^2$. On sait que cette équation diophantienne a pour solution générale a = k $(m^2 - n^2)$, b = 2kmn, c = k $(m^2 + n^2)$, où k, m, n sont des entiers arbitraires (à l'échange de a et de b près).

Famille B. Le tétraèdre construit sur les vecteurs \overrightarrow{OA} (a, b, c), \overrightarrow{OB} (b, c, a), \overrightarrow{OC} (c, a, b) est entier et régulier si les entiers a, b, c satisfont

$$\cos (OA, OB) = \frac{ab + bc + ca}{a^2 + b^2 + c^2} = \frac{1}{2}$$
.

Cette équation diophantienne, équivalente à

$$2ab + 2bc + 2ca - a^2 - b^2 - c^2 = 0$$

ou

$$(\sqrt{a} + \sqrt{b} + \sqrt{c}) (-\sqrt{a} + \sqrt{b} + \sqrt{c}) (\sqrt{a} - \sqrt{b} + \sqrt{c})$$

 $(\sqrt{a} + \sqrt{b} - \sqrt{c}) = 0$,

est satisfaite par

$$a = (m-n)^2$$
, $b = m^2$, $c = n^2$.

Le cube circonscrit au tétraèdre OABC est entier (et non semi-entier). On voit en effet facilement que les composantes scalaires des bimédianes NM', NN', PP' du tétraèdre sont entières quels que soient les entiers m, n et leurs signes. Une homothétie de rapport entier k, centrée à l'origine, introduit le troisième paramètre.

Existe-t-il d'autres familles de cubes entiers à trois paramètres? Nous soumettons au lecteur cette question que nous n'avons pas pu trancher.

Remarque I. La mesure de l'arête de tout cube entier est un nombre entier. Pour les cubes A et B on le vérifie facilement. En effet, si X est la mesure de l'arête, A donne X = c = K $(m^2 + n^2)$ et B fournit $2X^2 = OA^2 = K^2[m^4 + n^4 + (m-n)^4] = 2K^2(m^2 - mn + n^2)^2$, donc $X = K(m^2 - mn + n^2)$.

Montrons directement que la propriété appartient à tout cube entier. Soient $\overrightarrow{V}(a,b,c)$, $\overrightarrow{V'}(a',b',c')$ deux vecteurs d'origine O, à extrémités entières, égaux et perpendiculaires. Le vecteur $\overrightarrow{p} = \overrightarrow{V} \times \overrightarrow{V'}$ a pour composantes scalaires A = bc' - b'c, B = ca' - c' a, C = ab' - a' b. Les longueurs p, v de \overrightarrow{p} , \overrightarrow{V} sont liées par $p = v^2$ ou $\sqrt{A^2 + B^2 + C^2} = a^2 + b^2 + c^2$. Si M(x, y, z) est un point du support de \overrightarrow{p} tel que OM = v, on peut écrire

$$\frac{|Ax + By + Cz|}{a^2 + b^2 + c^2} = \rho = \sqrt{a^2 + b^2 + c^2}.$$

Si M est un point entier, le premier membre de cette égalité est rationnel. Le dernier doit donc l'être aussi: $a^2 + b^2 + c^2$ est un carré parfait.

Remarque II. La proposition 7 fournit des solutions de deux systèmes diophantiens symétriques homogènes. La recherche des carrés entiers de l'espace est équivalente à la résolution du système diophantien

$$\begin{vmatrix} X^{2} + Y^{2} + Z^{2} = X'^{2} + Y'^{2} + Z'^{2} \\ XX' + YY' + ZZ' = 0 , \end{vmatrix}$$
 (1)

qui exprime que deux vecteurs à extrémités entières, sont égaux et perpendiculaires.

La famille des cubes A fournit en particulier la solution

$$X = K (m^2 - n^2)$$
, $Y = 2Kmn$, $Z = 0$, $X' = 0$, $Y' = 0$, $Z' = K (m^2 + n^2)$.

La famille B donne

$$X = K (m^2 - mn)$$
, $Y = Kmn$, $Z = K (n^2 - mn)$, $X' = K (n^2 - mn)$, $Y' = K (m^2 - mn)$, $Z' = Kmn$.

De même la recherche des triangles équilatéraux entiers de l'espace conduit au système diophantien

$$| X^2 \times Y^2 + Z^2 = X'^2 + Y'^2 + Z'^2 = 2 (XX' + YY' + ZZ').$$
 (2)

On voit la solution par B

$$X = K (m - n)^2$$
, $Y = Km^2$, $Z = Kn^2$, $X' = Km^2$, $Y' = Kn^2$, $Z' = K (m - n)^2$.

Par A on trouve

$$X = K (m^2 - n^2), \quad Y = 2Kmn, \quad Z = K (m^2 + n^2),$$

 $X' = -2Kmn, \quad Y' = K (m^2 - n^2), \quad Z' = K (m^2 + n^2)$

et aussi

$$X = K (m^2 - n^2),$$
 $Y = 2Kmn,$ $Z = K (m^2 + n^2),$ $X' = K (m^2 - n^2 - 2mn),$ $Y' = K (m^2 - n^2 + 2mn),$ $Z' = 0.$