Bau und Bewegung im gotthardmassivischen Mesozoikum bei Ilanz (Graubünden)

Autor(en): Nabholz, Walther K. / Voll, Gerhard

Objekttyp: Article

Zeitschrift: Eclogae Geologicae Helvetiae

Band (Jahr): 56 (1963)

Heft 2

PDF erstellt am: **17.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-163044

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Bau und Bewegung im gotthardmassivischen Mesozoikum bei Ilanz (Graubünden)¹)

Von Walther K. Nabholz (Bern) und Gerhard Voll (Berlin)

Mit 28 Textfiguren

Gedruckt mit Subvention der Stiftung Dr. Joachim de Giacomi der Schweizerischen Naturforschenden Gesellschaft²).

INHALTSVERZEICHNIS

Summary
Einleitung und Problemstellung
Methoden, Nomenklatur
1. Schichtung und geopetale Gefüge
2. Erste Schieferung, Faltung und Streckung
a) Schieferung
b) Quarzgänge
c) Faltung
d) Streckung
e) Schuppenbildung
3. Zweite Faltung, Schieferung und Streckung
a) Faltung
b) Schieferung
c) Streckung
d) Allgemeine Bemerkungen
4. Dritte und weitere Faltungen, Schieferungen und Streckungen
5. Faltung um Achsen parallel zur Streckungsfaser
6. Verhältnis der Metamorphose zu Faltung und Schieferung
7. Vergleich mit benachbarten Gebieten
8. Deutung
9. Zusammenfassung

¹⁾ Über den Inhalt der vorliegenden Arbeit referierten die Autoren an der Tagung der Geologischen Vereinigung in Bern, am 9. März 1963. Der rein gefügekundliche Teil der Arbeit wurde vom zweitgenannten Autor ausgeführt. Im Gebiet des Profils südlich Ilanz, das vom erstgenannten Autor seit Jahren im Auftrag der Schweizerischen Geologischen Kommission kartiert wird, wie auch in der Scopi-Mulde am Lukmanierpass, unternahmen beide Autoren im Sommer 1962 eine Reihe gemeinsamer Begehungen, bei denen sie unter anderem auch von den Herren W. Jung und J. D. Frey aus Zürich besucht wurden.

²) Die Autoren sprechen dem Stiftungsrat der genannten Stiftung und insbesondere dessen Präsidenten, Herrn Prof. Dr. J. Cadisch, für den namhaften Beitrag an die Druckkosten ihren besten Dank aus.

SUMMARY

Structures and lithology were studied along a cross-section through the Eastern cover of the Gotthard Massif (Swiss Alps) and in selected areas from the Penninic and Helvetic nappes of the neighbourhood. Grading, distribution of heavy minerals and the intersections bedding (ss)/first cleavage (s_1) or ss/quartz veins served to recognize the sequence of mesozoic strata as right way up. First Folds (B_1) were developed into a Schuppen-Structure with flat transport towards the N. Only the long, noninverted limbs are preserved. s_1 lies close to ss everywhere and dips more steeply towards the South. Quartz veins follow s_1 in psammopelitic rocks. Continued rotational deformation results in symmetry-constant repeated refolding and recleaving. The fold-axes of all phases of folding vary from ENE – trend over EW-, NS- into NNE-strike. At the same time the rotation of the short fold-limbs changes from towards NNW towards N, E and, finally, ESE. Single fold-axes curve and the axes of overriding or neighbouring folds vary. The sense of rotation is interpreted as gravitational gliding from the massif-culmination towards the E. During all phases of folding the rocks are stretched, the stretching lineation has a constant NNE-trend. The stretching fabrics are rotated and renewed during each repetition of the symmetry-constant folding. The folds of the second and later phases do not exceed the 10 m-range.

Clastic carbonate and quartz-grains are preserved but strongly recrystallized. Their recrystallisation lasts through all phases of deformation. There is no static annealing to outlast the deformation. The culmination of chloritoid-growth is, however, late in the deformational history.

This deformation continues towards the South into the most northerly Penninic nappes. The Penninic nappes of the Engadin window show a similar deformation with symmetryconstant refolding, NW-SE-stretching and flat cleavages correlated to the nappe transport. The overlying Ötztal-gneiss-nappe and its mesozoic cover have, at the same time, suffered deformation after B₁, s₁ and this NW-SE-stretching without refolding. The Helvetic nappes North of our area have suffered the same NW-SE-stretching (in a₁); s₁ and this stretching were developed during the nappe transport. The intensity of the deformation decreases within these nappes towards the North and upwards. It was accompagnied by a phyllitic metamorphism everywhere. There is no trace of a pre-metamorphic nappe transport which left no traces in the fabrics. Folds, nappe boundaries, Schuppen-structure, cleavages and stretching can be related to our first or later phases of folding everywhere.

EINLEITUNG UND PROBLEMSTELLUNG

Man kann in den Alpen zweierlei Bauelemente unterscheiden:

- 1. die autochthonen «Massive» zusammen mit ihrer jungpaläozoisch-mesozoischtertiären Sedimentbedeckung.
- 2. Decken, horizontal weit verfrachtete Gesteinspakete aus sialischem Untergrund und (oder) jungpaläozoischer und jüngerer Sedimentbedeckung, oft geosynklinaler Natur.

Diese Unterscheidung darf nicht scharf trennen, da verschiedene Züge zwischen diesen Elementen vermitteln. Einmal können sowohl in den «Massiven», als auch in den Decken Teile des präalpidisch deformierten u. z.T. metamorphosierten Untergrunds erscheinen. Zum anderen können die Sedimentserien auch der Massivbedeckung geosynklinale Mächtigkeit erreichen (z.B. Flysch des tertiären (par) autochthonen Helvetikums). Und schliesslich sind die Baustile nicht scharf getrennt, da die «Massiv»-Gebiete völlig von der alpinen Orogenese überwältigt und durchbewegt wurden. Dabei entwickelten sich auch in den «Massiven» kleinere und grössere, horizontal verfrachtete Schuppen und kleine Decken, die sich in ihrem Bildungsmechanismus nicht von den grossen Decken mit ihren Gneiskernen unterscheiden.

Das hier behandelte Profil südlich Ilanz (vgl. Fig. 1) rechnet man zu einem der «Massiv»-Gebiete, zum Gotthard-Massiv. Von diesem umfasst es nur die post-

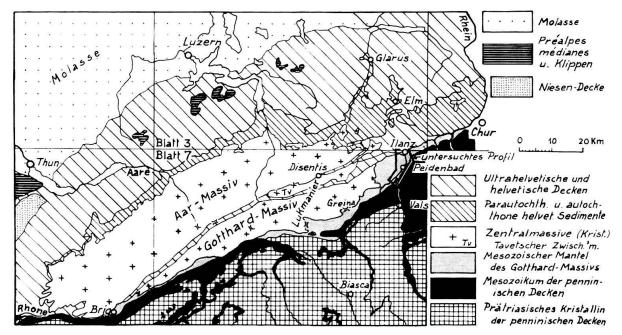
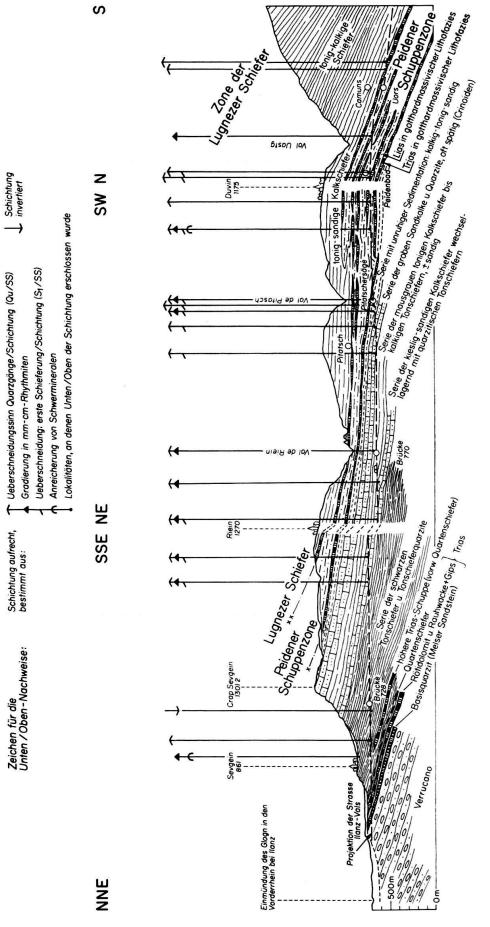


Fig. 1. Die geologisch-tektonische Lage des Untersuchungsgebietes. (Mit Blatteinteilung der Geologischen Generalkarte der Schweiz, 1:200000.)


karbonen Deckserien des präalpidischen Grundgebirges: mächtigen Verrucano (der nur teilweise ins Gebiet hereinreicht), eine dünne Triasfolge und wieder mächtiger entwickelten Lias. Die Serie wurde von Nabholz (1948) gegliedert; die bis dahin von R. Staub (1938) und andern Autoren als Bündnerschiefer angesprochenen Serien wurden als Lias erkannt, dieser unterteilt. Der Bau wurde als flacher, Nvergenter, aufrechter, autochthoner Schuppenbau gedeutet.

1961 dehnten Baumer, Frey, Jung & Uhr ihre Untersuchungen von westlichen Gebieten auch in dieses Profil aus. Sie schliessen, dass die von Nabholz als aufrecht gedeutete Schichtfolge invertiert sei (in der nördlichsten, mächtigsten Schuppe) und ohne aufrechten Flügel vorliege. Daraus folgerten sie, dass die Serien höchstens noch als parautochthon zu betrachten seien und dass beträchtliche Horizontaltransporte sie betroffen haben.

Eines der Probleme der Untersuchung lautet also: besteht die Inversion wirklich, oder war die von Nabholz (1948) gegebene Deutung der aufrechten Lagerung richtig?

Weiterhin sind die Probleme geotektonisch-gefügekundlicher Natur. Die Deformation des studierten Gebietes erweist sich als typisch für die weitere Umgebung und gibt bedeutsame Hinweise auf die Verformung anderer Gebiete im und quer zum Streichen. Nördlich an die Profillinie anschliessend (etwa im Tal des Vorderrheins) liegt die Wurzel der helvetischen Hauptschubmasse der Glarner Alpen (R. Helbling, 1938), die R. Staub (1954) als Glärnisch-System und 1961 als Glärnisch-Decke bezeichnet. Weiter nördlich dieser Wurzellinie folgen die (par) autochthonen Hüllserien des Aar-Massivs, mit dessen kristallinem Unterbau in einen intensiven, nordvergenten Schuppenbau verwickelt.

Damit erhebt sich die Frage nach dem Baustil dieser autochthonen «Massiv»-Gebiete im Vergleich mit dem der Decken im helvetischen, nördlichen und im penninischen, südlichen Bereich (Lugnezer Schiefer, Grava Serie, Adula-Decke).

Sedimentare Hülle des Gotthard - Massivs mit Verrucano, Trias und Lias

Fig. 2. Die sedimentäre Hülle des Gotthard-Massivs im Profil Ilanz-Peidenbad, mit eingetragenen Unten/Oben-Nachweisen

Diese Frage schliesst viele Teilfragen in sich: eine davon ist die nach dem Mechanismus der Deckenbildung, ob die an Deckenserien beobachteten Gefüge der Dekkenbildung angehören, ob sie ganz oder teilweise den fertigen Decken aufgeprägt sind. Mit anderen Worten: sind die beobachtbaren Faltungen, Schieferungen und Streckungen während der Horizontaltransporte oder nach ihnen gebildet? Damit fragt man: sind die gewaltigen Decken vormetamorph gebildet? Wunder-LICH (1958, p. 148), PLESSMANN und WUNDERLICH (1961, p. 206), sowie CHATTERJEE (1961, p. 54) und (1962, p. 597) haben diese Frage positiv beantwortet. Dies führt weiter zu den Fragen: Ist die Gefügebildung für «Massiv»- und Hüllgebiete eine mechanisch und zeitlich einheitliche und - wenn auch graduell verschiedene -, so doch prizipiell ähnliche? Haben verschiedene «Massiv»- oder Deckengebiete ihre Gefügebildung zu verschiedener Zeit und in verschiedener Weise erlitten? Bestehen prinzipielle Unterschiede etwa in der Deformation der penninischen und der helvetischen Decken? Sind die einen unter Metamorphose ihres Gefüges und Mineralbestands gewandert, die anderen nicht? Lässt sich eine Stockwerktektonik erkennen, vermag sie Auskunft zu geben über die Bedeckung bei den Horizontaltransporten? Die Antwort verlangt zunächst das Eingehen auf die bescheideneren Fragen nach dem Mechanismus der am Ort erfolgten und beobachtbaren Faltungen, Wiederfaltungen, Schieferungen und Streckungen.

METHODEN, NOMENKLATUR

Aufbauend auf die bisherigen, stratigraphischen Kenntnisse sind die verwendeten Methoden die der Gefügekunde. Auch sedimentäre Gefüge, wie Grading und Schwermineral-Anreicherungen wurden beachtet. Als unterscheidbare Gefüge wurden ausgeschieden:

```
ss = Schichtung mit sedimentären Korngrössen- und Material-Unterschieden, mit Grading und Seifenbildung.
```

```
egin{array}{l} s_2 \\ s_3 \\ s_4 \\ \end{array} = Z weite, dritte, vierte Schieferung. \\ eta_1 \\ eta_2 \\ eta_3 \\ eta_4 \\ \end{array} = S chnittgerade zwischen ss und s_1, bezw. s_2 und s_1, s_3 und s_2, s_4 und s_3. \\ eta_3 \\ eta_4 \\ B_1 \\ B_2 \\ = A chse erster, zweiter, dritter und vierter Falten. \\ B_3 \\ B_4 \\ Str_1 \\ str_2 = S treckung im Zusammenhang mit erster, zweiter usw. Faltung. \\ str_3 \\ str_4 \\ \end{array}
```

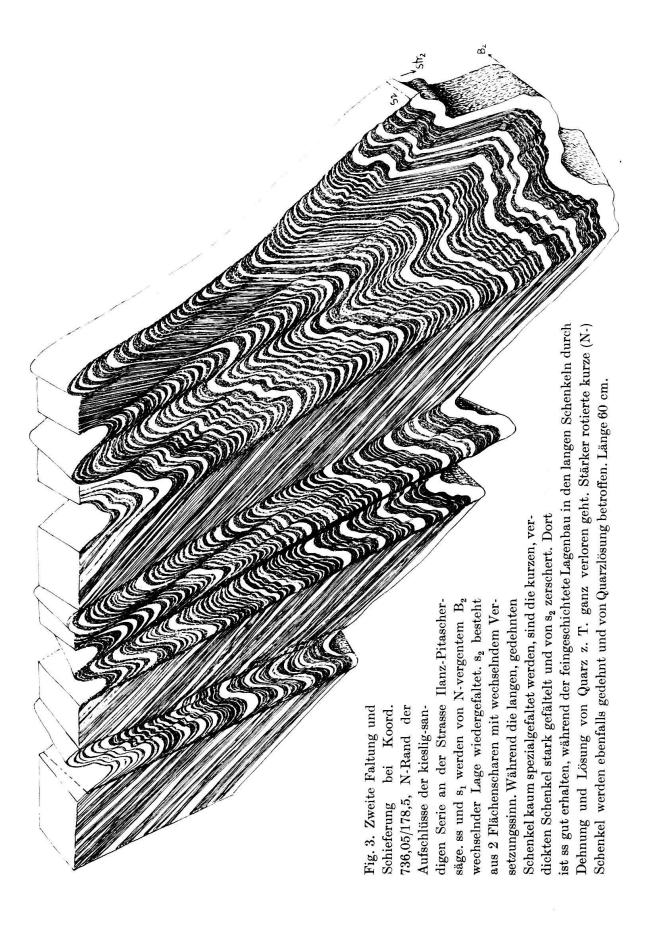
 $s_{1s}=Flächenschar der ersten Schieferung, die mit ihrem Versetzungssinn die Gesamtrotation unterstützt. «Synthetische» <math display="inline">s_1$ -Schar.

 $s_{1a}=$ Flächenschar der ersten Schieferung, die mit ihrem Versetzungssinn der Gesamtrotation entgegenarbeitet (s_{1a} ist s_{1s} konjugiert). «Antithetische» s_1 -Schar.

 $B_{\bf 1'} = B_{\bf 2'} = F$ ältchen, die sich mit str₁, str₂ usw. bilden und die Streckung mit gleichem Index überle- $B_{\bf 3'} = B_{\bf 1'}$ ben, deren Achse streng parallel der Streckungsfaser bleibt.

Als erste Faltung, Schieferung und Streckung wurden die Gefügeelemente dieser Art bezeichnet, die als erste der Schichtung aufgeprägt sind. Eine hypothetische, vormetamorphe Faltung, die keine beobachtbaren Gefüge-Äquivalente im Gestein hinterlassen hat, wurde nicht gefunden. Sie wäre vor der B_1 -, s_1 -,

Die Indizierung der Falten ergibt sich dadurch, dass die zweite Faltung die Schieferung (und Falten) der ersten faltet, die dritte die Falten und Schieferung der zweiten usw.


Als methodisch wertvoll hat sich auch hier die Erkenntnis erwiesen (Voll, 1960, p. 561), dass Quarz- und Quarz-Ankerit-Gänge sich bei Metamorphose in Chloritschieferfazies (Phyllite) in ihrer grossen Mehrzahl in pelitbetonten und mergeligen Ausgangsgesteinen parallel s_1 (genauer: parallel s_{1a}) bilden. Bei weiteren Wiederfaltungen und -Schieferungen verhalten sie sich passiv, während sich neue Quarzgänge parallel zu den jüngeren Schieferungsflächen kaum bilden. Dies gilt nicht mehr streng in sehr quarzreichen und rein kalkigen Ausgangssedimenten, wo sich auch bei Wiederschieferungen s-parallele Gänge dieser Art bilden können. Kommt dies vor, so erkennt man diese Gänge leicht daran, dass sie mit einer jüngeren Schieferung zusammen die erste durchsetzen, nicht der ersten folgen, mit der die s_1 -parallelen, ersten Gänge gefaltet und durchschiefert sind.

Da diese s₁-parallelen Quarz-Karbonat-Gänge stets gut sichtbar sind und auch bei mehrfacher Wiederfaltung oft noch mit den Schichten, die sie durchsetzen, erhalten bleiben, gestatten sie die zur Konstruktion grösserer B₁-Falten nötige ss/s₁-Überschneidung abzulesen. Mit Hilfe solcher Gänge kann man diese Überschneidung auch dort noch erkennen, wo der Winkel ss/s₁ durch starke Dehnung der geschieferten Lagen sehr klein wurde, oder wo die s₁-parallele Glimmer-Basis-Orientierung im Zuge wiederholter Faltungen und Schieferungen verwischt wurde.

1. Schichtung und geopetale Gefüge

Der im nördlichsten Teil des Profils erhaltene Verrucano lässt ss kaum, Unten/Oben-Nachweise nicht erkennen. Seine aufrechte Lagerung ist durch die Überlagerung durch den Melser Sandstein fast sicher. In der darüber folgenden geringmächtigen Trias ist die Schichtung in Rötidolomit und Quartenschiefern, stark gefaltet und zerschert, noch erkennbar. Sedimentäre Unten/Oben-Nachweise haben wir dort noch nicht gefunden. Dagegen zeigen die Quartenschiefer bei der Strassenkurve südlich oberhalb Peidenbad (Koord. 734,3/175,0) in einer südlicheren Triasschuppe Gradierung in rhythmischen mm-Fein-Schichten, mit normaler Lagerung. Im übrigen geht für die Triasvorkommen normale Lagerung schon aus der kartierbaren Abfolge der Schichtglieder hervor.

Im Lias, der die Hauptmasse der Profil-Serien aufbaut, ist die Schichtung fast überall erkennbar. Sie kommt zum Ausdruck einmal im Verband der von Nabholz (1948) ausgeschiedenen Lias-Glieder. Besonders die Serien der kieslig-sandigen

Kalkschiefer, wechsellagernd mit quarzitischen Tonschiefern, und die groben Sandkalke und Quarzite bilden massive Leithorizonte, die weithin am Gehänge aufgeschlossen sind (siehe Fig. 2).

Diese Serien sind gut genug aufgeschlossen, um erste, grosse Falten in ihnen zu erkennen. Solche Falten finden sich nicht, alle beobachtbaren Falten sind zweite oder jüngere. Waren also in der Serie erste oder gar vormetamorphe Falten (B₀) vorhanden, so mussten ihre Amplituden und Wellenlängen über die Ausmasse des Profils hinausgehen. Heute liegen die Liasschichten als planparallele Platten übereinander, die in sich nur durch jüngere Faltungen kleingefaltet sind. Damit sind auch die unter, zwischen und über diesen kompetenten Lagen liegenden inkompetenten Schichtglieder der schwarzen Tonschiefer und Tonschieferquarzite, der mausgrauen, tonigen Kalkschiefer und der Serie mit unruhiger Sedimentation als solche plamparallele, kleingefaltete Platten erkennbar.

Die Schichtung einzelner Bänke und Lagen ist in allen kompetenten Paketen sehr gut erhalten. In den inkompetenten ist sie stark gefaltet und zerschert. Aber in den verdickten Schenkeln und Scheiteln zweiter und dritter Falten sind immer noch alle Details von ss erkennbar (Fig. 3, 5). Als Schichten treten in erster Linie auf:

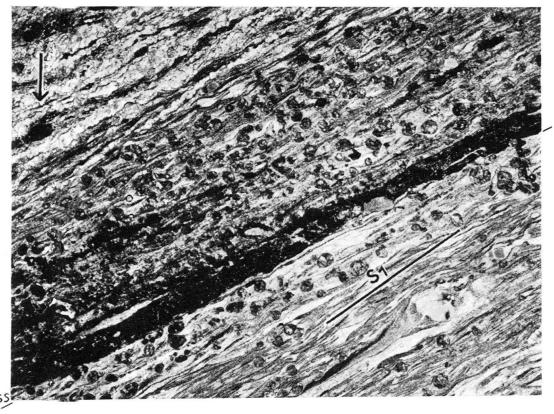


Fig. 4. Crinçoidenkalk. Lias aus der Serie direkt über der Trias nördlich Peidenbad. Die Crinoidenstengel sind im diesem str₁-parallelen Schliff fast alle senkrecht zum Zentralkanal getroffen, waren also schon seedinentär mit diesem zur Trogachse parallel geregelt. Sie sind kaum deformiert. An sie schliessen siech ange Streckungshöfe mit sehr feinen, parallel str₁ gelängten Calcit-Körnern an. Die lange Achse der Streckungshöfe liegt unter einem spitzen Winkel zu ss. Ooide (?) sind stark in s₁ geflacht, in str₁ ausgezogen. Vergr. $5 \times$. Pfeil=geographisch unten.

1. Bis über 1 m mächtige Sandsteine und Kalksandsteine, meist kalkig, oft mit Crinoiden-Stielgliedern oder deren Bruchstücken (Fig. 4, 9). Es lässt sich nicht sicher entscheiden, ob an diesen dickeren Bänken neben solchen Kalkpsammiten und zooklastischen Kalken auch Bänke mit ganz oder teilweise chemischer Kalkfällung (mit oder ohne Mithilfe von Organismen) beteiligt sind. Doch darf man hierher wohl die karbonatischen Oolithe rechnen, die besonders im obersten Teil des Lias-Profils verbreitet sind. Die Oolithe bauen 1 cm bis über 10 cm dicke Lagen auf, die mehrfach repetiert übereinander folgen und stets sehr gute Grössenauslese der Oolithe zeigen. Nicht selten nehmen Crinoiden-Bruchstücke an diesen Lagen teil und zeigen, dass auch die Oolithe durch Strömung



Fig. 5. Rhythmit aus der kieslig-sandigen Serie (Koord. 736,05/178,5, wie Fig. 3). Die Glimmer und – als Abbildungskristallisate – die Chloritoide (kleine dunkle Flecken in Glimmerlagen) liegen mit der Basis noch \mathbf{s}_1 parallel. ss und \mathbf{s}_1 sind durch \mathbf{B}_2 gefältelt. In den Schenkeln der Fältchen bilden sich beginnende anti- und synthetische \mathbf{s}_2 -Flächen, ss ist im verdickten Schenkel gut erhalten, in den gedehnten und verdünnten Schenkeln verschmelzen die Schichten teilweise. Zwischen ss und \mathbf{s}_1 ist ein Winkel nicht erkennbar. Vergr. $4\times$. Pfeil=geographisch unten.

transportiert sind. Während der Ablagerung der zooklastischen Kalke und Kalksandsteine mussten die Strömungen immerhin stark genug gewesen sein, um Komponenten bis ca. 2 cm Durchmesser zu transportieren. Ein Hiatus in der Korngrösse ist oft noch erkennbar und geht wohl auf teilweise schwebenden, teilweise hüpfenden Transport zurück. Die Herkunftsrichtung kann man in unserem Gebiet dem Sediment nicht sicher entnehmen. In vielen Schliffen fällt auf, dass Crinoiden-Stielbruchstücke mit dem Zentralkanal \pm parallel dem regionalen Streichen liegen (Fig. 4). Diese Einregelung ist nicht allein durch tektonische Vorgänge zu deuten; eventuell weist sie auf einen kurz vor der Ablagerung erfolgten Transport parallel zur Trogachse hin. Als Schwerminerale treten in allen Liassedimenten Magnetit, Turmalin, Zirkon und Rutil auf. Der klastische Turmalin ist mittelstark gelbbraun bis olivbraun gefärbt, sehr selten mit schmalen (z. T. in der Streckungsrichtung längeren) blaugrünen metamorphen Rinden. Auch diese Klastika geben keinen sichern Hinweis auf das Herkunftsgebiet.

2. Graphitoid-reiche Pelit-Schiefer ohne oder mit rhythmischer Wechsellagerung mit mm- und cm-Psammit- und Kalkpsammit-Lagen (Fig. 3, 5, 7). Nur selten ist der Rhythmus ein regelmässiger A-B-A-B-Rhythmus. Meist schwankt die Dicke der psammitischen Lagen von ½ mm bis mehrere cm (meist bis 2 cm).

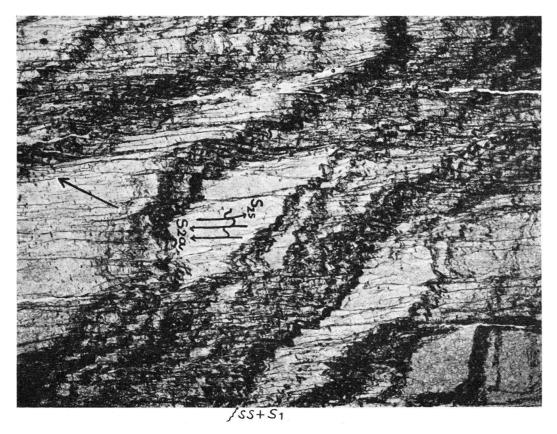


Fig. 6. Lias aus der Profilbasis, dicht südwestlich Sevgein. Die Schichtung war bereits sedimentär unruhig auskeilend. Ihr liegt das noch durch Glimmer tapezierte s_1 ununterscheidbar parallel. ss und s_1 sind durch B_2 intensiv gefältelt, die antithetische s_2 -Schar dominiert. Solche s_2 -Flächen treten in den Schenkeln aller Fältchen auf, durchdringen das Gefüge jedoch noch nicht. Vergr. $5 \times$. Pfeil=geographisch unten.

Oft keilen die psammitischen Lagen spitz- bis stumpf-linsig aus (Fig. 6). Tonige Häute und Anreicherung von Schwermineralen dazwischen deuten darauf hin, dass es sich dabei um Feinabtrag, wohl z.T. in Verbindung mit Ripple-Current-Bedding handelt. Das Pelit-/Psammit-Verhältnis in solchen feingeschichteten Bereichen beträgt meist ca. $^{3}/_{2}$ bis $^{1}/_{1}$.

Der erste der beiden genannten Typen herrscht in den kompetenten Paketen vor, doch kommen beide Typen in allen Schichtgliedern wechsellagernd vor. Nur der schwarzen Tonschieferserie zuunterst im Liasprofil sind die dickeren Bänke fremd. Hier herrschen sandige Pelite vor, in denen man häufig die erwähnten Rhythmite findet. Typische Turbidite fehlen in der ganzen Schichtabfolge.

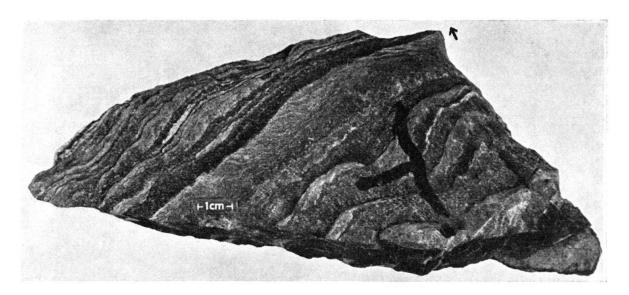


Fig. 7a. Gradierung in Rhythmit, – $60\,\mathrm{m}$ nördlich des Lawinendachs, das an der Strasse Ilanz-Peidenbad beim Kilometerstein 4 liegt –, an der Oberseite der kieslig-sandigen Serie. Die rhythmische Schichtung im mm- bis cm-Bereich zeigt z. T., Gradierung (Pfeil deutet nach unten) und linsiges Auskeilen. Die photographierte Fläche liegt s $_2$ fast parallel, die Schnittgerade ss/s $_2$ streicht NW. ss ist hier um eine B_2 -Falte (abwickelbar) verbogen. Trotzdem sind die Feinheiten der Schichtung noch gut erkennbar. Die feine, ss durchziehende Bänderung ist durch metamorphe Bänderung parallel s $_2$ geschaffen und hier schräg angeschnitten.

Anmerkung während der Drucklegung: Der vom Fluss sauber gewaschene Aufschluss, von dem das in Fig. 7 abgebildete Handstück stammt, wurde bei einem Hochwasser im August 1963 leider meterhoch von Flussgeschiebe überdeckt.

Grading fanden wir in den dicken Bänken nicht. Dagegen konnte es in einigen Fällen in den Rhythmiten nachgewiesen werden. Dort tritt es in 2 mm bis 3 cm dicken Lagen auf, die an der Basis 15 Vol % Glimmer enthalten und nach oben in Pelit-Phyllite übergehen (Fig. 7a und 7b). In solchen Rhythmiten zeigen nur einzelne Lagen oder Pakete aus 2–7 Feinschichten die Gradierung des Stoffbestands, die meisten Lagen sind beiderseits scharf begrenzt (Fig. 3, 5, 6). Solches Grading tritt auf, gleich, ob die Rhythmit-Pakete in den kompetenten Horizonten den dickeren Kalkpsammitpaketen zwischengeschaltet sind, oder in den inkompetenten zwischen dünneren Psammit- oder zwischen Pelit-Lagen liegen.

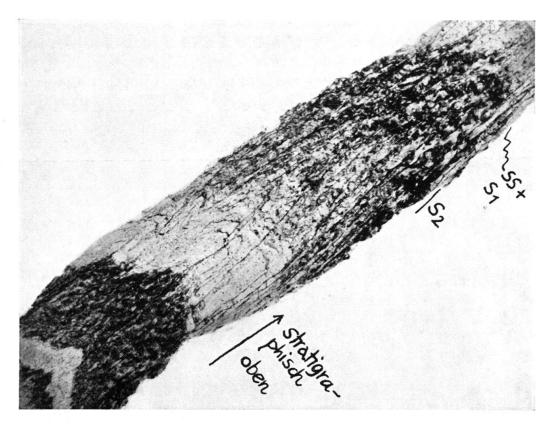


Fig. 7 b. Gradierung in Rhythmit, Dünnschliff aus der in Fig. 7 a abgebildeten Gesteinsprobe. Die $2\,\mathrm{cm}$ dicke Lage ist an der Basis quarzreich und wird nach oben allmählich reicher an Glimmer und Graphitoid (+Chloritoid). Vergr. $4\times$.

Gradierung der Korngrössen kann man nicht mehr finden, da die klastischen Körner in diesem Sedimenttyp fast restlos rekristallisiert sind. Klastische Feldspäte, welche die Deformation ohne anschliessende Rekristallisation überlebt haben könnten, finden sich nicht. Das Studium der Veränderung der Korngrösse von Schwermineralen über ganze Schichten hinweg verlangt eine sehr grosse Zahl von Schliffen, da diese Minerale in den Schichten selten sind. Gelegentlich findet man (z.B. SW Sevgein im Basislias oder in den Rhythmiten der kieslig-sandigen Serie) Magnetit, Turmalin, Zirkon und Rutil an den Schichtgrenzen angereichert. Nur in einem Fall war es möglich, daraus Oben und Unten abzuleiten, da in allen anderen Schliffen die Schwerminerale nicht auf, sondern in den Glimmerfilmen liegen, deren Dicke meist unter der Korngrösse der Schwerminerale bleibt. In dem verwendbaren Fall betrachteten wir die dünne Glimmerlage als tonige Bedeckung der älteren Schicht, die auf der Glimmerlage (z.T. bereits zwischen Quarz-Körnern) liegenden Schwerminerale als Basis der nächstjüngeren Schicht. Turmalin, Zirkon und Rutil waren stets gut abgerollt, Magnetit eckig bis gerundet.

Insgesamt blieb der Charakter der Sedimentation (auch in bezug auf den Graphitoid-Gehalt) durch die ganze Serie ähnlich, nur die Verhältnisse der verschiedenen Schichtarten wechseln quantitativ. Die Frage, wieweit es sich bei den grobklastischen Einschaltungen um mehr oder minder lokale Schüttungskegel oder -Linsen handelt oder um auf ...zig km durchhaltende Horizonte, kann hier nur aufgeworfen, nicht gelöst werden.

Wir fanden solche Gradierung an 10 Stellen (siehe Fig. 2), in allen Horizonten, mit Ausnahme der mausgrauen, tonigen Kalkschiefer. Stets zeigt sie aufrechte Lagerung an, in Übereinstimmung mit dem einen Fall der verwertbaren Schwermineralanreicherung. Das bedeutet an sich nicht notwendig, dass die ganze Liasserie aufrecht liegt. Die Fundstellen könnten ja in den nicht invertierten kurzen Schenkeln erster oder vormetamorpher Falten höherer Ordnung liegen, die ihrerseits noch grösseren (über das Profil hinausreichenden) ersten oder vormetamorphen Falten zugeordnet wären, Falten, welche die von Baumer, Frey, Jung & Uhr (1961) geforderte Inversion besorgten. Da jedoch zumindest die kompetenten Horizonte überblickbar sind, müsste man solche Falten sehen. Schichten mit Grading kann man oft auf über 10 m im Aufschluss verfolgen. Da sie auf diese Distanz keine solchen Falten erkennen lassen, müssten diese noch grösser sein. Man müsste sie also an den aufgeschlossenen Profilwänden ohne weiteres erkennen. Dies ist nicht der Fall und wir schliessen folglich, dass das Grading in der Lage der Schichten gefunden wurde, die dem ganzen Profil, d.h. den grossen, planparallelen Platten der Lias-Horizonte zukommt. Dies ergibt sich schon aus der Wahrscheinlichkeit. Es wäre höchst sonderbar, wenn wir Grading nur in solchen kurzen, nicht invertierten Schenkeln einer insgesamt invertierten Folge gefunden hätten. Zwar könnten solche Schenkel verdickt sein und damit Gradierung besser erhalten. Wir haben aber Grading in den verdickten Schenkeln und Scheiteln nicht erster und vormetamorpher, sondern zweiter und dritter Falten gefunden, die den fertigen Schuppenbau vorfanden.

Aus diesem Befund und aus den angeführten Überlegungen drängt sich der Schluss auf, dass die von Nabholz (1948) gegebene Deutung richtig war, dass die Serie also aufrecht liegt.

2. Erste Schieferung, Faltung und Streckung

a) Schieferung

Während einer ersten Durchbewegung wurde der ganzen Serie eine erste Schieferung aufgeprägt (Fig. 4, 5, 8a). Dass diese eine Transversalschieferung war und nicht etwa der Schichtung parallel lief, wird besonders in den kompetenten Paketen deutlich (Fig. 8a). Dort durchsetzt die erste Schieferung, deutlich sichtbar, mit Winkeln bis 30° von ss abweichend, die Schichtung. Abgesehen von einer Ausnahme an der Profilbasis (in den schwarzen Lias-Schiefern), fällt s₁ steiler nach S als ss (Fig. 26, Diagramme 13 und 14). In diesen Horizonten kann man auch erkennen, dass die erste Schieferung, die das Gefüge Korn für Korn durchdringt, aus zwei Flächenscharen besteht. Eine synthetische (s_{1s}) (d.h. mit ihrer Versetzung den nach N gerichteten Gesamtrotationssinn unterstützende) Flächenschar bewirkt eine metamorphe Bänderung (Voll, 1960, p. 554), indem sie Glimmerfilme schafft, durch Weglösung von Quarz und relative und absolute Anreicherung von Glimmern auf ihren Gleitflächen. Diese Filme sind in den kompetenten Lagen der kiesligsandigen Gruppe und besonders der groben Sandkalke in Abständen bis 7 mm getrennt durch Quarz- (und Karbonat-) reichere Lagen, in denen Quarz relativ und absolut angereichert wurde (Fig. 8a). Diese quarzreicheren Lagen sind von der antithetischen s1-Flächenschar (d.h. mit ihrem Versetzungssinn der Gesamtrotation entgegenarbeitend) Korn für Korn durchdrungen. Die s_{1a} -Schar fällt steiler nach S als s_{1s} (Fig. 26, Diagramme 13, 14). Die Schnittlinie von S_{1s} mit s_{1a} (bzw. mit s_{1a} -parallelen Quarzgängen) belegt die gleichen Teile eines Poldiagramms (Diagramm 15, Fig. 26) wie die Schnittlinie s_{1s}/ss (= β_1). Die erste Schieferung verhält sich also wie im aufrechten Schenkel einer ersten, nordvergenten Falte. Aus dem Nachhinken von s_{1a} hinter s_{1s} im Rotationssinn der Gesamtdeformation wird die N-Vergenz (N-Rotation) ebenso bestätigt (Voll, 1960, p. 554) wie aus der ss/s_1 -Überschneidung. Dass die solchermassen von s_1 überschnittenen Schichten nicht etwa schon vor der ersten Schieferung invertiert waren, haben wir aus sedimentären Unten-Oben-Hinweisen gefolgert.

Wir kommen also auch aus der ersten Schieferungs/Schichtungs-Überschneidung zu dem Schluss, dass die studierte Schichtfolge (Nabholz, 1948) aufrecht

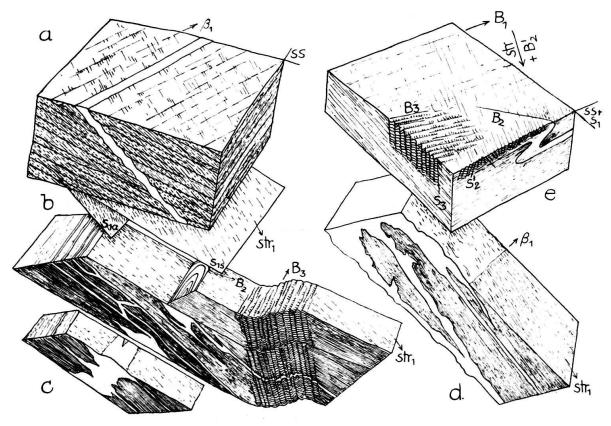


Fig. 8. Strukturelle Detailbilder.

- a) Aus dem kleinen Steinbruch an der Pitaschersäge (Koord. 735,4/176,85), Serie mit unruhiger Sedimentation. Kalksandstein, s_{1s} bildet eine metamorphe Bänderung, s_{1a} fällt steiler nach S, ihm folgt ein Quarz-Karbonat-Gang, der ss senkrecht zu str₁ (das ca. in Azimut 15° streicht) schneidet.
- b) Kieslig-sandige Serie an der Strasse Ilanz-Pitaschersäge (Koord. 736,05/178,5, vgl. Fig. 5). Quarzgänge paralell s_1 durchsetzen ss. Sie stehen z. T. mit Zerrfugen in Verbindung und schneiden ss etwa senkrecht zur Streckungsfaser. Die oberste Schicht enthält eine NS streichende B_2 -Falte, Quarzgänge, s_1 , ss und B_2 um flache ENE streichende B_3 -Falte mit s_3 gefaltet.
- c) und d) Vom gleichen Fundort wie b), zeigen Quarzgänge parallel $\mathbf{s_1}$, von Quarzfüllungen zwischen Boudins ausgehend.
- e) Lias, direkt über Rötidolomit, 300 m N Peidenbad (Koord. 734,75/175,7), zeigt β_1 , eine B₂-Falte, B₃-Runzeln und B'₂-Runzeln parallel str₂, str₂ streicht in Azimut 22° und taucht 22° S.

liegt. Fig. 2 zeigt die Stellen, an denen auf diese Weise aufrechte Lagerung gefolgert wurde.

Mit zunehmendem Glimmergehalt und abnehmender Lagendicke wird der Winkel zwischen ss und s_1 schliesslich so klein, dass er im Gelände und fast stets auch im Schliff nicht mehr erkennbar ist (Fig. 5, 6). Es sieht daher über weite Teile des Profils so aus, als läge die erste Schieferung der Schichtung parallel. Dass die erste Schieferung jedoch als echte Transversalschieferung angelegt ist, geht aus dem Verhalten von s_1 in den kompetenten Gruppen klar hervor. Gelegentlich lässt sich auch dann noch im Dünnschliff die ss/s_1 -Überschneidung erkennen, stets mit dem angegebenen Sinn. Stellen, an denen dies der Fall ist, sind ebenfalls in Fig. 2 verzeichnet. Mit dem Winkel zwischen ss und s_1 nimmt die Dicke der metamorphen Bänder bis zur Unkenntlichkeit ab, vorher schon der Winkel zwischen s_{1s} und s_{1a} . Auch in den durch Kartierung eindeutig als aufrecht liegend nachgewiesenen Triashorizonten ist die ss/s_1 -Überschneidung ebenfalls erkennbar, wieder im angegebenen Sinn.

b) Quarzgänge

Wo der Winkel zwischen ss und s₁ zu klein wird, um den Überschneidungssinn erkennen zu lassen, helfen Quarzgänge. Wir haben schon erwähnt, dass sich diese

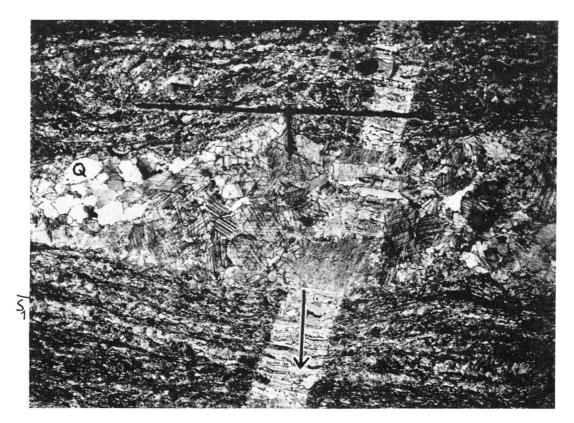


Fig. 9. Crinoiden-Kalk, kieslig-sandige Serie (Koord. 736,05/178,5, wie Fig. 5 und 8b). Ein in s_1 liegender Gang mit grobem Karbonat (stark verzwillingt) und Quarz (Quarz deformiert und teilweise rekristallisiert) ist von einem jüngeren Gang durchsetzt, der fast senkrecht auf str₁ steht. Dieser jüngere Gang wurde sukzessive gefüllt, während er geöffnet wurde. Impfung durch die Wand-Kristalle ergibt gröbere Kristall-Füllung, wo der jüngere Gang den älteren durchsetzt. Faserbildung parallel zur Öffnungsrichtung. Vergr. $4 \times$. Pfeil=geographisch unten.

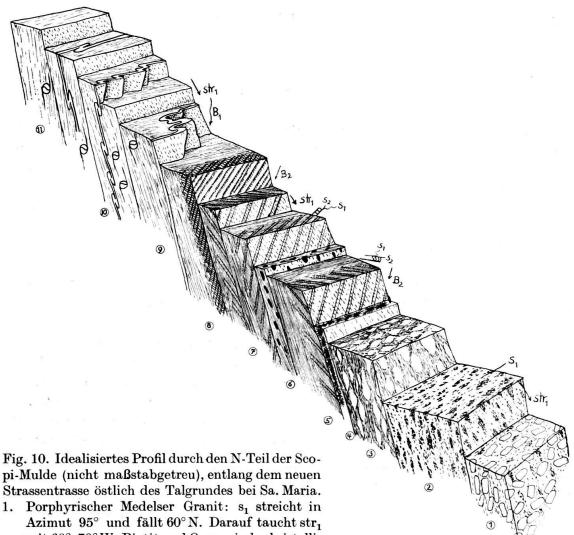
fast stets parallel s_{1a} bilden. Dies sieht man besonders deutlich in der grobsandigen Serie (dicht nördlich der Pitaschersäge und in der unruhigen Serie bei der Säge, Fig. 8a), wo sich s_{1s} und s_{1a} deutlich in ihrer Lage unterscheiden. Dort erkennt man auch, dass die Quarzgänge an s_{1s} oben jeweils ein kleines Stück nach N versetzt sind, dass also der Bewegungssinn an s_{1s} die Gesamtrotation der Deformation unterstützt. Dadurch und durch Boudinage der Füllungen dieser Gängchen erhalten sie ein perlschnurartiges Aussehen im Querschnitt (Fig. 8a). Die Füllung besteht aus grobem Karbonat \pm Quarz. Diese groben Kristalle wurden deformiert, verzwillingt, gedehnt und z.T. sind sie rekristallisiert. Die Räume zwischen den Boudins sind durch stengelige Karbonat- und Quarz-Neubildungen (lange Achse parallel der Streckungsfaser) ausgefüllt. Die Schnittlinie ss/Quarzgänge (= β_1) belegt die gleichen Teile der Poldiagramme (Diagramm 10, Fig. 25) wie die Schnittlinie ss/s₁ (ebenfalls = β_1).

Auch in den inkompetenten Lagen kann man diese Überschneidung noch oft beobachten, da man die Quarzgänge im Gegensatz zu individuellen s₁-Glimmerfilmen auch bei kleinen Überschneidungswinkeln noch über die durchsetzte Schicht weg verfolgen kann. Damit ergeben sich weitere ss/s₁-Überschneidungen, deren Fundpunkte ebenfalls auf Fig. 2 vermerkt sind. Auch sie zeigen stets den gleichen Überschneidungssinn.

Es soll noch darauf hingewiesen werden, dass die s₁-parallelen Quarzgänge oft mit Zerrfugen mit Quarzfüllung (Fig. 8c, d) in Verbindung stehen. Ausserdem werden sie oft von jüngeren Quarz-(Karbonat)-Gängchen senkrecht zur Streckungsfaser durchsetzt (Fig. 9). Wenn wir also feststellen, dass sich in geeigneten Gesteinen solche Gänge nur parallel s₁, nicht später noch bilden, so meinen wir damit nicht, dass sich später keine Gängchen mehr bilden können, sondern ledigleich, dass sich unter den schieferungsparallelen Gängen fast alle parallel s₁, aber nicht später parallel s₂,₃,₄ bilden. Ferner können sich in sehr quarzreichen Psammiten oder in Kalken und Dolomiten (Trias!) schieferungsparallele Gängchen auch während der zweiten und dritten Faltung bilden. Da diese jedoch ältere Schieferungen durchsetzen, erkennt man sie sofort als jüngeren Faltungen zugehörig und kann sie für die ss/s₁-Ermittlung ausschliessen.

c) Faltung

Erste Falten (B₁) oder gar vormetamorphe (B₀) sind, wie gesagt, nicht zu erkennen. Ob sie jemals gebildet wurden, oder ob die Serie ohne erste Falten von s₁ zerschert wurde, lässt sich nicht sicher sagen. Es scheint jedoch wahrscheinlich, dass der Schuppenbau hier sich aus den Liasfalten weiter im W (Scopi-Mulde) entwickelte, dass also solche erste Falten im km-Bereich vorhanden waren. Die invertierten Schenkel müssen dann – ist unsere Deutung der Lagerung richtig – durch Dehnung restlos unterdrückt sein. Auch die Tatsache, dass sich die Schuppen im nördlichen vorgelagerten Aar-Massiv-Autochthon, bei sonst gleichem Deformationsstil, aus Falten entwickeln (z.B. Piz da Dartgas, Fig. 21), spricht dafür dass der Schuppenbau im Profil südlich Ilanz aus einem B₁-Faltenbau hervorging. Die scharfen Durchbewegungen der Schuppengrenzen sind hier auf jeden Fall stets s₁ zugeordnet. Am Piz da Dartgas (so benannt auf der Spezialkarte 117, J.


Oberholzer, 1942, Geologische Karte des Kantons Glarus, 1:50 000, auf dem neuen topographischen Landeskartenblatt Klausenpass 1:50 000 als Piz d'Artgas bezeichnet) z.B. erkennt man auch (Fig. 21), dass sich solche Schuppen durchaus aus B₁-Falten im km-Bereich entwickeln können, ohne dass B₁-Schlepp- und -Parasitär-Falten gebildet werden. Das Fehlen solcher erster Falten höherer Ordnung in unserem Profil spricht also nicht notwendig gegen die Entstehung des Schuppenbaus und der ersten Schieferung aus einer ersten Faltung.

Die Schnittlinie β_1 von ss/s₁ oder ss/Quarzgängen (Diagramme 10, 11, 16, 18, Fig. 25 und 26) weicht in der Regel vom Streichen des Gebirgskörpers ab. Hier ist sie nur in den kompetenten Paketen erfassbar. Sie streicht NE-SW bis NS. β_1 dürfte in seiner Bedeutung den Achsen erster Parasitär- und Schleppfalten gleichkommen, deren Achsen ja auch von denen der Grossfalten abweichen können (Voll, 1960, p. 555). Wir werden unten sehen, dass auch die echten Faltenachsen der zweiten und dritten Faltung (Wiederfaltungen) nicht mit dem regionalen Streichen zusammenfallen und in ähnlicher Weise von ihm abweichen.

d) Streckung

Die Schnittlinie ss/s_1 liegt damit auch nicht senkrecht, sondern im allgemeinen schräg zur Streckungsfaser (Diagramme 10, 11, Fig. 21 und 25). Dieses Streckungslinear bildet sich parallel zur Richtung grösster Zugspannung und wird dann im Zuge rotationaler Deformation im Gesamtrotationssinn verlagert (in der Deformationsebene). Diese Streckungsfaser liegt zwischen s_{1s} und s_{1a} und streicht im behandelten Gebiet stets etwa NS mit leichter Abweichung gegen NNE-SSW. Sie ist stets deutlich ausgeprägt als Bärte faseriger Neubildungen (Quarz, Glimmer, Karbonat) an starren Einlagerungen (klastische Quarze und Calcite, Crinoiden-Bruchstücke wie in Fig. 4, Pyrite usw.), als Dehnung von Ooiden und Fossilien, sowie (im Verrucano) von Tonschieferfetzen. Zerbrochene starre Einschaltungen (starre Platten, zerbrochene Einzelkörner und Fossilien) triften parallel zur Strekkungsrichtung auseinander, die Lücken werden durch faserige Neubildungen von Quarz, Karbonat und Glimmern gefüllt. Die Richtungskonstanz setzt sich nach N fort, ins Gebiet der ganzen helvetischen Hauptschubmasse der Glarner Alpen, ins autochthone Deckgebirge des Aar-Massivs und schliesslich - ausklingend - in die nördlich des Glarner Querschnitts folgenden Einheiten der helvetischen Hauptschubmasse (Fig. 18 bis 23). Das Streckungslinear ist also eines der richtungskonstantesten Elemente, innerhalb des NS-Grosskreises nur durch die rotationale Deformation mit s₁ rotiert. Diese Richtungskonstanz ist typisch selbst für Gebiete, in denen die Achsen kleinerer, ja selbst grosser zugeordneter Falten in s₁ stark schwanken, Stricklava-Falten ähnlich (Voll, 1960, p. 555); hier zeigt bereits die Schnittlinie ss/s₁ solche Richtungsschwankungen.

Das Fehlen erster Schleppfalten ist eher ein Hinweis auf aufrechte Lagerung unseres Profils. Wären diese Schichten durch s_1 , B_1 invertiert, so müssten sie die kurzen Schenkel grosser, N-vergenter Falten darstellen. Solche kurze Schenkel rotieren aber durch die maximale Druckspannung und werden dabei in der Regel verdickt und spezialgefältelt. Erst dann treten sie wieder in ein Dehnungsstadium ein, wobei die einmal gebildeten Spezialfalten nicht wieder abgewickelt werden. Die langen Schenkel dagegen rotieren sofort in die Lage senkrecht zur maximalen

- pi-Mulde (nicht maßstabgetreu), entlang dem neuen Strassentrasse östlich des Talgrundes bei Sa. Maria.
- mit 60°-70° W. Biotit und Quarz sind rekristalli
 - siert und zu in str, gelängten, in s, geflachten Aggregaten deformiert. Diese Streckung und Schieferung sind als erste dem Erstarrungsgestein aufgeprägt, beide sind alpin.
- Cristallina Granodiorit: Verformung wie im Granit.
- 3. Serizitschiefer mit Quarzaugen = zerscherter Granit. Feldspäte serizitisiert. Deformation wie im Granit. Die südlichsten Meter sind z. T. permotriasische Arkosen, die schlecht von den granatischen Serizitschiefern zu trennen sind.
- Dann folgen 40 cm Dolomit, fast ganz in Strahlsteinrosetten umgewandelt. Deformation noch die gleiche. Die c-Achsen der Aktinolith-Rosetten divergieren senkrecht zu s1, sind jünger als s₁ gewachsen.
- 5.-7. Quartenschiefer, pelitisch. s₁ streicht 100°, fällt 60° N. Darauf str₁ das mit einem Winkel von 75°W fällt, B₂-Runzeln tauchen mit einem Winkel von 50° auf s₁ nach E. Der s₁/s₂-Überschneidungssinn wechselt, damit die Vergenz von B2. Biotit-Porphyroblasten (6) wachsen häufig parallel zu str, gelängt.
- 8. Lias des N-Flügels. str₁ taucht 60°W auf s₁, B₂-Runzeln 30°E.
- 9. Crinoidenkalke des Lias mit B₁-Falten. B₁ taucht auf s₁ 80° W bis 50° E, die Achsenlagen schwanken. str_1 taucht auf s_1 konstant 65–75 W. Die ss/s_1 -Überschneidung zeigt Mulde im S an.
- 10. Wie 9. B₁ taucht auf s₁ 50-60°E, str₁ 70°W. Hier (Koord. 704,6/159,8) Muldenkern. S davon bei 11: Umkehr der B₁-Schleppfalten-Vergenz, gleiche B₁- und str₁-Lage. Von 8. bis 11. bleibt der Rotationssinn von Albit- und Zoisit-Porphyroblasten gleich. Südliches wird stets nach oben bewegt, s1 und str1 waren bis ins Porphyroblastenwachstum betätigt.

Druckspannung und werden dabei nur gedehnt, nicht gefaltet (es sei denn durch Biegegleitungsreibung). Schon deshalb müssten wir bei solcher Inversion Schleppund Parasitärfalten erwarten.

e) Schuppenbildung

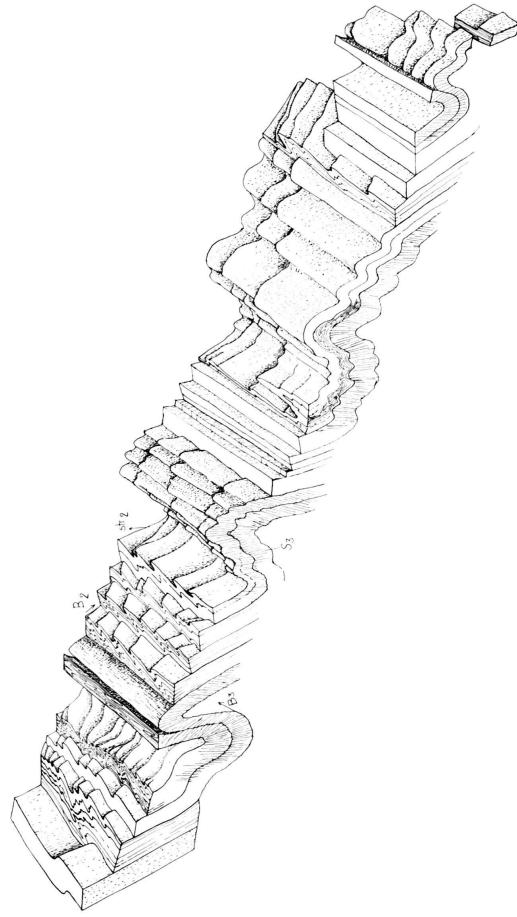
Die Schuppengrenzen unseres Profils sind in erster Linie Zonen gesteigerter s₁-Zerscherung und Dehnung, gesteigerter str₁-Streckung. In der westlichen Fortsetzung unseres Profils, in der Scopi-Mulde (Fig. 10) lässt sich zeigen, dass s₁ und str, mit der grossen Liasmulde gleichzeitig gebildet werden (wechselnde ss/s,-Überschneidung vom N- zum S-Schenkel der Scopi-Mulde). Man kann dort diese Überschneidung zum Auffinden des Muldenkerns benützen, trotz des starken Schwankens von β_1 und β_1 . Beide, β_1 und β_1 , fallen im allgemeinen auf β_1 mehr nach NE, während str₁ nach SW abtaucht (Fig. 10). Wenn so auch die kleinen Schlepp-B₁-Falten steiler tauchen als die Hauptmuldenachse der Scopi-Mulde, so besitzen sie doch Scheitelvergenz in bezug auf diese. Entwickelt sich nun unser Profil in der östlichen Fortsetzung aus der Scopi-Mulde, so muss man auch hier die ss/s₁ -Überschneidung zum Aufbau erster Falten benützen können, und, wenn solche fehlen, da eine Schenkelschar verschwunden ist -, wenigstens zum tektonischen Nachweis aufrechter oder invertierter Lagerung. Faltenbildung in der Scopi-Mulde und Schuppenbildung in unserem Profil gehören somit in einen einheitlichen Akt der B₁-, s₁- und str₁-Bildung. Läge also in unserem Profil eine durch B₀ vormetamorph geschaffene Inversion vor, so müsste sie älter sein als der Schuppenbau unseres Profils und damit älter als die Bildung der Liasmulden, von denen die Scopi-Mulde eine ist. Damit müsste auch die Scopi-Mulde eine bereits invertierte Serie falten – was offensichtlich nicht der Fall ist. Die ss/s, Überschneidungen dort, wie hier, deuten auf jeden Fall aufrechte Lagerung der Serie an.

Nachdem wir aber aus unseren Beobachtungen zur Folgerung kommen, dass die Basistrias, die Peidener Trias, aber auch die kieslig-sandigen und die Grobsand-Schichten aufrecht liegen, ist es nicht mehr von entscheidender Bedeutung, dass es sehr selten gelingt, in den zwischengeschalteten Horizonten des schwarzen Lias an der Profilbasis, der mausgrauen Serie und der Serie mit unruhiger Sedimentation zuverlässige ss/s₁-Überschneidungen zu finden. Es ist von vornherein sehr unwahrscheinlich, dass diese inkompetenten Horizonte zwischen den aufrechten invertiert liegen. Man müsste dazu einen Verschuppungsmechanismus annehmen, der bald invertierte, bald nicht invertierte Schenkel ausschneidet. Selbst ein Auseinandergleiten im Sinne der Divertikulation³) würde die Abfolge der Schichtglieder zwar ändern, jedes einzelne Schichtglied aber in seiner Unten-Oben-Lage belassen. Da ferner zwischen den Gliedern der Liasserie lithologische Übergangstypen vermitteln, lithologische Wiederholungen aber fehlen, liegt die Serie nicht nur aufrecht, sondern sie hat auch keine wesentlichen Wiederholungen durch Verschuppung erfahren.

Der von uns gefolgerte Mechanismus mit Ausscherung der invertierten Schenkel erster Falten wird noch wahrscheinlicher, wenn wir bedenken, dass im nördlich vorgelagerten Autochthon des Helvetikums (Aar-Massiv, dessen tektonische

³) Der Vorgang der Divertikulation ist z.B. im letzten Eclogaeheft 56/1, S. 1 ff., von H. BADOUX (1963) gut beschrieben worden.

Prägung mit der bisher geschilderten in allen Details übereinstimmt) bei allen Falten und sich daraus entwickelnden Schuppen der kurze, nördliche Schenkel der nordvergenten Monoklinen zuerst verdickt wird, dann invertiert und dabei gedehnt wird, schliesslich durchreisst. Es wäre sonderbar, wenn wir in unserer Schuppenzone im gleichen Prägungsakt einen ganz anderen Mechanismus zu suchen hätten. Sollten wir gar in unserem Profil zwischen den nachweisbar aufrechten, kompetenten Horizonten invertierte, inkompetente vorliegen haben, so müsste ja bald ein kurzer, invertierter, bald ein langer aufrechter Schenkel reduziert sein. Bei allen Schuppen in der nördlichen Nachbarschaft wird aber immer nur eine Art Schenkel, der kurze invertierte und nördliche ausgedehnte, als Schuppenbahn benützt.


Aus all diesen Argumenten ergibt sich wieder der Schluss: die in Nabholz (1948) gegebene Deutung war richtig, die Serie ist nicht invertiert.

3. Zweite Faltung, Schieferung und Streckung

a) Faltung

Im ganzen Profil ist die erste Schieferung wiedergefaltet, in inkompetenten und kompetenten Horizonten. Die ersten Falten, welche die erste Schieferung wiederfalten, bezeichnen wir als zweite Falten, da sie die erste Schieferung rein passiv behandeln. Nun mag es durchaus sein, dass sich in kompetenten Horizonten solche zweite Falten gleichzeitig mit in inkompetenten Horizonten dritten Falten bilden, d.h. mit solchen, die dort die zweite Schieferung wiederfalten. Demzufolge scheint es zunächst nur dort sinnvoll, von zweiten und dritten Falten zu sprechen, wo sich diese am gleichen Ort finden, wo also die dritten Falten die zweiten sichtbar wiederfalten. Wir haben jedoch den Eindruck, dass sich zweite und dritte Falten auch nach anderen Kriterien unterscheiden lassen: die dritten Falten sind fast stets offener als die zweiten. Die zweiten sind stärker rotiert und zeigen stärkere Schenkeldehnung. Dritte Falten erkennt man damit als solche, auch wo zweite fehlen. Doch ist es möglich, dass man damit Fehler macht, indem auch zweite Falten gelegentlich noch als offene auftreten mögen (die man dann fälschlich zu den dritten zählt), oder, indem dritte auch schon isoklinal entwickelt sein mögen (womit man sie fälschlich zu den zweiten zählt). In den inkompetenten Horizonten, etwa der mausgrauen Serie (Riein-Tobel) kann man gelegentlich sogar nachweisen, dass auch dritte, ja sogar vierte Falten isoklinal werden können.

Die Unsicherheit, die damit in die Indizierung der Falten kommt, hat jedoch keine wesentlichen Auswirkungen auf das Gesamtbild, da das gesamte Faltungsgeschehen das einer symmetriekonstant fortgeführten Faltung und Wiederfaltung ist, die sich in den inkompetenten Horizonten intensiver und weiter entwickelt als in den kompetenten. Grosse Fehler können durch falsche Indizierung von zweiten und dritten Falten schon deshalb nicht entstehen, da beide kleine Amplituden und Wellenlängen zeigen und stets Nordvergenz aufweisen. Es kann also nicht passieren, dass man durch solche Fehler nicht existierende Grossfalten zusammenbaut, oder existierende nicht erkennt. Wichtig ist jedoch, dass man zweite Falten des öfteren durch dritte wiedergefaltet findet (Fig. 11), so dass die Existenz von mindestens drei überlagerten Faltungen an verschiedenen Stellen direkt nachweisbar ist.

Peidenbad beim Kilometerstein 4 liegt. Isoklinale, E-vergente B₂-Falten schwanken in ihrer Achsenlage. Ihre Achsen liegen meist fast bis ganz Fig. 11. Wiederfaltung zweiter Falten durch dritte. Oberseite der kieslig-sandigen Serie, 60 m N des Lawinendaches, das an der Strasse Ilanzparallel str₂. Sie werden durch offenere B₃-Falten wiedergefaltet. s₃ fällt noch steil. Profillänge 8 m.

Anmerkung während der Drucklegung: Wie schon unter Fig. 7a bemerkt, wurde der vom Fluss sauber gewaschene Aufschluss, der die in der obenstehenden Zeichnung festgehaltenen Beobachtungen gestattete, bei einem Hochwasser im August 1963 leider meterhoch von Flussgeschiebe überdeckt.

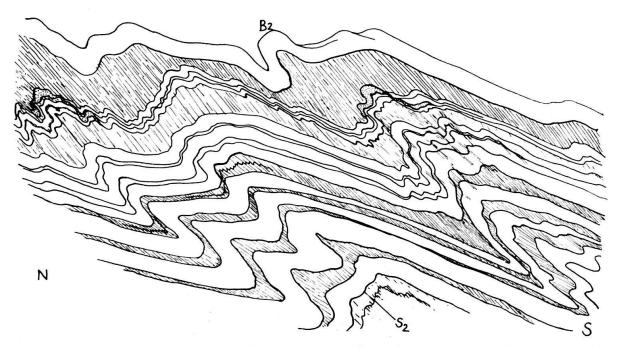


Fig. 12. Zweite Falten im Grobsand. Profil senkrecht B₂ an der Strasse Ilanz-Peidenbad, nahe Unterseite der Grobsandserie (Koord. 735,5/177,1). Profillänge 8 m.

Nordvergente B₂-Falten. Übereinander reitende Lagen selbständig gefaltet. Kurze Schenkel erst verdickt, bei stärkerer Rotation wiedergedehnt. Quarzgänge (punktiert) durchsetzen ss steiler S-fallend. Sie sind mit ss um B₂ gefaltet.

Die zweiten Falten sind offene bis geschlossene, nordvergente, fast monoklinale Falten mit langen S- und kurzen N-Schenkeln (Schenkeldivergenz: 150-10°, offen in den Grobsanden, wo dritte Falten fast fehlen). Die kurzen nördlichen Schenkel sind am stärksten rotiert (Fig. 12). Sie rotieren erst durch die grösste Normalspannung und werden dabei verdickt. Dann werden sie in den Zugspannungssektoren schliesslich gedünnt. Dass auch die langen Schenkel gedehnt werden, erkennt man daran, dass die in mässig rotierten, kurzen Schenkeln noch gut erhaltene Schichtung in den langen Schenkeln verschmilzt, durch Ausdehnung von Quarzlagen (Streckungsgefüge) und Weglösung von Quarz (Fig. 3). Umgekehrt beweist die oft ausgezeichnete Erhaltung der rhythmischen Schichtung und anderer Sedimentärstrukturen in den kurzen Schenkeln zweiter Falten, dass ss während der ersten Faltung nicht durch Dehnung verwischt wurde, sondern gut erhalten blieb (in den Schuppengrenzzonen gilt dies nicht mehr). Damit sind die Dehnung und Verwischung der Feinschichtung in den langen Schenkeln der zweiten Falten nicht der ersten Faltung zuzuschreiben, sondern im wesentlichen der zweiten. Die Deformation der zweiten Faltung ist also ganz wesentlich stärker als die der ersten Faltung, obwohl die erste für den grossräumigen Schuppenbau verantwortlich ist. Ob die Gleitbewegungen auf s₁ an den Schuppengrenzen weitergingen, während der Raum zwischen ihnen schon nach B, gefaltet, nach s, wiederzerschert wurde, lässt sich nicht sagen. Dies scheint wahrscheinlich, da auch dort die Bewegung nicht von statischer Temperung des Korngefüges überholt ist.

Besonders bei offenen zweiten Falten liegen die Faltenachsen \pm parallel dem regionalen Streichen, also ENE-WSW (Diagramm 17, Fig. 26; Fig. 12). Mit stei-

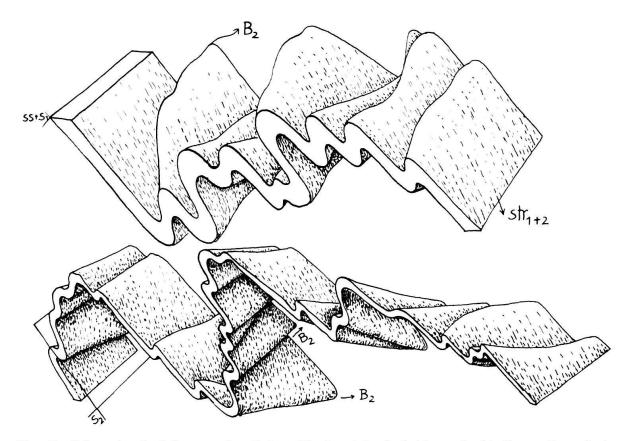


Fig. 13. Schwankende Achsen zweiter Falten. Nordrand der Aufschlüsse der kieslig-sandigen Serie an der Strasse Ilanz-Pitaschersäge (Koord. 736,05/178,5). Wechselnde, «kurvende», N-vergente B₂-Falten, die jeweils eine Lage falten. str₂ bleibt konstant, NNE streichend, SSW tauchend.

gender Rotation der kurzen Schenkel und mit abnehmender Schenkeldivergenz stellen sich häufig Achsenschwankungen ein, wie sie sonst besonders für erste Falten charakteristisch sind (Voll, 1960, p. 555). Die Achse einer Falte kann dann durch Krümmung in s₂ die verschiedensten Lagen einnehmen. Zudem ist dann eine Lage um Falten verschiedener Achsenlagen gefaltet (Fig. 13, und Diagramme 2, 4, 7, 9, 10, 11, 18, 20, 21, Fig. 24, 25, 26, 27).

Alle zweiten Falten sind durch zahlreiche Schlepp- und Parasitär-Falten im dmund cm-Bereich gegliedert. Diese kleineren zweiten Falten sind in bezug auf die grösseren zweiten (im m-Bereich) scheitelvergent (Fig. 13). Die Achsen auch dieser grösseren Falten können vom regionalen Streichen stark abweichen (Diagramme 4, 10, Fig. 24, 25). Ausserdem können die ihnen untergeordneten kleineren Falten verschiedenste Lagen in s₂ einnehmen (Fig. 13) und, wie Stricklava sich krümmend und seitlich auskeilend, übereinander-«fliessen». Dabei bleibt jedoch das Gesetz der Stauchfaltengrösse in der Regel erhalten. Meist steigen die Achsen-Divergenzen der einer Grossfalte zugeordneten Kleinfalten und die Abweichungen der grösseren Faltenachsen vom regionalen Streichen mit abnehmender Schenkeldivergenz. Dabei ist zumindest in den kompetenten Horizonten die Kontinuität der gefalteten Lage noch gewahrt, die Schenkel sind noch nicht zerrissen.

Die Streuung der Achsenlagen lässt eine gewisse Systematik erkennen (Fig. 14): So vollziehen sich die Lageschwankungen, ausgehend von Parallelität zum regionalen Streichen (ENE-WSW) meist über EW nach NS und schliesslich zur Parallelität mit der Streckungsrichtung, die NNE-SSW streicht.

In der Regel wird also die Lage parallel zur Streckungsfaser nicht durch Schwankung der Achsen ausgehend von Parallelität zum regionalen Streichen (ENE-WSW) über NE-SW erreicht (Fig. 14 und Diagramme 2, 4, 7, 8, 9, 10, 11, 18, 20, 21, Fig. 24, 25, 26, 27). Dies heisst mit anderen Worten: obwohl die Achsen fast alle Punkte des s₂-Grosskreises belegen, treten doch bevorzugt nur bestimmte Vergenzen auf, nämlich NNW-, N-, E- und schliesslich ESE-Vergenz. Anscheinend wird diese Lageschwankung nicht durch inhomogene Streckung parallel str₂

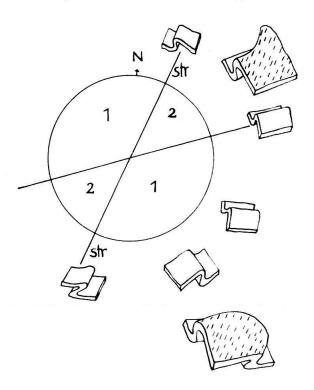


Fig. 14. Schematische Erklärung der Vergenz. Von der ENE streichenden Ausgangslage schwanken die Faltenachsen meist in die Sektoren 1. Dort zeigen sie N-, NE- und E-Vergenz. Z. T. schwanken sie aber auch von der Ausgangslage in die Sektoren 2, wo sie NW-Vergenz zeigen. Offene Falten liegen der Ausgangslage näher. Eine Falte kann in verschiedene Achsenlagen kurven (parallel der Streckungsfaser gestrichelte Falten).

erreicht, da sonst sehr stark schwankende Streckungsausmasse in einer s_2 -Fläche auftreten müssten, die solch schwankende Achsen enthält. Die Schwankung ist also nicht durch passive Internrotation ursprünglich dem regionalen Streichen paralleler Achsen erreicht, sondern wohl schon im Beginn der Faltung als schwankende Schnittlinie s_1/s_2 angelegt. Dem widerspricht allerdings, dass gerade die offenen, noch im Anfangsstadium ihrer Entwicklung befindlichen Falten bevorzugt dem regionalen Streichen parallele Achsen besitzen. Dieses Problem soll hier nicht weiter diskutiert werden.

Wichtig ist, dass diese Faltenachsen, auch wo sie der Streckungsfaser vorwiegend parallel verlaufen, doch von dieser oft abweichen. Sie verdanken ihre Bildung also nicht dem Mechanismus, der sich in str₂ schneidende Schieferungs-

scharen und schliesslich Faltenachsen schafft. (Diese werden auf S. 787 besprochen vgl. Fig. 8e, 15d.)

Die zweiten Falten verdanken ihre Bildung dem gleichen Beanspruchungsplan, der auch die ersten Falten (grosse Schuppen) und s₁, str₁ schuf. Für die ss/s₁ Überschneidung haben wir ja die gleichen Vergenzen und – wenn auch schwächeren – Lageschwankungen beobachtet.

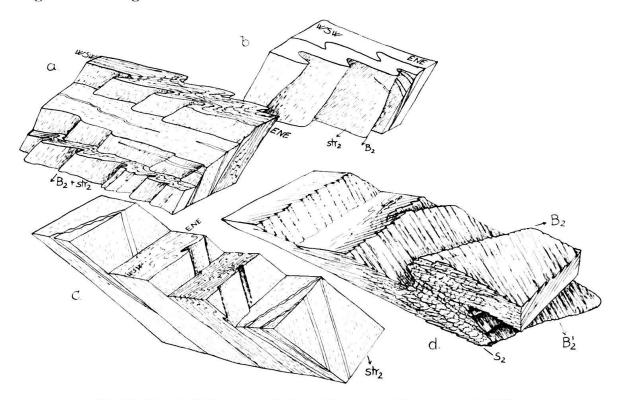


Fig. 15. Zweite Falten verschiedener Vergenz, ss/Quarzgangschnittlinie.

- a) Strassenkurve 500 m nördlich Peidenbad (Koord. 734,65/175,9), Serie innerhalb der Peidener Schuppenzone: W-vergente B_2 -Falten, Achsen parallel str₂. Quarzgänge fallen steiler S als das um B_2 gefaltete ss und schneiden dieses in horizontaler Schnittlinie β_1 .
- b) Strasse nördlich Peidenbad (Koord. 734,7/175,95), innerhalb der Peidener Schuppenzone: ESE-vergente B_2 -Falten, falten Quarzgänge, die steiler S fallen als ss und dieses in flacher Schnittlinie schneiden.
- c) Nördlich unter b) am Fluss-S-Ufer: B_2 mit wechselnder, meist ESE-Vergenz, parallel str₂. Quarzgänge schneiden ss parallel str, werden jedoch (nicht mehr im Bild) von B_2 gefaltet.
- d) Fundort wie c) NNE-vergentes B_2 , isoklinal, wiedergefaltet durch B_2 -Fältchen mit Achsen streng parallel str $_2$, ESE-vergent, mit zugehöriger Schieferung s $_2$, die s $_2$ durchsetzt.

Untergeordnet beobachtet man auch zweite Falten mit Achsen annähernd parallel der Streckungsrichtung mit umgekehrter Vergenz (Fig. 15 a, c, 16a). Es liegt nahe, anzunehmen, dass sie sich durch Schwanken der ursprünglich dem regionalen Streichen parallelen Achsen über NE-SW in die Streckungsrichtung ableiten (Fig. 14). Auch diese Falten weichen nicht selten von der Streckungsrichtung ab, sind also nicht durch den Mechanismus geschaffen, der streng str-parallele Achsen schafft (siehe S. 787). Doch liegen ihre Achsen fast stets nahe an der oder parallel der Streckungsrichtung (Diagramme 3, 17, 18, 19, 22, Fig. 24, 26, 27). Sie sind damit auch stark rotiert, besitzen geringe Schenkeldivergenz und stark gedehnte Schenkel

(Fig. 15a, b, c, 16, 17b). Dann lässt sich nicht sicher entscheiden, ob ihr Frühstadium dem regionalen Streichen mehr parallele Achsen aufwies (Diagramme 19, 22, Fig. 27). Häufiger traten solche Achsen auf bei der Brücke über das Tobel südlich Uors; 500–300 m nördlich Peidenbad; im Bach an der Pitaschersäge; im Lias der Profilbasis nördlich der Glennerbrücke und westlich des Flusses.

Die Systematik in der Lageschwankung und Vergenz der Falten verrät statistisch einheitliche Materialtransporte, vorwiegend nach E, bis ESE. Wir deuten dies als ein dem N-Transport überlagertes Abgleiten von der Gotthard-Massivkulmination nach E hin. Auch die NNE-Lage der Hauptdehnung im Gestein, des Streckungslinears, mag damit in Zusammenhang stehen. Methodisch ist interessant, dass unser Gebiet geradezu durch die Achsenschwankungen charakterisiert ist, nicht durch Achsenkonstanz. Auf keinen Fall darf man aus den gemessenen Achsenlagen verschiedene Maxima verschieden alter Achsen oder gar Streuung durch Wiederfaltung vorhandener Achsen herauslesen wollen. Alle diese Achsen verschiedener Lage sind in einem Akt erworben. Die Falte muss bei der Aufstellung von Achsenplänen als Individuum behandelt werden und ihr Alter mit dem jeder anderen Falte verglichen werden. Wichtig ist ferner, dass die Achsen der Hauptfalten und die der ihnen zugeordneten Kleinfalten keineswegs zusammenfallen müssen, obwohl Platten gleicher Ausgangslage gefaltet wurden. Da gleichzeitig die Streckungsrichtung auf dem diesen Falten zugeordneten s2 immer im gleichen NNE-Grosskreis bleibt, bedeuten die Schwankungen, dass bei der Faltung Formungsebene und Symmetrieebene der Falten keineswegs zusammenfallen müssen. Wenn wir also bei der Betrachtung der Faltensymmetrie auch das Streckungslinear berücksichtigen, besitzen diese Falten trikline Symmetrie, ohne Symmetrieebene. Betrachtet man dagegen nur die gefalteten ss-, s1- und die mit der Falte gebildeten s2-Flächen (die sich mit ss und s1 in B2 schneiden), so besitzen diese Falten monokline Symmetrie und ihre Formungsebene weicht von der Symmetrieebene ab. Diese Betrachtungen sind vor allem bedeutsam für Fälle, in denen man keine Streckung erkennt. Man kann dann nicht mehr von der Symmetrie auf die Beanspruchung und Kinematik schliessen. In unserem Fall ist die Streckung deutlich, die trikline Symmetrie leicht erkennbar. Man muss sich also hüten, von einzelnen, im Aufschluss sichtbaren Faltenelementen auf regionale Beanspruchungspläne zu schliessen und damit auf die Lage von Grossfaltenachsen. Die hier angegebenen Lageschwankungen sind zudem von grundsätzlich anderer Natur als diejenigen, welche entstehen, wo ältere Flächenscharen verschiedener Lage von jüngeren, ebenen Bewegungs-Flächenscharen durchsetzt werden. Auch dabei müssen natürlich die neuen Schnittgeraden (Faltenachsen) notwendig verschiedene Lage einnehmen.

b) Schieferung

Wir haben die zweite Faltung dadurch definiert, dass sie die erste Schieferung wiederfaltet. Da die erste Schieferung in unserem Profil in allen glimmerreichen Gesteinslagen der Schichtung nahezu parallel läuft, kann man einwenden, diese fast schichtparallele erste Schieferung sei nicht um B₂ rein passiv verbogen, sondern während der Biegegleitung um B₂ schichtparallel angelegt. Dieser Einwand lässt sich leicht widerlegen, da sich die erste Schieferung in den kompetenten Horizonten

tatsächlich als Transversalschieferung erweist und mit ihrem Überschneidungssinn um die B_2 -Falten verbogen ist. Nach Abwicklung um B_2 ist der Überschneidungssinn also nach wie vor einheitlich. Biegegleitungsbewegungen dagegen sind von beiden Seiten auf die Scheitel zugerichtet. Die erste Schieferung kann also nicht der zweiten Faltung zugeordnet werden. Dies geht aus dem einheitlichen Überschneidungssinn ss/Quarzgänge hervor, der über die B_2 -Falten hinweg gleich bleibt, um diese passiv verbogen ist. Wären die Quarzgänge etwa während der Biegegleitung gebildet, so dürften sie sich in der Scheitelregion nicht finden, da dort die Biegegleitung = 0 wird, ferner müssten sie in stärker verbogenen Falten häufiger und dicker werden. Beides ist nicht der Fall - auch die Quarzgänge sind mit s_1 vor der zweiten Faltung gebildet. Sie bilden sich auch nicht etwa nur in Scheitelräumen, die sich durch Biegegleitung öffneten, sondern finden sich auf Scheiteln und Schenkeln zweiter Falten gleichermassen und auch im Scheitel durchsetzten sie ss.

Mit den zweiten Falten bildet sich eine zweite Schieferung. Sie zerschert die Schenkel der B₂-Schleppfältchen im mm- und cm-Bereich und greift schliesslich durchdringend in die kleinen B₂-Fältchen ein, das ältere Gefüge mehr oder weniger umregelnd (Fig. 6). Der Versetzungssinn wechselt für s2-Flächen, welche die langen Schenkel der kleinen Fältchen zerscheren, vom langen zum kurzen Schenkel der Hauptfalten, ebenso für die s₂-Flächen, die – nach deren stärkerer Rotation – die kurzen Schenkel dieser Fältchen zerscheren. Gemeinsam bilden die s₂-Flächen zwei zusammengehörige Flächenscharen, $\mathbf{s_{2s}}$ und $\mathbf{s_{2a}}$, die zwischen sich die Faltenscheitel ausquetschen (Fig. 6, 5). Die Zerscherung beginnt mit s_{2a} (Voll, 1960, p. 556). Die Abstände der s₂-Flächen wechseln von 2 cm bis Bruchteile eines mm. Bei sehr starker Deformation – schneller in Quarz – und Calcit-reichen Lagen – wird auch die zweite Schieferung Korn für Korn durchdringend. Die gegenüber s, grösseren Abstände gehen auf die durch s₁ erworbene starke, flächige Anisotropie des Gesteins zurück (Hoeppener, 1956, p. 278). Die s₂-Flächen erhalten durch Weglösung von Quarz und durch absolute, wie relative Anreicherung von Muskowit, Glimmertapeten, während die Faltenscheitel zwischen den s2-Flächen absolut und relativ an Quarz angereichert werden. Auch die s2-Flächen bewirken also metamorphe Differentiation (Voll, 1960, p. 556) (Fig. 5, 6).

Beide, besonders die antithetischen s_2 -Flächenscharen, rotieren während der Deformation und während die Winkeldivergenz der Faltenschenkel abnimmt, im Sinn der Gesamtrotation. Der Versetzungssinn der s_2 -Flächen ist dabei von Anbeginn der s_2 -Bildung auf beiden Faltenschenkeln wechselnd angelegt. Die Schenkeldehnung der zweiten Falten vollzieht sich im wesentlichen durch Zerscherung nach s_2 , durch Weglösung von Quarz an s_2 und plastische Deformation zwischen s_2 -Flächen. In extremen Fällen wird der Winkel zwischen s_1 und s_2 wieder nahezu s_2 0, ähnlich wie der Winkel zwischen ss und s_1 bei der ersten Faltung. Diese Rotation kann oft innerhalb einer Falte beobachtet werden, wo diese im Streichen entlang ihrer Achse stärker rotiert und weniger schenkeldivergent wird. In nichtkompetenten Lagen rotiert s_2 schneller. Dies führt zu einer der Brechung der Schieferung ähnlichen Erscheinung. Dass es sich dabei nicht um primäre Lageverschiedenheiten der s_2 -Flächen handelt, geht daraus hervor, dass die Rotation von s_1 zwischen individuellen s_2 -Flächen von deren Rotation abhängt. Sie ist im Moment der

Anlage der s_2 -Flächen = 0. So lässt sich ableiten, dass sich die s_2 -Flächen stets, in kompetenten und inkompetenten Lagen, fast normal zu s_1 bilden und dann um verschiedene Winkel zum s_1 -Spiegel rotieren, während s_1 zwischen ihnen synthetisch rotiert wird.

Nur sehr selten, und dann bevorzugt in rein kalkigen und quarzreichen Lagen, bilden sich nun s₂-parallele Quarz-Ankerit-Gänge. Diese kann man leicht von den s₁-parallelen unterscheiden, da diese im gleichen Material vorhanden und um B₂ gefaltet sind, ebenso wie die meist noch sichtbare erste Schieferung. Trotz ausgeprägter Lösungsvorgänge kommt es also bei der zweiten Faltung in der Regel nicht zur Bildung neuer Quarzgänge.

Erst wenn die gefalteten ss und s_1 bei der Schenkeldehnung von B_2 unendlich gedehnt wären, läge s_2 wieder parallel zu ss + s_1 . Da dies aber nicht der Fall ist und da die B_2 -Falten stets N-vergent sind, fällt s_2 steiler nach S als ss und s_1 , damit als der stoffliche Lagenbau (Diagramme 4, 5, 10, 12, 19, 21, Fig. 24, 25, 27). Das s_2 -Fallen gibt also nicht die Verteilung des Gesteinsverbands wieder, obwohl es die auffälligste Flächenschar ist. Dies sieht man deutlich, wenn man von der Strasse nördlich der Glenner-Brücke auf das Profil der schwarzen Liasphyllite am E-Ufer des Flusses blickt, wo die Schichtung ganz flach (Fig. 2), s_2 aber 35– 40° nach S fällt.

Dies zeigt aber gleichzeitig, dass B₂ wohl individuelle Lagen faltet, die grösseren Platten der Lias-Horizonte aber ungefaltet lässt. Sie bleiben zwar in sich gefältelte, aber planparallele Platten. Die zweite Faltung schafft also keine grösseren Falten, die zu einer wesentlichen Lageveränderung, zur Neuverteilung des Gesteinsbestandes oder der Inversion führen könnten. Die Gegenwart grösserer B₂-Falten müsste sich ausserdem durch die Wiederholung lithologischer Abfolgen, durch die Umkehr der Vergenz von zugeordneten, kleineren scheitelvergenten B₂-Falten und durch Wechsel der s₁/s₂-Überschneidung bemerkbar machen. Diese Züge aber fehlen. Damit ist erwiesen, dass die B₁-Schuppen den Grossbau bestimmen, der von B₂ nur geringfügig gefältelt ist, von s₂ zerschert. Die mechanische Inhomogenität der Schichtung kommt also in dem homogen durch s₁ durchgearbeiteten Gestein nicht mehr so zum Zuge, grössere Falten werden nicht gebildet.

Hier ist es zweckmässig, noch auf folgenden möglichen Irrtum hinzuweisen: Bei scharfer Zerscherung nach s₂ kann dieses, wie zuerst s₁, nun eine durchdringende Schieferung bilden. Man muss sich davor hüten, diese durchdringende zweite Schieferung für die erste zu nehmen und mit ihr und ss erste Falten zu konstruieren, Inversionen abzuleiten oder abzulehnen. Indem man diesen Fehler macht, läuft man Gefahr, erste Falten aufzubauen, die nicht existieren oder existierende zu übersehen. Nur wo man sicher s₁ vor sich hat, kann man mit ihm erste Bewegungen rekonstruieren, nur sicheres s₂ darf zur Rekonstruktion zweiter Falten verwendet werden. Fehlt die Sicherheit, so muss man auf solche Konstruktionen verzichten.

c) Streckung

Wie zuerst auf s_1 , so bildet sich während der zweiten Faltung nun auf s_2 , bzw. zwischen syn- und antithetischem s_2 , eine Streckungsfaser. Die erste Streckung

wird rein passiv um B₂ gefaltet. Dies ist besonders klar sichtbar, wo B₂ auf s₁ nicht senkrecht, sondern schräg zu str₁ liegt. Dort wird str₁ so um B₂ gewickelt, dass es nicht mehr auf einem Grosskreis liegt, also nicht etwa als Schnittgerade jüngerer Scherflächen mit dem um B₂ gefalteten s₁ zu deuten ist. Da die B₂-Falten Schenkeldehnung erleiden, wird str₁ nach rein geometrischer Abwicklung um B₂ nicht wieder zur Geraden.

Die Tatsache, dass str₁ rein passiv um B₂ gefaltet wird, zeigt gleichzeitig wieder, dass s₁ wirklich älter ist als B₂. Denn die Glimmer, deren lange Formachse (zusammen mit der von Quarz und Karbonat) Träger der «Streckungsfaser» ist, liegen gleichzeitig mit ihrer Basis in s₁ und bilden so die phyllitischen Tapeten der ersten Schieferung. Wenn also str₁ um B₂ gefaltet wird, so muss das gleiche auch für die erste Schieferung gelten. Dies beweist wieder, dass s₁ nicht etwa durch Biegegleitung während der B₂-Faltung entstand.

Wo sich s_2 -Flächen eben erst bilden, wo sie also noch weit auseinander liegen, ist die Streckungsfaser auf s_2 noch schlecht sichtbar. Wo jedoch die Rotation von s_1 zwischen s_2 -Flächen weit fortgeschritten, der Winkel zwischen s_1 und s_2 klein geworden und das Material durch s_2 weitgehend durchgearbeitet ist, wird str $_2$ so deutlich, wie es erst str $_1$ war. Die Streckungsnatur wird wieder durch entsprechende Deformation von mechanisch wirksamen und unwirksamen Vorzeichnungen, durch Druckschattenkristallisation usw. bewiesen. Bei völliger Durcharbeitung des Materials bilden sich wieder flache Pyritlinsen parallel s_2 , wie erst parallel s_1 . Deren lange Achse liegt in str $_2$.

Während die zweiten Falten rotieren, wandert das str₂-Linear auf dem gleichen Grosskreis, auf dem erst str₁ rotierte. Die Streckungsfaser hat also die rotierte der ersten Faltung ersetzt, die Streckung symmetriekonstant fortgesetzt. Wie str₁ bleibt str₂ lagekonstant, auch wenn die Faltenachsen schwanken. Die Lage von str₂ in dem NNE streichenden Grosskreis wird wieder nur durch die Rotation während der zweiten Faltung, die Rotation von s₂ bestimmt. Anscheinend haben kleinste und grösste Hauptnormalspannung während der ersten und zweiten Faltung die gleiche Lage behalten.

d) allgemeine Bemerkungen

Die zweite Faltung ist also die symmetriekonstante Fortführung der ersten. Vergenz, Rotationssinn, Schieferungslagen, Streckung und Metamorphose werden wiederholt bzw. fortgeführt. Daran ändert nichts, dass am Ort β_1 und zweite Falten verschiedene Lage einnehmen mögen. Im Gesamtplan weist B_2 die gleichen Schwankungen und Lagemöglichkeiten auf. Erste Falten werden durch isoklinales Zusammenlegen und Schenkeldehnung, erste Schieferungen durch Rotation unwirksam und durch zweite ersetzt. Die anderen Ausmasse der Falten und der s-Flächenabstände ändern daran nichts. Sie sind nur Ausdruck der starken, flächigen Anisotropie, die sich nach der ersten Schieferung gebildet hat.

Ist aber die zweite Faltung nur eine symmetriegemässe Fortsetzung der ersten, und führt sie gar, wie in unserem Fall, nicht zu wesentlichen Lageänderungen der Schichten, so liegt der Gedanke nahe, es sei nicht so wichtig, erste und zweite Falten zu unterscheiden. Man könnte meinen, es sei allein wichtig, die Lage der

Achsen zu sammeln und Normalspannungen abzuleiten. Sammeldiagramme, die erste und zweite Falten vereinigen, würden dann nicht Wesentliches verschleiern und unzulässiges Zusammenlegen bedeuten. Dem ist aber nicht so. Denn einmal wissen wir ja nicht a priori, dass die zweiten Falten keine grösseren Amplituden besitzen, wenn wir an die Aufnahme herangehen. Ausserdem lehrt die Erfahrung (Voll, 1960, Plate 24), dass zweite Faltungen, auch wenn sie erste symmetriekonstant fortsetzen, frontartig einsetzen. Dies gilt auch für die weitere Umgebung unseres Gebietes: Die Glarner Schubmasse nördlich des Vorderrheins ist im wesentlichen (abgesehen von einigen Zonen und etwa dem Lochseitenkalk) nur durch eine Faltung (B₁, s₁, str₁) bestimmt, ebenso ihre helvetisch-autochthone Unterlage. Unsere zweite Faltung setzt in ihrer flächigen Verbreitung südlich der Wurzel der helvetischen Hauptschubmasse ein. Ferner wissen wir noch nicht, ob nicht diese zweite Faltung weiter im S, etwa im Gebiet der Lugnezer Schiefer, plötzlich Falten mit weit grösseren Amplituden schafft, die sich dann auch im Kartenbild auswirken. Auf jeden Fall setzt - ebenfalls mit scharfer Grenze - an der Einwicklungszone des Aul-Lappens ein neuer Deformationsstil ein, wobei unsere s₂- (und s₃-) Flächen scharf zerschert und mehrmals wiedergefaltet werden. Es ist also nicht so, dass sich innerhalb einer Platte Bereiche mit nur einer, mit zwei oder mit drei Faltungen mehrmals ablösen und fleckig verteilt sind. Die Zahl der Faltungen ändert sich meist plötzlich an der Grenze grösserer Bereiche. Dies bedeutet, dass für die Ausmasse, Formen und Entwicklungsstadien der einzelnen Falten der lokale Lagenbau wohl verantwortlich ist, dass aber in bezug auf Wiederfaltung grössere, in sich uneinheitlich gebaute Bereiche einheitlich reagieren. Der Stress wird anscheinend über solch grössere Bereiche hinweg aufgebaut und in einem neuen Faltungs-(Wiederfaltungs-)Akt gelöst. Analoge rotationale Wiederfaltung wurde bereits von Hoeppener (1956) aus dem Rheinischen Schiefergebirge und von Voll (1960) aus den schottischen Highlands beschrieben.

4. Dritte und weitere Faltungen, Schieferungen und Streckungen

In unserem Profil ist die Faltung in kompetenten Horizonten, insbesondere in den Grobsanden, nur bis zur Bildung zweiter Falten vorangeschritten. Wo sich aber einheitlich pelitische, oder stärker pelithaltige Pakete einschalten, bilden sich auch dritte Falten (Fig. 8b, 11). Besonders klar ist dies am Oberrand der kieslig-sandigen Serie sichtbar (Glenner E-Ufer unter der Strasse, ca. 60 m nördlich des Lawinendaches). Die zweiten Falten zeigen dort in einem nördlichen Aufschlussteil, zunächst noch nicht durch dritte wiedergefaltet, starke Schwankung der Achsenlagen in der beschriebenen Art. Wo sie dann in den südlich anschliessenden Aufschlüssen durch dritte wiedergefaltet werden, liegen ihre Faltenachsen meist NW-SE bis NS und NNE-SSW streichend. Trotz der Wiederfaltung lässt sich ihre E-Vergenz noch eindeutig feststellen. Die dritten Falten sind auch hier offen d.h. ENE-WSW, und ihre Achsen liegen somit \pm parallel zum regionalen Streichen (Fig. 11 und Diagramm 7, Fig. 25). Dabei fallen die s₃-Flächen noch steil S. Noch ein paar m nach S, direkt unter der mausgrauen Serie, werden nun auch die s₃-Flächen wieder nach N rotiert, die Schenkeldivergenz der B₃-Falten wird geringer, und schliesslich beginnen auch die Achsen der dritten Falten zu schwanken, genau wie die zweiten. Die Flächen der dritten Schieferung, die sich analog der zweiten entwickelt, sind dann wieder von dem Streckungslinear, nun str₃, bedeckt. Str₂ ist um B₃ gefaltet. Str₃ liegt wieder auf dem gleichen NNE-Grosskreis. s₃, selbst eine ebene Flächenschar, durchschneidet nun ss, s₁ und s₂. Die Schnittlinien der dritten Schieferung mit dem um B₂ gefalteten ss und s₁ verlaufen gekrümmt, da das ebene s₃ ja damit durch ss- und s₁-Flächen verschiedener Lage schneidet. Diese dritte Faltung ist wieder einfach die symmetriekonstante Fortführung der ersten und zweiten Faltung. Sie ist, mit Ausnahme grosser Teile des dunklen Lias an der Basis, fast im ganzen Profil zu finden, aber arbeitet nicht mehr das ganze Gefüge homogen durch. Hier zeigt sich nun eine deutliche Materialabhängigkeit, da die dritte Faltung die pelitreicheren Horizonte bevorzugt. Besonders stark wird die dritte Faltung in den pelitbetonten Liashorizonten, nämlich am S-Rand der

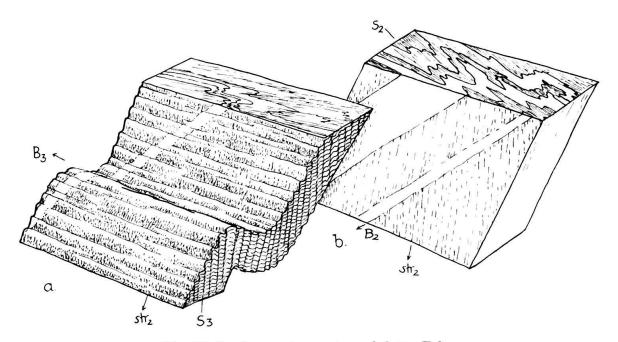


Fig. 16. Zweite, westvergente und dritte Falten.

a) Strasse, nördlich Glennerbrücke (Koord. 735,5/179,5): WNW-vergente, fastisoklinale B_2 -Falten, schräg zu dem NS streichenden str $_2$, mit ss, s $_1$, s $_2$ und str $_2$ um flaches B_3 gefaltet. s $_3$ fällt $80^\circ-43^\circ$ SSE. b) (Koord. 735,45/180,05) dicht Na: NE streichendes B_2 mit wechselnder Vergenz, schräg zu str $_2$. Beide = dunkler Lias an der Profilbasis.

schwarzen Tonschiefer an der Basis unseres Profils, in den mausgrauen Kalken und z.T. in der Serie mit unruhiger Sedimentation.

Die schwarzen Tonschiefer an der Basis des Lias-Profils sind besonders pelitisch. Man sollte erwarten, dass in ihnen die dritte Faltung besonders stark ausgeprägt ist. Dies ist aber nicht der Fall. Sie ist mit Ausnahme der in Fig. 16a abgebildeten Stelle vorwiegend auf eine schmale Zone am S-Rand dieses Pelit-Horizonts beschränkt. Darin kommen die Zunahme der Deformation von N nach S und das frontartige Einsetzen der Wiederfaltung zum Ausdruck. Die mausgrauen Kalke, weiter im S, sind, obwohl sie mehr kompetente Lagen enthalten, fast durchweg von dritten, sogar z. T. von vierten Falten durchdrungen. Trotzdem ist es in den

pelitischen Tonschiefern an der Profilbasis nur sehr selten möglich, die ss/s_1 -Überschneidung zu rekonstruieren, da die zweite Faltung sehr intensiv war und Feinschichtung nur gelegentlich sichtbar ist. Findet man aber ss nicht, so helfen natürlich auch Quarzgänge nicht weiter. Die wenigen sedimentär und tektonisch gewonnenen Unten-Oben-Nachweise zeigen, dass die schwarzen Tonschiefer an der Basis des Liasprofils B_1 -Falten enthalten haben müssen, denn, wenn auch selten, findet man doch gelegentlich Inversion durch B_1 , d. h. wechselnden $ss/_1$ -Überschneidungssinn in diesen Gesteinen. Dies ist nicht verwunderlich, da wir an der Westseite des Flusses, unter der Ruine Castelberg (Koord. 735,45/180,05, auf Fig. 2 als höhere Triasschuppe eingetragen) einen kleinen Keil Quartenschiefer in diese schwarzen Tonschiefer eingeschuppt finden. Es ist uns nicht gelungen, die Faltenumbiegung solcher B_1 -Falten mit Hilfe der Schichtung aufzufinden. Aber diese B_1 -Falten haben die schwarzen Tonschiefer an der Profilbasis – aus den oben angeführten Gründen – nicht in ihrer Gesamtheit invertiert.

In den mausgrauen Kalken finden wir dritte Falten fast überall. Sie sind z.T. noch offen, häufig aber auch schon fast isoklinal. Z.T. sind sie selbst wieder durch meist offene, selten auch bereits wieder isoklinale, vierte Falten wiedergefaltet. Nicht immer kann man die Indizierung von Falten als dritte nachweisen durch Wiederfaltung zweiter. Auch hier helfen oft die Quarzgänge. Zweite Falten erkennt man mit ihrer Hilfe, da sie die Quarzgänge in isoklinale Falten legen, dritte, da sie diese Quarzgang-Falten wiederfalten. In den mausgrauen Kalken sind solche dritte Falten oft an der linsigen Zerscherung von Quarzgangfalten in fischartige Körper schuld. Diese schwimmen dann als isolierte Faltenscheitel-Linsen und -Stengel in dem straff nach $\mathbf{s_4}$ zerscherten Gestein. Wieder erweisen sich also die Quarzgänge als wertvolles Hilfsmittel, wenn auch nicht mehr, um die restlos verwischte Überschneidung $\mathbf{ss/s_1}$ zu konstruieren, so doch noch, um die Zahl der Faltungen anzugeben, die das Gestein betroffen haben.

Wo die dritten Falten offen sind, die gefalteten Lagen nicht zerschert, erweisen sich die dritten Falten als den zweiten ähnlich gebaut. Wo sie aber in den mausgrauen Kalken stark isoklinal geworden und durch s3 zerschert sind, ist es nicht mehr möglich, ihre Form zu rekonstruieren, oft nicht einmal, die Vergenz anzugeben. Damit wird es aber auch unmöglich, anzugeben, ob grössere B₃-Falten vorlagen. Dies ist aber nur in pelitischen Teilen der mausgrauen Kalke der Fall, nämlich im Rieiner Tobel (Koord. 736,1/177,9). Doch kommt noch zum Ausdruck, dass auch die dritten Falten in der Regel nach N- bis E vergieren. Im Rieiner Tobel erkennt man (an der ersten Steilstufe im Bach, östlich der Strasse), dass dort die zweiten Falten ebenfalls die stärkste Deformation des Profils erreichen und Amplituden bis über 5 m aufweisen bei starker Isoklinalität und Schenkeldehnung. Diesen grösseren B2-Falten sind kleinere im m-, dm-, und cm-Bereich scheitelvergent zugeordnet. Die Achsen dieser zweiten Falten schwanken dort stark und erreichen, wie die der dritten, NW-, NS-Lagen und schliesslich Parallelität mit der Streckungsrichtung (Diagramm 8, Fig. 25). Ob auch die dritten Falten dort ähnlich grosse Amplituden erreichen, liess sich nicht feststellen.

Aber auch diese Falten mit Amplituden im 10 m-Bereich sind auf die Serie der mausgrauen Kalke beschränkt. Diese bleiben also eine planparallele Platte zwischen den Serien der kieslig-sandigen und grobsandigen Schiefer und werden nicht in ihrer Gesamtheit von diesen Falten erfasst. Zwischen zwei aufrechten Paketen können daher auch die mausgrauen Kalke in ihrer Gesamtheit doch wohl nicht invertiert sein. An der Oberseite der mausgrauen Kalke weist zudem die Gradierung auf ihre aufrechte Lagerung hin.

5. Faltung um Achsen parallel zur Streckungsfaser

Ausser den genannten Wiederfaltungen können auch solche eintreten, die ihre Bildung einem ganz anderen Mechanismus verdanken. Sie besitzen Achsen stets parallel zur Streckungsfaser (Diagramm 1, Fig. 24). Dabei bilden sich zugeordnete Schieferungsflächen, die sich ebenfalls mit der gefalteten Lage parallel zur Streckungsrichtung schneiden. Da diese Falten in der Regel polyvergent sind, schaffen sie ein orthorhombisches Gefüge. In unserem Profil bilden diese Falten nie grössere Amplituden und Wellenlängen, sie bleiben im mm- und cm-Bereich (Runzeln). Wieweit dieser Mechanismus die in Parallelität zur Streckungsfaser rotierten (generell aber schwankenden) anderen Wiederfaltungen betraf, kann nicht entschieden werden. Solche Wiederfaltungen um die Streckungsrichtung bilden sich mit und überleben jede der beschriebenen Faltungen. Grosse Bedeutung erlangt hier keine. Sie führen meist zu feinen, straff parallel orientierten Runzeln parallel der Streckung. Will man diese Falten indizieren, so kann man sie zwischen eine der genannten Faltungen und die folgende Wiederfaltung einschieben. Am besten ordnet man sie der x-ten Faltung Bx als Bx' zu. Die Bx'-Faltung steht dann (wegen des Schwankens der B_x-Falten) im allgemeinen schief auf B_x, beginnt sich im fortgeschrittenen Stadium der gleich indizierten Bx-Faltung zu bilden und überlebt sie, die s_x-Flächen wiederfältelnd und durch s_x'-Schieferung zerscherend. Fig. 8e und 15d zeigen solche Fältchen.

6. Verhältnis der Metamorphose zu Faltung und Schieferung

Schon bei der ersten Faltung und Schieferung wurde das Gestein eindeutig metamorphosiert, denn die s₁-Flächen wurden von neugebildeten hellen Glimmern und Chlorit belegt; ob dabei noch Stilpnomelan zur Bildung kam, ist ungewiss. Während der folgenden Faltungen wurden die jeweils älteren Glimmer der Schieferungstapeten verbogen und gefaltet. Diese kontinuierliche Verbiegung der Glimmerblättchen ist häufig noch erhalten, Rekristallisation dieser Glimmer und polygonale Anordnung in Faltenscheiteln tritt zurück. Demzufolge kam es auch kaum zu Korn-Vergröberungen, was nicht allein durch die das Grössenwachstum hemmende Gegenwart von Graphitoid erklärbar ist. Neben Glimmern, die sich auf neuen s-Flächen gebildet haben, finden sich somit fast stets ältere, durch s₁ geregelte und dann verbogene Glimmer ohne nennenswerte Grössenunterschiede der Generationen, ohne Porphyroblastenwachstum und Korngrössenhiatus.

Auch die Quarze verraten, dass die Kristallisation bis in das jüngste Deformationsstadium die Verformung begleitete, dass die Deformationsgefüge nicht durch anschliessende, gründliche Temperung verwischt wurden. Obwohl polygonale Kornformen und Bindung der Quarz-Quarz-Korngrenzen an die Basis benachbarter

Glimmer vorkommen (Voll, 1960, p. 529, 1962, p. 401), sind suturierte Quarz/Quarz-Grenzen doch häufig. Demzufolge ist bereits mit dem Gipsblättchen Vorzugsorientierung der Quarze stets nachweisbar. Beides zeigt, dass die Kristallisation von Quarz bis in die letzten Stadien der Metamorphose noch von Bewegungen begleitet wurde. Im Verrucano, im Melser Sandstein, in grobklastischen Lagen der kieslig-sandigen-, der Grobsand- und der unruhigen Serie sind klastische Quarzkörner häufig erhalten. Sie sind stets deformiert, teilweise rekristallisiert, zeigen Felderteilung und häufig Böhmsche Lamellen (Deformations-Knickbänder). All diese Züge und ihre gegen die feinkörnigen Rekristallisate suturierten Korngrenzen zeigen ebenfalls, dass der Deformation keine langdauernde und gründliche statische Temperung folgte.

Auch die Karbonate zeigen ein ähnliches Bild. Häufig sind noch sedimentäre Karbonate als Ooid-Fasern und besonders Crinoiden-Bruchstücke mit Porennetz, Zentralkanal und diagenetischen, homöachsialen Fortwachsungen erhalten. All diese sedimentären Karbonatkristalle sind stark verbogen, druckverzwillingt und teilweise bis ganz rekristallisiert. Die Fortwachsungen mit gleicher Orientierung fallen z.T. bereits ins Stadium der Durchbewegung, da sie oft deutlich parallel str gelängt sind. Deformation, Rekristallisation und Neubildung von Karbonatkristallen finden sich während aller Faltungsphasen. Die Deformation jeweils älterer Karbonatkristalle ist auch nicht durch eine langdauernde, die Deformation überlebende, statische Temperung verwischt. Die typischen, der jeweiligen Faltung, Schieferung und Streckung zugeordneten Korn- und Deformations-Formen sind überall erhalten. Während jeder Faltung bilden neu wachsende Karbonatkörner in erster Annäherung dreiachsige Ellipsoide, deren lange Achse parallel der zugehörigen Streckungsfaser liegt, zusammen mit der mittleren Achse in der zugehörigen Schieferungsfläche. Die nächstjüngere Faltung verbiegt, verzwillingt oder zerbricht diese Körner, schafft durch Rekristallisation und Keimbildung im Druckschatten starrer Einlagerungen auf analoge Weise neue Körner gleicher Form. Relikte bleiben aus allen Faltungsphasen und, wie gesagt, auch aus dem sedimentären Kornbestand erhalten. In quarzreichen Lagen tritt zeitlich nach s2 gesteigerte Karbonat-Porphyroblasten-Bildung auf.

Noch nicht ganz klar ist die Stellung des Chloritoids. Da unsere Gesteine zur Chloritoid-Zone gehören (E. Niggli, 1960 und 1961), ist dieses Mineral stets reichlich vorhanden. Ob seine oft vorzügliche Einregelung mit der Basis in s₁ darauf hindeutet, dass es bereits bei der s₁-Bildung wuchs, muss zweifelhaft bleiben. Es könnte sich auch um Abbildungskristallisation handeln. Aus dem gleichen Grund kann man auch Einregelung parallel s₂ und s₃ nicht sicher als syntektonisch in bezug auf diese Schieferungen deuten. Dass die Chloritoidbasis der vorhergehenden Schieferung im Scheitel zweiter und dritter Fältchen folgt, heisst ebenso nicht notwendig, dass sie um diese Fältchen verbogen ist. Hier wie in der ganzen Zone zeigt Chloritoid ja ausgeprägten Wachstumsfehlbau mit starker, garbig-strahliger Divergenz. Im Scheitel der Fältchen könnte ein Fehlbau durch die verborgenen Glimmerfilme geleitet sein und Verbiegung des Chloritoids vortäuschen. Auch dass Chloritoid gehäuft dort vorkommt, wo im Zuge tektonischer Vorgänge Glimmer angereichert wurden (Falten-Schenkel und s-Flächen), beweist nicht, dass Chloritoid dort nach der tektonisch induzierten Glimmeranreicherung wuchs. Auch Chloritoid

könnte in diesen Teilgefügen ja relativ – durch Weglösung von Quarz – angereichert sein. Immerhin gibt es hier Lagen, in denen die Glimmerkonzentration in den Faltenscheiteln nicht ausreichte (an B₂-Falten beobachtet), um Chloritoid-Keimbildung zu ermöglichen, während in den Schenkeln der gleichen Lagen Chloritoid vorkommt. Hier muss also erst die zweite Faltung die Glimmeranreicherung geschaffen haben, die das Chloritoidwachstum gestattete. Die Chloritoidbildung muss somit zumindest teilweise posttektonisch in bezug auf diese Faltung sein. Oft findet man Chloritoidgarben, an deren Enden die Basis sich senkrecht zum benachbarten s stellt. Dies wird als Wachstumsfehlbau, durch die benachbarte Schieferung induziert, gedeutet. Offensichtlich begünstigt diese Stellung das Grössenwachstum. Da dies von der ersten bis zur dritten Schieferung gilt, muss das Chloritoidwachstum auch bis nach dieser angedauert haben. Und da solche Garben-Enden auch an der jüngsten Schieferung nicht selten noch verschleppt sind, haben zumindest die letzten Ausläufer der Bewegungen noch das Chloritoidwachstum begleitet.

Aus der häufigen Garbenbildung auf Wachstum des Chloritoids in Perioden tektonischer Ruhe zu schliessen, scheint uns nicht gerechtfertigt. Man kann sich ja auch vorstellen, dass die Kristalle sehr schnell wuchsen, so dass die vergleichsweise unendlich langsamen Bewegungen im Gestein nicht zum Zuge kamen. Zu gesteigerter Chloritoidgarbenbildung kam es wohl nach B₂. Anscheinend wuchs Chloritoid also bis in die Spätstadien der Deformation. Den Beginn seiner Bildung zu verfolgen, ist schwieriger. Die sehr einheitliche Korngrösse und Verteilung macht jedoch einen einmaligen Akt der Keimbildung wahrscheinlich, denn bei über lange Zeit anhaltender Keimbildung sollte man seriale Grössenverteilung, bei mehrmaliger Keimbildung hiatale erwarten. Einmalige Keimbildung, häufig garbige Entwicklung und Wachstum, z.T. nachweislich nach s₃, machen im ganzen spätes Chloritoidwachstum wahrscheinlich.

Pyrit bildet sich parallel s₁, s₂ und – mit kleinen, oft idiomorphen Kriställchen – bis ins letzte Bewegungsstadium. Ob die idiomorphen Pyrite gänzlich posttektonisch sind, erscheint unsicher, da Pyrit sich starr verhält, eine späte Beanspruchung also nicht notwendig spiegelt. Sehr selten findet man kleine Magnetkieskörnchen im Pyrit. Eine detaillierte Untersuchung der Korngefüge ist in dieser Arbeit nicht beabsichtigt.

7. Vergleich mit benachbarten Gebieten

Wir haben bereits festgestellt und begründet, dass und warum wir nach wie vor der Ansicht sind, die Serie liege aufrecht. Wir haben ferner die Deformation als rotationale Faltung und Wiederfaltung in einem kontinuierlichen Akt und unter Beibehaltung des Stressplans beschrieben.

Nun kehren wir zurück zu der Frage: ist die beschriebene Deformation am Ort aufgeprägt, nachdem Horizontaltransporte stattgefunden hatten, oder ist sie während solcher Horizontaltransporte erworben?

In diesem Zusammenhang ist es interessant, dass genau der gleiche Deformationsstil nach S bis in die Lugnezer Schiefer anhält (Fig. 2, 17, Diagramme 22, Fig. 27). Diese haben zweifellos einen weiteren Horizontaltransport hinter sich und zumindest in ihren nördlichen Randbereichen sind sie nicht nachträglich versteilt

worden. Hier liegt es nahe, diesen Bau als während dieses Horizontaltransports erworben zu betrachten. Und da diese Serie den gleichen Gefügeplan erwarb, ihre Prägung also auch dem gleichen Kräfteplan verdankt, wird ihre Einwanderung wohl auch etwa gleichzeitig mit der Prägung unseres Profils erfolgt sein, nicht durch einen zeitlichen Hiatus getrennt. Somit dürfte das Gleiche wohl auch für die südlich der Lugnezer Schiefer folgenden Deckenlappen gelten.

Erst weiter im Süden, am S-Rand der Lugnezer Schiefer, versteilen sich die s-Flächen, und an der Einwicklungszone des Aul-Lappens setzen neue Wiederfaltungen ein. Ob diese der Einwicklung zugeordnet sind, müssen erst eingehende Studien zeigen.

Da diese Beobachtungen bereits auf Anlage der Gefüge unseres Profils während der Deckenbewegung, während des Horizontaltransportes hier und in der Nachbar-

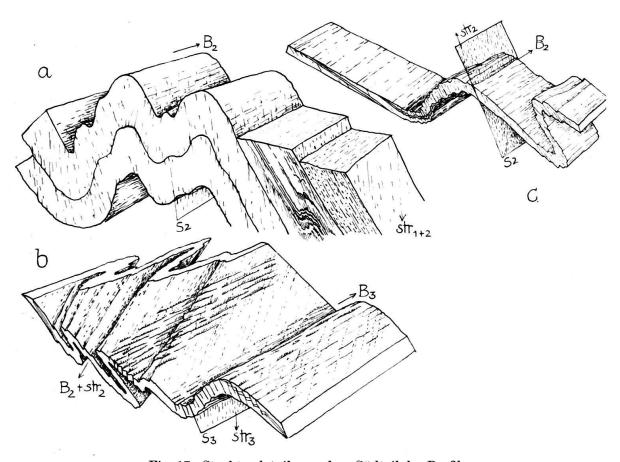


Fig. 17. Strukturdetails aus dem Südteil des Profils.

- a) Strassenkurve 20 m nördlich der Strassenabzweigung nach Camuns, südlich Peidenbad (Koord. 734,3/175,0); Rötidolomit mit flachen B_2 -Falten, darüber feingeschichtete, pelitische und quarzitische Quartenschiefer. Die feingeschichteten Quartenschiefer (mit gradierten Lagen) zeigen B_2 -Falten mit wechselnder Achse, die normales ss und fast ss-paralleles s_1 falten.
- b) Lugnezer Schiefer bei Brücke über Tobel des Val de Tersnaus südlich Uors (Koord. 735,55/173,35): ss wird von steiler S fallenden Quarzgängen durchsetzt, mit ihnen von isoklinalem B_2 gefaltet (Streichen 23°, Tauchen 21° SSW, parallel str₂, WNW-vergent). B_2 wird von 87° streichenden, 6° E tauchenden B_3 -Runzeln und -Falten wiedergefaltet.
- c) Quartenschiefer, direkt unter b) aufgeschlossen. Offenes bis fast isoklinales B_2 (? B_3) faltet ss, s_1 und steiler als ss nach S fallende Quarzgänge um flache ENE streichende Achsen. s_2 ist stark gestreut, 80° S fallend in offenen, 35° S fallend in stark rotierten zweiten Falten.

schaft deuten, wollen wir sie durch weitere Beobachtungen erhärten, die einer von uns (G. Voll) sammeln konnte:

Auch im Engadiner Fenster sind Deckenbewegung, Streckung, Faltung, Wiederfaltung, Schieferung und Wiederschieferung einander zugeordnet. Unter der flachen Überschiebungsbahn des Ötztaler Kristallins auf die unterostalpinen und penninischen Serien erscheinen bei Nauders N-vergente, liegende Deckfalten. Ihre Achsen streichen NE, ihre Amplituden und Wellenlängen liegen im km-Bereich. Beide Schenkel fallen nach S, die Inversion der kurzen Schenkel kann mit Gradierung und mit der ss/Quarzgang-Überschneidung nachgewiesen werden. Diesen grossen Deckfalten ist die erste Schieferung zugeordnet. Sie liegt in den Schenkeln wieder parallel oder fast parallel ss, durchsetzt aber an den aufgeschlossenen Scheiteln der B₁-Deckfalten ss deutlich sichtbar. Während die mesozoische Kalkkögel-Serie und die Serien der Engadiner Dolomiten auf dem Ötztaler Kristallin nur nach B₁, s₁, str₁ verformt sind, und das Ötztaler Kristallin nur von einzelnen Scherbahnen des alpinen s₁ durchzogen wird, sind die Serien unter dem Ötztaler Kristallin bereits lebhaft wiedergefältelt. Hier kommt also eine modellklare Stockwerkstektonik zum Ausdruck. Wieder schwanken die zweiten Falten in den Bündnerschiefern stark, liegen jedoch oft der dort mehr NW bis WNW streichenden Streckungsrichtung str₂ parallel. Bei Nauders sind ihre kurzen Schenkel bevorzugt nach W bis SW rotiert, doch kommt auch die entgegengesetzte Vergenz vor. s2 arbeitet die Bündnerschiefer überall fast durchdringend durch. Häufig bilden sich noch dritte Falten mit Achsen parallel str, und wechselnder Vergenz. Die Streckung dauert auch hier wieder von der ersten über die zweite Faltung hinaus an. B2-Falten erreichen Amplituden im 10 m Bereich. Südlich des Inntals beginnt eine letzte Wiederfaltung, die den flachen ss-, s₁- und s₂-Bau aufwölbt. Die Achse dieser grossen Aufwölbung liegt im Zentrum des Fensters und läuft NE-SW, diesem parallel. Die Achsen dieser letzten Falten liegen flach, NE streichend senkrecht zur Streckungsrichtung, die mit älteren Falten und s-Flächen wiedergefaltet wird. Dieser letzten Faltung sind steil N fallende Schieferungsflächen zugeordnet. Diese letzte Faltung klingt gegen das Samnaun hin aus, wo wieder zweite und streckungsparallele Falten, zusammen mit ihren Schieferungen das Bild beherrschen, B1 und s1 überlagernd. Der dem Fenster-S-Rand ähnliche, flache Lagenbau fällt dann flach nach N unter die Silvretta-Gneise. Die vor der Fensterwölbung angelegten Deck- und Wieder-Falten ziehen also mit den zugehörigen s-Flächen und Streckungslinearen unter dem überschobenen Altkristallin durch. Der unserem Gebiet sehr ähnliche Bau muss also während der Deckengleitung erworben sein. (Für das Samnaun geben Kläy's Diagramme (1957, p. 339) die jüngeren NE-Achsen und die älteren, stark gestreuten, jedoch im NW gehäuften B₂-Achsen, leider ohne Vergenz oder zeitliche Trennung.)

In der gleichen Richtung deuten Beobachtungen im autochthonen Helvetikum östlich des Aar-Massivs und in der helvetischen Hauptschubmasse nördlich des Vorderrheins⁴): Nördlich unseres Profils hören Wiederfaltungen bald auf (Fig. 18). Sie finden sich nur noch in schmalen Zonen oder – um die Streckungsrichtung – in flachen Bewegungsbahnen von Decken und Schuppen (Fig. 19b, c, d). s₁ und str₁

⁴) Sie wurden von G. Voll auf einer Exkursion gesammelt, bei der die Herren Dr. Styger und Dr. Schindler freundlicherweise die Führung übernahmen.

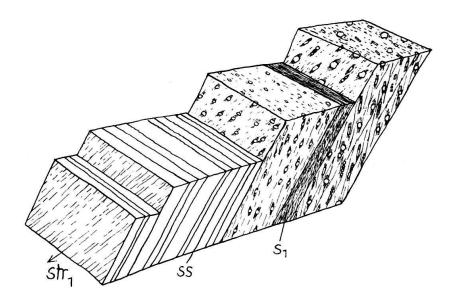


Fig. 18. Deformation der permokarbonischen Eruptiva von Tamins und der überlagernden Trias. Aufschluss an der Strasse nach Flims im Lavoi-Tobel, 500 m W Kirche Tamins. Rötidolomit oben mit plattigem ss, darunter Melser Sandstein, Verrucano-Pelitphyllite und Quarzporphyr-Phyllit. ss: streicht 75°, fällt 75° S. Darauf taucht str₁ mit einem Winkel von 75° nach SW ab. s₁ fällt steiler S. Klastische Körner im Sandstein, Quarze und Feldspäte im Quarzporphyr sind zerbrochen, parallel str₁ auseinandergetriftet, faserige Quarz- und Glimmer-Neubildungen im Druckschatten parallel str₁. Z. T. feine Runzeln parallel str₁.

jedoch setzen sich nach N fort, bis ans N-Ende des Verrucanos (Fig. 22) und über diesen hinaus. In der Verrucano-Decke und in ihrer Unterlage findet sich die Strekkung gleichermassen und nimmt nach N allmählich ab. Ebenso klingt sie im Deckenstapel des Glärnisch nach oben aus. Gleichzeitig wird der Winkel ss/s, nach N und nach oben allmählich grösser, die syntektonische Metamorphose geringer. Im Niveau des Lias bei Ob. Stafel W Schwanden ist am Glärnisch die obere Grenze der Schieferung erreicht. In den Deckengleitbahnen, die dort überall in s, verlaufen, liegt s, der Schichtung fast parallel. Zwischen ihnen aber kann es steiler werden, Faltungen (B₁) können sich einstellen (Fig. 20). Steilere Lage von s₁ zwischen den Deckenbahnen bedeutet nicht, dass dieses s₁ und zugeordnete B₁-Falten nicht während der Deckengleitung betätigt wurden, nicht, dass sie nach der Deckengleitung gebildet sind. Die steileren Lagen gehen kontinuierlich in die flacheren auf den Deckenbahnen über. Die Gleitung der Verrucano-Decke (Glarner Stammschubmasse) und der höheren Decken vollzog sich also auf und während s1. Auch in der Unterlage der helvetischen Hauptschubmasse sind Inversionen (Matter Sandstein), Schieferung und Streckung (Glarner Dachschiefer) durch unsere erste Faltung bestimmt. Die Gleichzeitigkeit von Faltung nach B₁ und flachen Horizontaltransporten auf s₁ wird besonders schön am Piz da Dartgas gezeigt (Fig. 21). Während dort die tiefere Falte s, noch in stark divergenter Fächerstellung zeigt, vollzieht sich am Gipfel auf dem gleichen s, die flache Überschiebung von Trias und Kristallin. Während unten der kurze N-Schenkel der Falte noch verdickt wird, werden oben die flachen Schenkel und Gleithorizonte bereits stark gedehnt, die Globigerinenschiefer z.T. bereits um str₁ wiedergefaltet (Fig. 19b, c, d).

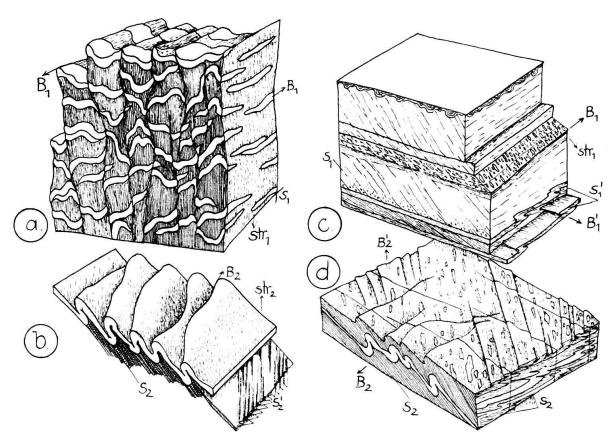


Fig. 19. Gefüge-Details am Piz da Dartgas (Koord. 722,1/186,8).

- a) Siehe Kreis 1 in Fig. 21. Assilinen-Sandstein, flache Lagerung N vor der Piz da Dartgas-Falte. Die Assilinen sind gefaltet, z. T. an dem steil S fallenden s_1 stark gelöst. Auf s_1 fast senkrecht zu B_1 das steile str₁-Linear.
- b) Siehe Kreis 4 auf Fig. 21. Um B_2 gefaltete Quarzgänge (s_1 -parallel) in flachem Horizont mit gesteigertem Horizontaltransport (Globigerinenschiefer). B_2 schwankt, streicht NE, liegt schief zu str₂, das 170° streicht. s_1 ist fast ganz durch s_2 verwischt. Parallel str₂ bilden sich divergente B'_2 -Runzeln mit zugeordneten s'_2 -Scharen.
- c) Siehe Kreis 2, Fig. 21. Dicke Grauwackenbänke, z. T. mit Gradierung, Laminierung und convolute bedding oben, zwischen brekziösen Lagen und Globigerinenschiefern. s₁ streicht ENE, fällt in kompetenten Lagen steiler, in inkompetenten flacher SSE. str₁ streicht 170°, dehnt die dunklen Pelitfragmente der Brekzien auf das 2–6 fache der Ausgangsgestalt. In den Globigerinenschiefern Wiederfaltung um str₁=B'₁ hier W-vergent, meist jedoch wechselnde Vergenz. Dabei Bildung zugeordneter s'₁-Schieferung.
- d) Siehe Kreis 3 in Fig. 21. Brekzienlagen in Globigerinenschiefern. Flacher Gleithorizont mit Wiederfaltung von s_1 (und s_1 -parallelen Quarzgängen) um wechselndes, meist ENE streichendes B_2 und str $_2$ paralleles, divergentes B_2' , Dabei Ausbildung von zugeordneten s_2' -Scharen.

Auch quantitativ ist die Dehnung in den langen Schenkeln der Falte, in inkompetenten Schichten und in den Gleithorizonten, stark gesteigert.

Ausser s_1 setzt sich also auch str_1 aus unserem Profil kontinuierlich nach N fort, stets mit \pm N-S Streichen. Die Verrucano-Aufschlüsse in Ilanz zeigen Tonschiefer-Fetzen noch auf das 6 fache der Ausgangslänge gedehnt, im Kärpf-Gebiet dürfte die Dehnung durch Streckung noch immer das 2–3 fache der Ausgangslänge betragen. Auch die sauren Extrusiva der Rotliegendserien sind dort von der Streckung betroffen worden. Im Matter Tal ist die Dehnung auf das ca. 1,5–2 fache abgeklun-

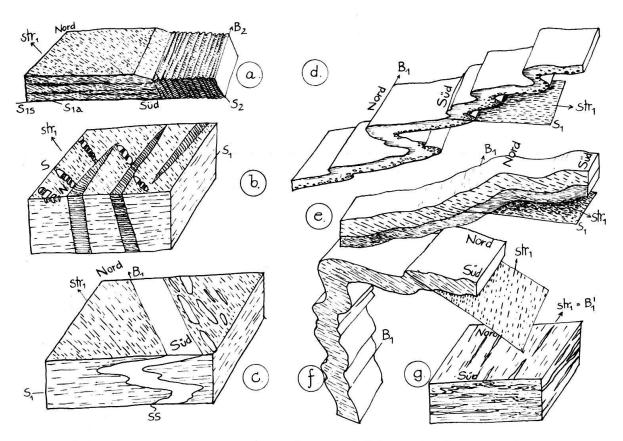


Fig. 20. Gefügedetails aus der Verrucano-Decke, Kärpf-Gebiet. Weg Berggasthof Mettmen nach Seilbahnstation Kies.

- a) 30 m E des Gasthofes: sandige Tonschiefer des Verrucano. Flaches s_{1s} , s_{1a} fällt flach S. s_{2} fällt steil S. Schnittgerade s_{1s}/s_{1a} und Schnittgerade s_{1}/s_{2} (=B₂) liegen parallel, streichen ENE. b) Dicht unter der Seilbahnstation am Gasthof: phyllitischer, grober Sandstein des Verrucano mit zerbrochenen und parallel str₁ auseinandergetrifteten Geröllchen. Quarzgänge sind parallel str₁ mit Faserquarz gefüllt, zeigen Fiederstellung.
- c) Höhe 1570 m, am Weg: fanglomeratischer Verrucano. Gefaltete, sandige Lage, B₁ streicht 35°, str₁ 10°. Tonschiefergerölle liegen mit der langen Achse parallel ss bis str₁, sind durch str₁ gestreckt. d) Höhe 1420 m: 15 cm dicke Grit-Lage mit grading, N-vergent um B₁ gefaltet. B₁ streicht 100°, liegt senkrecht str₁. Der B₁-Faltenspiegel fällt flach N, s₁ liegt fast horizontal. Gradierung zeigt normale Lagerung.
 - e) Höhe 1390 m: ähnlich d) ss fällt 10° N, s₁ 10–30° S, flacher in pelitischen Lagen.
- f) Höhe $1380\,\mathrm{m}$: N-vergente $\mathrm{B_1}$ -Monokline. $\mathrm{B_1}$ streicht 25° , $\mathrm{str_1}\ 10^\circ$. $\mathrm{s_1}$ fällt flach SE. Der kurze Schenkel ist leicht überkippt und verdickt (Höhe $3\,\mathrm{m}$).
- g) Im Bach W des Weges: Flysch direkt unter der Basisüberschiebung der Verrucano-Decke: Wiederfaltung mit B_1' =parallel Streckungsfaser, wechselnde Vergenz, Quarzgänge parallel s_1 werden gefaltet. s_1 streicht 10° .

gen. Mit den so ermittelten Dehnungsbeträgen im Bereich der helvetischen Hauptschubmasse der Glarner Alpen (wozu man Reduktions-Flecken im Verrucano besonders gut verwenden kann), stimmt die Dehnung des Lochseitenkalkes von einer Ausgangsmächtigkeit des Malm von 200–300 m auf ca. 50 m und weniger grössenordnungsmässig gut überein. Hier muss man allerdings mit Mächtigkeitssteigerung durch Verkeilung oder mit Verringerung durch Reibung rechnen. Die Dehnung überwiegt die Einengung in der Glarner Schubmasse sicher stark, da Falten ver-

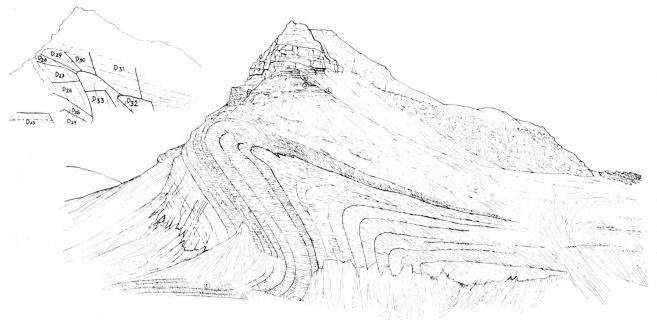


Fig. 21. Piz da Dartgas am Kistenpass, von W (Bifertenhütte) gesehen. Der tiefere Teil des Berges ist von einer nordvergenten Falte eingenommen. Deren N-Schenkel ist verdickt und überkippt. Nördlich davor liegt \mathbf{s}_1 in dem flachen Schichtpaket steil. Im überkippten Flügel liegt \mathbf{s}_1 flach, ss ist verdickt. \mathbf{s}_1 bildet in dieser Synklinale einen sich in den Scheitel öffnenden Fächer, ebenso in der darauf folgenden Antiklinale. Im flachen Hangendschenkel ist \mathbf{s}_1 flach, da dem darüber liegenden Bewegungshorizont in den Globigerinenschiefern angenähert. Die höheren Lagen sind durch Faltungsvorschub nach N vorgeglitten. Der Gipfel des Berges wird von einer Trias-Kristallinlamelle aufgebaut, die auf einer flachen \mathbf{s}_1 -Schubbahn herangewandert ist. In allen diesen flachen Gleithorizonten ist str $_1$ stark gesteigert. Dieses liegt NNW-SSE, fast senkrecht auf \mathbf{B}_1 , der Achse der grossen Falte. In den flachen Gleithorizonten unter der Kristallinlamelle kam es zur Wiederfaltung (siehe Teilskizzen in Fig. 19. Auf diese beziehen sich die Ziffern in Kreisen). Eingesetzt: Verteilungsschlüssel für Diagramme 23–33 in Fig. 28, Sammeldiagramm 34 in Fig. 28.

hältnismässig selten sind. Rückformung muss diese Streckung berücksichtigen, ebenso wie Einengung im evtl. Herkunftsgebiet. Nach solchen Überlegungen erscheint es gut möglich, die helvetische Hauptschubmasse der Glarner Alpen in ihrer gesamten Länge auf dem Tavetscher Zwischenmassiv und den nördlichen Teilen des Gotthard-Massivs unterzubringen, da diese heute stark eingeengt vorliegen, die Glarner Schubmasse aber etwa auf das dreifache ihrer Ausgangslänge gedehnt ist.

8. Deutung

Wir kommen also zu folgenden Schlüssen:

Vom penninischen Bereich zu unserem Profil und bis an den N-Rand der Verrucano-Decke vollzogen sich die horizontalen Transporte während einer einheitlichen, ersten Schieferung. Vom N-Rand der Lugnezer Schiefer bis zu dem der Verrucano-Decke, in den Decken, Schuppen und Massiv-Gebieten verlief die Prägung homotaktisch und mit aller Wahrscheinlichkeit in einem grossen Bewegungsakt und etwa gleichzeitig. Im S, von Ilanz an südwärts, führt die stärkere Deformation zu symmetriekonstanter Wiederfaltung, Wiederschieferung, -Streckung und Rotation.

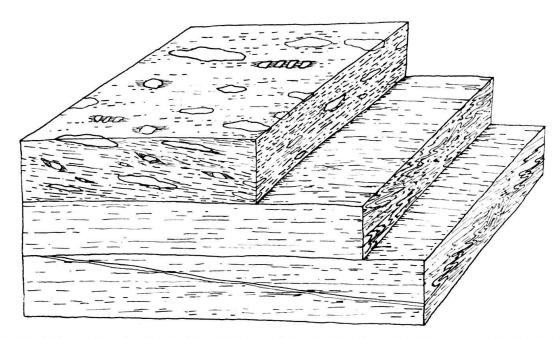


Fig. 22. Deformation des Lochseiten-Kalkes und des darüberliegenden Verrucanos. Lochseite östlich Schwanden (Koord. 726,2/206,55), Kanton Glarus. Oben: Verrucano mit in str₁ (das 155° – 165° streicht) gelängten klastischen Komponenten und faserigen Neubildungen. s₁ bildet einen sehr spitzen Winkel mit ss und fällt steiler S. Darunter: Lochseitenkalk mit gleicher Streckungsfaser und divergenter Wiederfaltung von s₁ und s₁-parallelen Quarzgängchen um str₁= B_1 . Dabei Ausbildung einer s₂-Schieferung.

Die Schuppen unseres Gebietes, des autochthonen Helvetikums und die Decken des Unterengadins wie des Helvetikums sind alle durch einen prinzipiell gleichen Mechanismus gebildet. Gleichzeitig erfolgte vor den Massiven die Bildung der Liasmulden mit steilem s₁ und str₁ (wobei noch zu prüfen wäre, wieviel der heutigen Hochlage dieser Massive auf Hochdehnung in der fächerförmigen Streckungsrich-

tung zurückgeht (Wunderlich und Plessmann, 1958)). Man könnte nun einwenden, die Streckungs-, Falten- und Schieferungsgefüge seien den fertigen Decken und der Liasmulde aufgeprägt, gerade da sie sich analog entwickeln, sich sowohl in flachliegenden Deckengebieten, als auch in steilstehenden Autochthon-Gebieten finden. Wir glauben jedoch, dass sich das Streckungslinear mit der ersten Schieferung und Metamorphose während der Deckentransporte bildete, aus folgenden Gründen:

1. Kann man die Bildung des Streckungsgefüges nicht allein auf Anstau an die starren Autochthon-Massive zurückführen, da die gleiche Streckung sich kontinuierlich aus dem Raum der steilen Liasmulden in die flach nach N transportierten Bereiche unseres Profils fortsetzt. Dort und in den angrenzenden, flachen Decken fehlt die Streckung und syn-s₁-Metamorphose keinesfalls, wohl aber die hemmende Wirkung autochthoner Massive. Sicher ist in deren Einflussbereich die Streckung durch Anstau gesteigert, fächerförmig gestaltet und s₁ steilgestellt, ganz wie Wunderlich (1958) und Plessmann (1958) dies beschrieben.

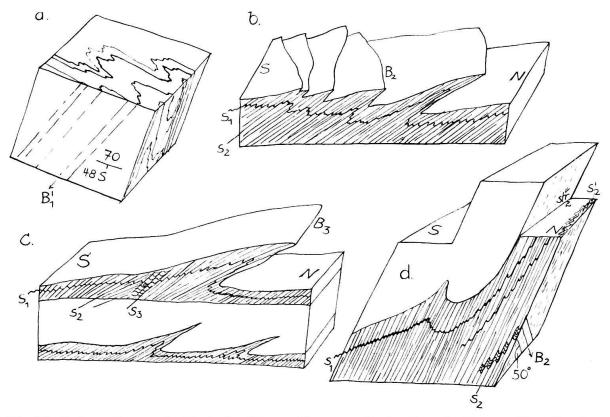
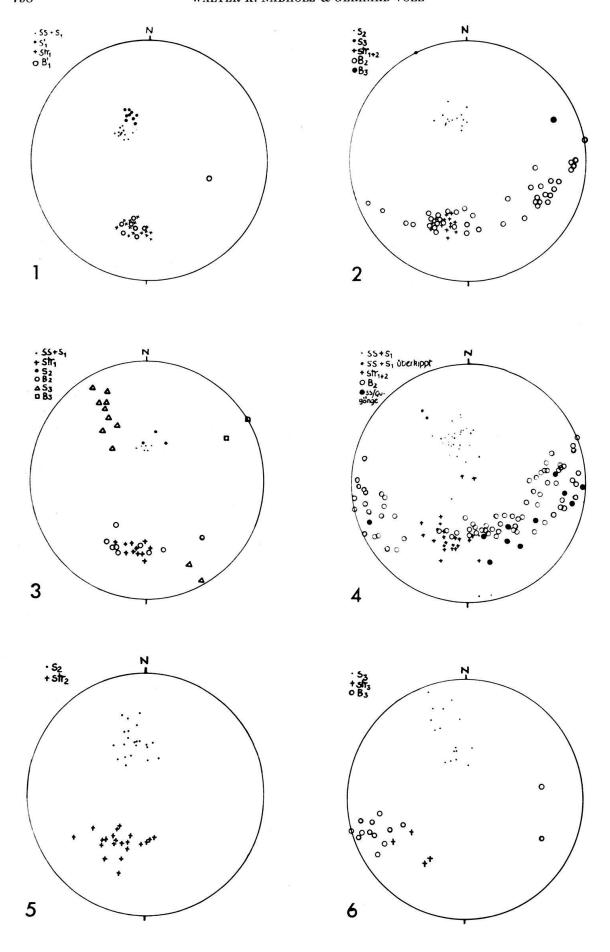



Fig. 23. Deformation an der Basis der Glarner Verrucano-Decke, Kärpfer-Fenster, Kärpfbrücke, südlich Berggasthof Mettmen (Koord. 726,85/200,0).

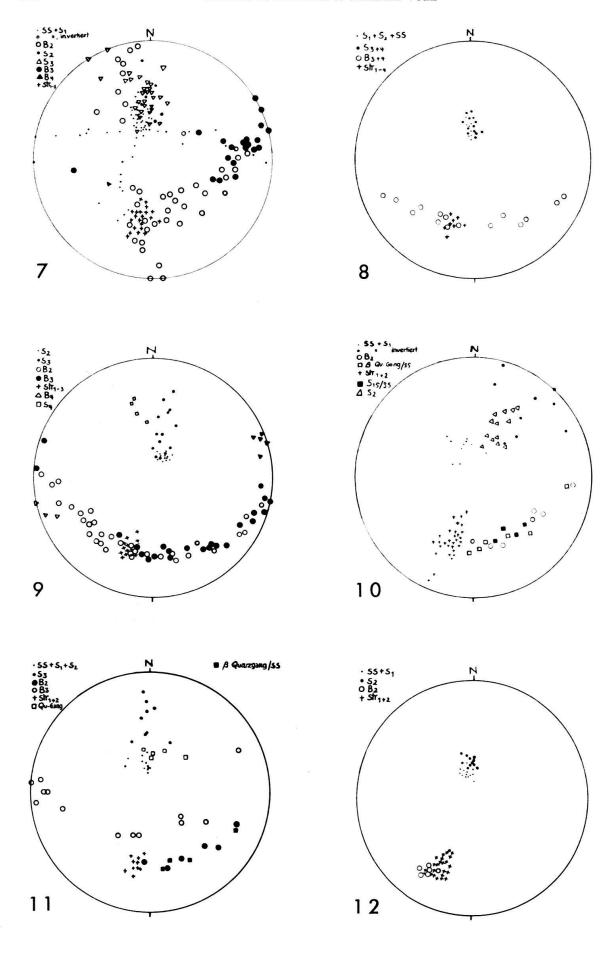
- a) B_1 -Falten mehrere m über der Flyschbasis, parallel str_1 , in der Zeichnung E-vergent, doch kommen auch W-vergente B_1 -Falten vor.
- b) Im Bachtunnel, E-Seite: Faltung im Flysch unter dem Lochseitenkalk. Das flache s_1 ist wiedergefaltet, der Kalk darüber verschuppt. s_2 fällt $80^\circ-45^\circ$ SSE.
- c) Von der Bachtunnel-W-Seite, ähnlich wie b), doch ist hier s_2 selbst schon wieder rotiert und durch B_3 gefaltet, s_3 zerschert. Unter der Malmbasis liegen mehrere m lange Malmspäne, die durch s_1 -, s_2 -Zerscherung abgetrennt wurden, durch s_3 selbst wieder zerlegt werden.
- d) N-Rand des Bachtunnels, W-Ufer. s₁ liegt der Malmbasis parallel. s₂ (s₃?) fällt 55° SSE. Auf s₂ liegt str₂ 180° streichend. Parallel zu ihm bilden sich Runzeln mit zugeordneten s₂-Flächen.

2. Wir erkennen einen Zusammenhang zwischen dem Ausmass der Streckung (Walzung) und dem des Horizontaltransports. So ist die Streckung in flachen Bewegungsbahnen (Piz da Dartgas, Lochseitenkalk, Unterlage des Ötztaler- und Silvretta-Kristallins) stark gesteigert (Fig. 22). Dies wäre unverständlich, wäre die Bewegung an diesen Gleithorizonten (die sich lithologisch nicht wesentlich vom Material zwischen ihnen unterscheiden) bereits erstorben, ehe die Strekkungsgefüge aufgeprägt wurden. Auch die mit der ersten Streckung gebildete erste Schieferung muss während der Horizontaltransporte schon angelegt gewesen sein, da sie dort sich der Deckenbahn parallel legt, zwischen den Gleitbahnen der Decken aber oft hohe Winkel mit ss bildet. Ebenso ist die Bildung s₁-paralleler Quarzgänge in den Überschiebungsbahnen oft extrem gesteigert (Engadiner Fenster, Piz da Dartgas, Basis der Glarner Verrucano-Decke). Auch Wiederfaltungen (Fig. 23, 20g, 19b, c, d) sind auf die Gleithorizonte beschränkt, mit der Gleitung mechanisch und symmetrisch verknüpft und mit ihr gleich alt. Da sie aber bereits s₁ falten, muss dieses erst recht schon während der Deckengleitung angelegt sein.

Wir können uns der Meinung von Wunderlich (1958, p. 146), Plessmann (1958, p. 186) und Chatterjee (1961, p. 54 und 1962, p. 597) nicht anschliessen, die feststellen, die bewegten, d.h. beschleunigten Decken seien von der Deformation und Dehnung verschont geblieben, in den Deckenbereichen seien die Horizontaltransporte vor der Bildung von s₁, str₁ erfolgt und die Decken seien vormetamorph eingewandert. Besonders die Konsequenzen dieser letzten Feststellung wären von grosser Tragweite, erwiesen sie sich als richtig. Man müsste dann recht geringe Mächtigkeiten jeweils übereinander liegender und wandernder Deckenpakete annehmen. So bildet sich ja unter den ca. 2000–3000 m der nördlichen Kalkalpen in Österreich bereits eine s₁-Schieferung in der Basis-Permotrias. Wir gelangen demgegenüber jedoch zu der Feststellung, dass die Decken des Engadiner Fensters, des Helvetikums und der Lugnezer Schiefer mit s₁, str₁ und der zugeordneten Meta-

Fig. 24. Gefügediagramme 1-6.

Alle Diagramme sind mit dem winkeltreuen Netz dargestellt, untere Halbkugel.


D₁: Melser Sandstein an der Basis des Profils Ilanz–Peidenbad (Koord. 735,4/180,5): B₁ parallel str₁. D₂: Lias an der Profilbasis, östlich des Flusses (zwischen Koord. 735,9/180,7 und 735,8/179,6): s₃ fällt steiler als s₂. B₂ belegt den s₂ Grosskreis, liegt z. T. parallel str. Die NNE bis NE streichenden B₂ sind z. T. NW-vergent.

 D_3 : Lias und eingeschuppte Quartenschiefer an der Profilbasis, ca 300 m N der Glenner-Brücke, bei Koord. 735,5/179,95: s_3 fällt steiler als s_2 , s_2 steiler als s_1 . B_2 liegt meist parallel str und ist dann z. T. westvergent. B_3 liegt flach.

 D_4 : N-Ende des Strassenanschnitts durch die kieslig-sandige Serie (Koord. 736,05/178,5 und 200 m südlich davon): $ss+s_1$ überkippt. Dass $ss+s_1$ keine Grosskreise um B_2 belegen, also nicht übers ganze Diagramm streuen, liegt daran, dass nur die Schenkel fast isoklinaler Falten gemessen wurden. B_2 belegt den Grosskreis der s_{1+2} -Fläche, fast stets N- und E-vergent. Die Schnittgerade Quarzgänge/ss belegt den gleichen Grosskreis auf s_1 .

 D_5 : Fundort wie D_4 : s_2 fällt steiler als das s_1 auf D_4 .

 D_6 : Fundort wie D_4 : S_3 fällt steiler als S_2 (D_5), D_3 liegt flacher als D_2 (D_4).

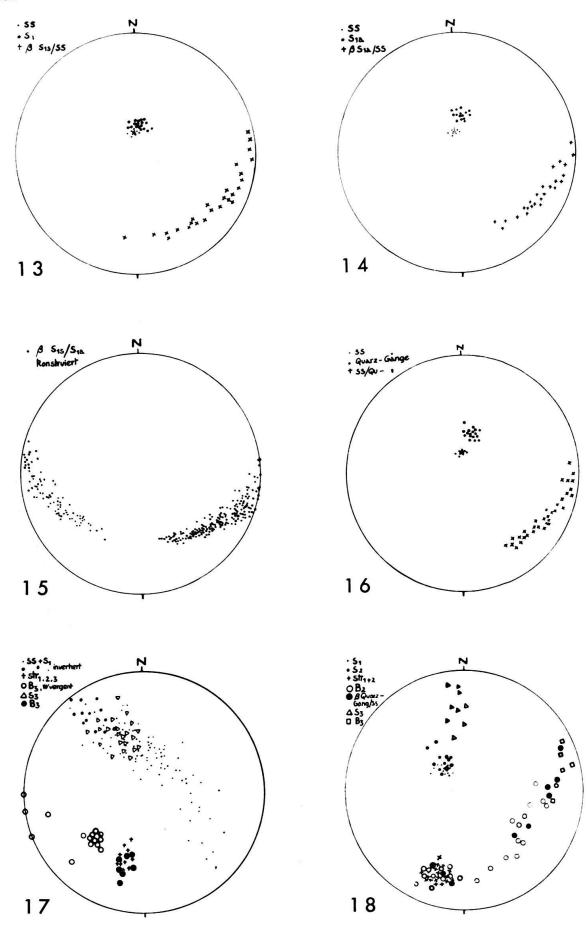
morphose gewandert sind. Wir sehen diese Gefüge als der Deckenbildung zugeordnet an.

Wenn sich die genannten penninischen Deckeneinheiten, die helvetischen Autochthon- und Deckengebiete also in unserem B₁-, s₁-, str₁-Stadium gebildet haben, so liegt es nahe, das gleiche für die Schuppen unseres Profils anzunehmen. Wir haben diesen Schluss ja auch bereits gezogen, da erstens s, die Deformation und Gleitung an unseren Schuppen-Grenzen bestimmt, zweitens diese Schuppen sich aus Liasmulden wie der Scopi-Mulde entwickeln, die ebenfalls im Stadium der s₁-Bildung angelegt sind. Und da dieses s₁ der Scopi-Mulde in unser Profil weiterstreicht, glauben wir, hier wie in der Scopi-Mulde unter Verwendung dieses gleichen s₁ und der ss/s₁-Überschneidung ableiten zu können, dass die Liasschichten unseres Profils nicht invertiert sind. Läge nun tatsächlich in unserem Profil eine Inversion vor, so müsste sie älter als der Schuppenbau des Profils, älter als die regionale B₁-Faltung und damit vormetamorph sein. Damit nähme dieser Streifen eine Sonderstellung ein, denn wir haben ja gesehen, dass sich im helvetischen Bereich weiter im N und in den penninischen Einheiten des Engadiner Fensters und der Lugnezer Schiefer, die weiter im S beheimatet sind, keine vormetamorphe Deformation findet, die Deckengleitung mit s1 erfolgt ist, abgesehen von der Wildflysch-Bildung des Helvetikums. Somit erscheint es uns wieder höchst unwahrscheinlich, dass sich Horizontaltransporte und Inversionen in unserem Profil allein bereits vormetamorph abspielten, während sie nördlich und südlich davon während der ersten Schieferung und Metamorphose erstmals begannen. Auch die eingehend besprochenen sedimentären Unten/Oben-Nachweise führen uns zu einer Bestätigung unserer Ansicht.

Wir sind uns im klaren, dass Baumer, Frey, Jung und Uhrs Deutung (1961) auf ausgedehnten Kartierungen und gründlichen Untersuchungen fusst. Unsere

Fig. 25. Gefügediagramme 7–12

 D_7 : Oberseite der kieslig-sandigen Serie, N des Lawinendachs (Koord. 178,3/699,95): ss invertiert. ss + s $_1$ sind gestreut um: flaches B_3 (Maximum: $112^\circ, 20^\circ$ E) und um eine B_2 -Falte (Rotation um andere B_2 -Falten nicht vermessen) mit der Lage 6°, 30° S. B_2 ist um B_3 (89°, 26° E) gestreut und schwankt in s $_2$. B_4 bildet Runzeln auf s $_3$. Diagramm zu Zeichnung Fig. 11.


 D_8 : Rieiner Tobel, mausgraue Serie (Koord. 736,1/177,9): Die verschieden alten Schieferungen sind durch die letzte, straffe Zerscherung in diese jüngste s-Flächenschar eingedreht. B_{3+4} sind isoklinal und schwanken in s_{3+4} . NNE streichende B_{3+4} -Achsen sind z. T. W-vergent.

 D_9 : Von der Unterseite der Grobsande nach N zum Rieiner Tobel, mausgraue Serie: s_4 fällt steiler als s_3 , dieses steiler als s_2 . B_2 und B_3 sind meist isoklinal und schwanken auf dem Grosskreis der s_2 - und s_3 -Flächen. B_4 ist offen und liegt flach. Die NNE bis NE streichenden B_{2+3} -Falten sind z. T. westvergent.

 D_{10} : Basis der Grobsande (Koord. 735,5/177,1): Jüngere s-Flächen fallen steiler als ältere, hier streichen sie zudem mehr ESE. B_2 streut auf dem s_2 -Flächen-Grosskreis, die Schnittgeraden von Quarzgängen und s_{18} mit ss belegen auf ss den gleichen Grosskreis.

 D_{11} : 100–200 m N der Pitascher Säge, Serie mit unruhiger Sedimentation: Jüngere s-Flächen fallen steiler, Quarzgänge liegen s_{1a} parallel. B_2 , B_3 und die Schnittgerade Quarzgänge/ss streuen auf dem Grosskreis der zugehörigen s-Flächen, hier fast stets N- bis E-vergent.

 D_{12} : 40 m N Pitascher Säge: s_1 und s_2 liegen fast parallel, doch fällt letzteres noch etwas steiler. B_2 liegt hier meist str parallel.

gegensätzliche Auffassung wollen wir nicht als dogmatische dagegenstellen. Wir hoffen aber, dass wir einer endgültigen Klärung mit der Einführung neuer Beobachtungen und Argumente gedient haben.

Zusammenfassung

1948 studierte W. K. Nabholz das im Glenner Tal südlich Ilanz erschlossene Profil durch das gotthardmassivische Mesozoikum. Er deutete die Trias-Lias-Abfolge als Schuppenbau mit aufrechter Schichtfolge. 1961 übernahmen Baumer, A., Frey, J. D., Jung, W. und Uhr, A., seine Schichtfolge (deren Glieder sie umbenannten) und deuteten sie als invertiert. Wir sehen die Schichtfolge nichtsdestoweniger als aufrecht an, aus folgenden Gründen:

- Im Gelände und an An- und Dünnschliffen fanden wir an verschiedenen Stellen des Profils sedimentäre Unten/Oben-Nachweise (Grading in mm-Rhythmiten und an einer Stelle Anreicherungen von Schwermineralen an der Schicht-Unterseite.
- 2. Die Beziehung Schichtung (ss)/erste Schieferung (s_1) zeigt stets aufrechte Lage von ss an, wenn man annimmt, dass keine vormetamorphe (= $vor s_1 version stattfand$. Diese Annahme erscheint sinnvoll, denn selbst bei gut erhaltener Feinschichtung sind Gefüge-Äquivalente einer solchen vormetamorphen, hypothetischen Inversion im km-Bereich nie erkennbar. B_1/s_1 veränderten als erste das sedimentäre Gefüge.

Das Studium der Gefüge zeigt ein dem Schuppenbau korrelates, flach SSE-fallendes s₁ (mit sehr kleinen Winkeln ss/s₁) und ein erstes, NS streichendes Streckungs-Linear, str₁. Nordvergente, symmetriekonstante, ein- bis dreimalige Wiederfaltung und -Schieferung schafft B₂-, B₃- und B₄-Falten. Deren Achsen sind variabel und kurven in dem SSE-fallenden, jeweils zugeordneten s₂, s₃ und s₄ von NE über E nach S. Damit vergieren die Falten (Rotation der kurzen Schenkel) von NW über N nach E. Die Streckung hält durch die rotationale Deformation all dieser Wiederfaltungen an. Diese häufen sich in den inkompetenten

Fig. 26. Gefügediagramme 13-18

 D_{13} : Pitaschersäge: s_{18} fällt nur wenig steiler als ss. Die Schnittgeraden belegen den s_1 -Flächen-Grosskreis. Abfolge dicker, sandiger Bänke in der Serie mit unruhiger Sedimentation.

 D_{14} : Fundort wie D_{13} : s_{1a} fällt etwas steiler nach S als s_{1s} (D_{13}). Die Schnittgeraden liegen auf dem s_1 -Grosskreis.

 D_{15} : Fundort wie D_{13} : Punkte=konstruierte Schnittgerade aus allen s_{18} und s_{1a} -Messungen. Die Schnittgeraden streuen über den ganzen s_1 -Grosskreis, häufen sich für östliche Tauchwerte auf s_1 .

 D_{16} : Fundort wie D_{13} : Die Quarzgänge folgen s_{1a} und bilden ähnliche gelegene Schnittgerade mit ss wie s_{1a} und s_{1s} .

 D_{17} : Bach bei Pitaschersäge. Serie mit unruhiger Sedimentation. B_3 W-vergent. ss und s_1 bilden, z. T. noch offen um B_3 gefaltet, einen vollständigen Gürtel um B_3 . B_2 Falten werden durch B_3 gefaltet und liegen str parallel. Auch sie z. T. W-vergent.

 D_{18} : Strassenkurve 500 m N Peidenbad, Serie mit unruhiger Sedimentation.

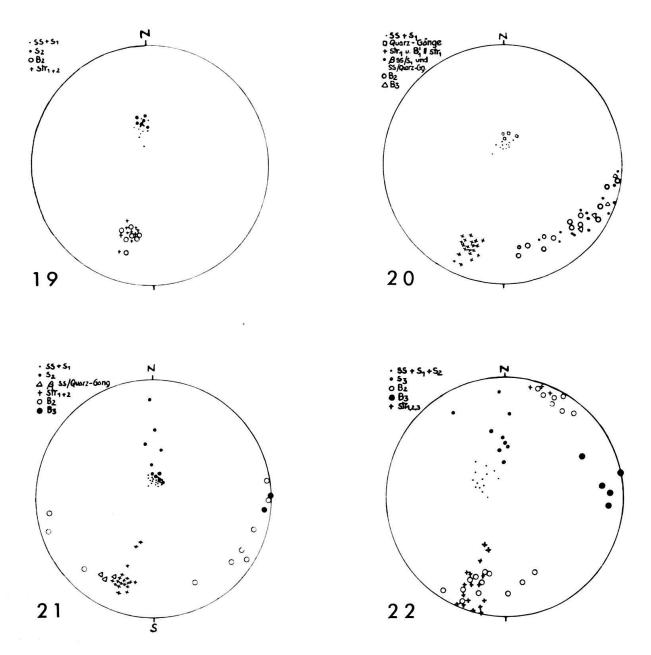


Fig. 27. Gefügediagramme 19-22

 D_{19} : Strassenkurve 300 m N Peidenbad, Serie mit unruhiger Sedimentation: s_2 fällt wenig steiler als $ss+s_1$. B_2 ist straff isoklinal mit Achsen parallel str, meist W-vergent.

 D_{20} : Trias und Lias N Peidenbad: Die Quarzgänge liegen s_{1a} parallel (fallen daher etwas steiler als die eingemessenen s_{1s} -Flächen), B_2 streut, wie β_1 , im $ss+s_1+s_2$ -Grosskreis, isoklinal und N- bis E-vergent. B_3 liegt flach.

 D_{21} : Tobelbrücke 300 m S Uors, Quartenschiefer unter den Lugnezer Schiefern: s_2 fällt in offenen B_2 -Falten steiler als $ss+s_1$, in isoklinalen β_2 -Falten gleich steil. B_2 streut auf dem s_{1+2} -Grosskreis. NNE streichendes B_2 ist z. T. W-vergent. str_2 streut, verglichen mit str_1 zu steileren Tauchwinkeln. Die Schnittlinien Quarzgänge/ss liegen str parallel ($=ss_1$). B_3 liegt flach, bildet offene Falten. D_{22} : Tobelbrücke 300 m S Uors, Lugnezer Schiefer über der Trias: Da B_2 -Falten straff isoklinal zusammengelegt sind, liegen ss, s_1 und s_2 parallel, s_3 fällt in offenen s_3 -Falten steiler. s_2 liegt str fast oder ganz parallel, ist meist W-vergent. s_3 liegt flach.

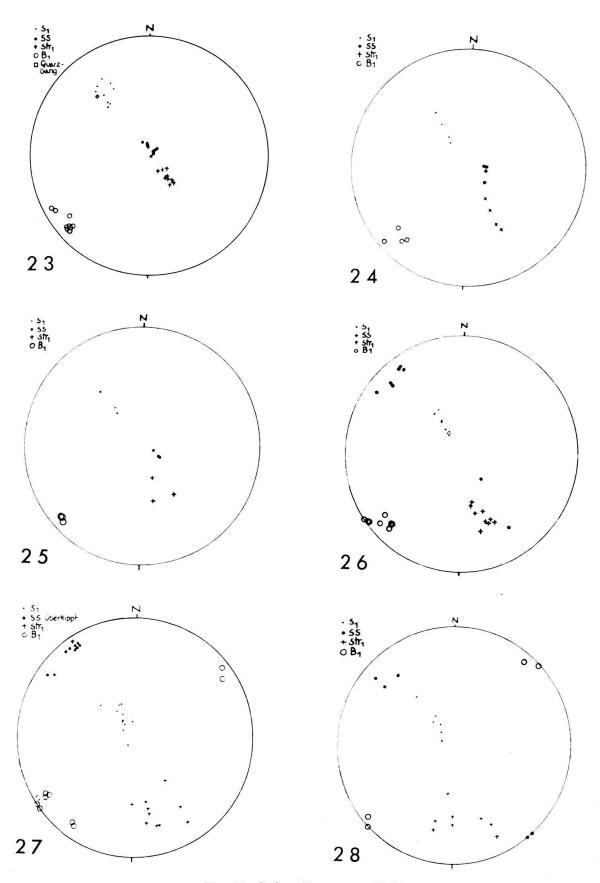
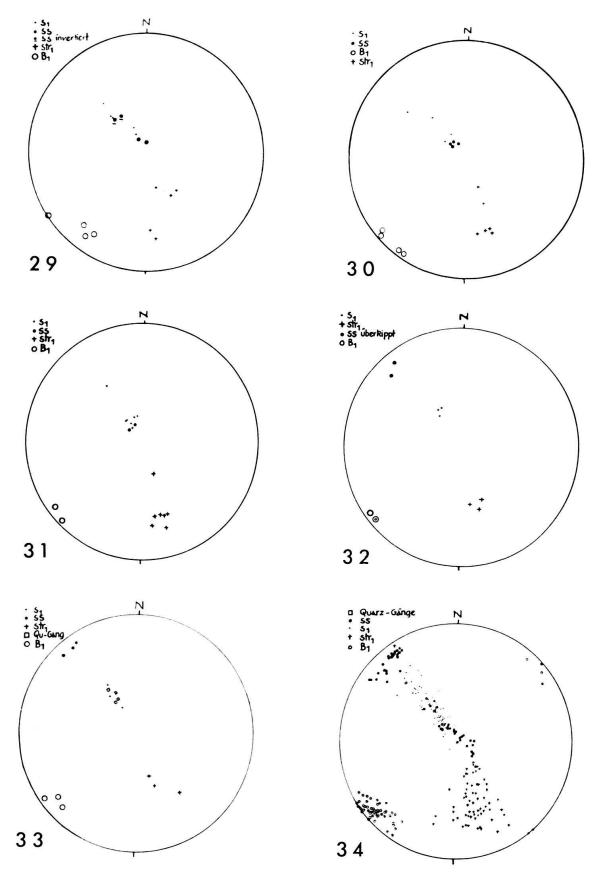



Fig. 28. Gefügediagramme 23–34 $\rm D_{23}\text{-}D_{34}$ vom Piz da Dartgas, (par)-autochthones Helvetikum E des Aar-Massivs.

 $\begin{array}{c} D_{23}-D_{33}=Teil diagramme \; (Schlüssel siehe \; Fig. \; 21, \; bei \; D_{29} \; sind \; invertierte \; ss-Lagen \; unterstrichen), \\ D_{34}=Sammel diagramm. \end{array}$

Horizonten nach Zahl und Intensität. Ihre Amplituden und Wellenlängen bleiben im 10 m-Bereich. Damit kann man die der ersten folgenden Faltungen abwickeln. Ausserdem bilden sich im Endstadium jeder Faltung Runzeln mit Achsen streng parallel der Streckungsrichtung. Sie markieren eine beginnende Wiederfaltung mit Achsen B' senkrecht und schief B. Diese erreichen hier kein grösseres Ausmass. Weiter im W wird die Scopi-Mulde (deren Achsenebene steil NNW fällt) fast nicht mehr durch diese Wiederfaltungen betroffen. Sie ist eine erste Falte in unserem Sinn, s_1 schneidet ss auf ihren beiden Schenkeln in verschiedenem Sinn. Da sich diese Falte mit s_1 als erster Schieferung in unser Profil fortsetzt, können wir die Überschneidung ss/s_1 zum Nachweis von Inversionen oder aufrechter Lagerung verwenden.

In unserem Profil reicht das Wachstum vom Chloritoid bis in die letzten Bewegungsphasen. Das gleiche gilt für Quarz und Karbonat, die aber beide noch von den letzten Bewegungen betroffen werden. Die Gefüge sind nicht posttektonisch getempert.

In unserem Gebiet, im Bereich der helvetischen Hauptschubmasse nördlich des Vorderrheins bis in die Glarner Alpen, des autochthonen Helvetikums und des Engadiner Fensters treten ähnliche Gefüge auf. Stets sind die Gesteine quer zum Generalstreichen gestreckt, stets ist s₁ den flachen Horizontal-Transporten und Deckengleitungen zugeordnet. Das gleiche gilt für die südlich an unser Gebiet anschliessenden Lugnezer Schiefer. Die Deckengleitung erfolgte also nicht vormetamorph und nicht ohne Spuren im Gefüge zu hinterlassen. In dieses Stadium der s₁-Horizontal-Transporte fällt auch die Schuppenbildung unseres Profils.

LITERATURVERZEICHNIS

- Badoux, H. (1963): Les Unités ultrahelvétiques de la Zone des Cols. Eclogae geol. Helv. 56/1, 1-13.
- Baumer, A., Frey, J. D., Jung, W., & Uhr, A. (1961): Die Sedimentbedeckung des Gotthard-Massivs zwischen oberem Bleniotal und Lugnez. Eclogae geol. Helv. 54/2: 478-491.
- Bolli, H. M., & Nabholz, W. K. (1959): Bündnerschiefer, ähnliche fossilarme Serien und ihr Gehalt an Mikrofossilien. Eclogae geol. Helv. 52/1, 237-270.
- Cadisch, J., & Niggli, E. (1953): Geologie der Schweizer Alpen. Wepf & Co., Basel (480 S.).
- Chatterjee, N. D. (1961): The Alpine Metamorphism in the Simplon Area, Switzerland and Italy. Geol. Rundsch. 51/1, 1-72.
 - (1962): Zur Achsenkarte des inneren Westalpenbogens. II. Petrographische Auswertung des Probenmaterials. N. Jb. Geol. Paläont. Mh. 11, 587-606.
- Geologische Generalkarte der Schweiz, Blätter 3 Zürich-Glarus (1950), 4 St. Gallen-Chur (1959) und 7 Ticino (1955). Herausgeg. v. d. Schweiz. Geol. Komm.
- Hammer, W. (1923): Blatt 5245 Nauders. Geol. Spez. Karte der Republik Österreich, 1:75000.
- Helbling, R. (1938): Zur Tektonik des St. Galler Oberlandes und der Glarneralpen. Beitr. z. Geol. Karte der Schweiz. NF 76/II, mit Atlas.
- Hoeppener, R. (1956): Zum Problem der Bruchbildung, Schieferung und Faltung. Geol. Rundsch. 45/2, 247-283.
- Huber, H. M. (1943): Physiographie und Genesis der Gesteine im südöstlichen Gotthardmassiv. Schweiz. Min. u. Petr. Mitt. 23/1, 72–260.
- Kläy, L. (1957): Geologie der Stammerspitze. Eclogae geol. Helv. 50/2, 323-467.
- Landeskarte der Schweiz 1:50000. Blätter 246 Klausenpass, 247 Sardona und 257 Safiental. Herausg. v. d. Eidg. Landestop., Bern.

- Nabholz, W. K. (1945): Geologie der Bündnerschiefergebirge zwischen Rheinwald, Valser- und Safiental. Eclogae geol. Helv. 38/1, 1-120.
 - (1948): Das Ostende der mesozoischen Schieferhülle des Gotthard-Massivs im Vorderrheintal. Eclogae geol. Helv. 41/2, 247–268.
- Niggli, E. (1960): Mineral-Zonen der alpinen Metamorphose in den Schweizer Alpen. Internat. Geol. Congress, 19. Session Copenhagen, Part 13, 132-138.
 - (1961): Bemerkungen zur tertiären regionalen Metamorphose in den Schweizer Alpen. N. Jb. Miner., Abh. 96/2/3, 234–235.
- OBERHOLZER, J. (1920): Geologische Karte der Alpen zwischen Linthgebiet und Rhein, 1:50000. Spez. Karte 63, herausgeg. v. d. Schweiz. Geol. Komm.
 - (1933): Geologie der Glarneralpen. Beitr. z. Geol. Karte der Schweiz. NF. 28, mit Atlas.
 - (1942): Geologische Karte des Kantons Glarus, 1:50000. Spez. Karte 117, herausgeg. v. d. Schweiz. Geol. Komm.
- Plessmann, W. (1958): Tektonische Untersuchungen an Randteilen des Gotthard- und Montblanc-Massivs sowie an der Grenze Penninikum-Helvetikum. Nachr. Akad. Wiss. Göttingen, math. physik. Kl. IIa, 7, 153–188.
- Plessmann, W., & Wunderlich, H. G. (1961): Eine Achsenkarte des inneren Westalpenbogens. N. Jb. Geol. Pal., Mh., 4, 199–210.
- Schindler, C. M. (1959): Zur Geologie des Glärnisch. Beitr. z. Geol. Karte der Schweiz. NF. 107. Staub, R. (1938): Einige Ergebnisse vergleichender Studien zwischen Wallis und Bünden. Eclogae geol. Helv. 31/2, 345-353.
 - (1954): Der Bau der Glarneralpen und seine prinzipielle Bedeutung für die Alpengeologie. 187 S.,
 10 Tf. und 1 Kartenbeilage. Tschudi & Co., Glarus.
 - (1958): Klippendecke und Zentralalpenbau. Beziehungen und Probleme. Beitr. z. Geol. Karte der Schweiz, NF. 103.
 - (1961): Neuere Betrachtungen zum glarnerischen Deckenbau. Vjschr., naturf. Ges. Zürich 106/3, 289-386.
- Styger, G. A. (1961): Bau und Stratigraphie der nordhelvetischen Tertiärbildungen in der Hausstock- und westlichen Kärpfgruppe. Diss. Univ. Zürich.
- Trümpy, R. (1944): Zur Tektonik der südlichen Hausstockgruppe. Eelogae geol. Helv. 37/2, 405–409.
- Voll, G. (1960): New work on petrofabrics. Liverpool and Manchester Geol. Journ. 2/3, 503-567.
- Voll, G. (1961): Zur Frage des Stofftransports auf den Korngrenzen metamorpher Gesteine.
 Geol. Rdsch. 51/2, 395-405.
- Wenk, E. (1955): Eine Strukturkarte der Tessineralpen. Schweiz. Min. u. Petr. Mitt. 35/2, 311-319.
 - (1956a): Die lepontinische Gneissregion und die jungen Granite der Valle della Mera. Eclogae geol. Helv. 49/2, 251-265.
 - (1956b): Alpines und ostgrönländisch-kaledonisches Kristallin, ein tektonisch-petrogenetischer Vergleich. Verh. Natf. Ges. Basel, 67/2, 75–102.
 - (1958): Zur Systematik des linearen Parallelgefüges. Schweiz. Min. u. Petr. Mitt. 38/2, 492-493.
- Wunderlich, H. G. (1957): Tektonik und Metamorphose der Bündner Schiefer in der Umrahmung des östlichen Gotthardmassivs. Nachr. Akad. Wiss. Göttingen, math.-physik. Kl. II a, 1, 1–17.
 - (1958): Ablauf und Altersverhältnis der Tektonik- und Metamorphose-Vorgänge in Bündnerschiefern Nordtessins und Graubündens. Nachr. Akad. Wiss. Göttingen, math.-physik. Kl. IIa, 7, 115–151.
- Wyssling, L. (1950): Zur Geologie der Vorabgruppe. Diss. ETH Zürich.